File: dim-doc.m2

package info (click to toggle)
macaulay2 1.21%2Bds-3
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 133,096 kB
  • sloc: cpp: 110,377; ansic: 16,306; javascript: 4,193; makefile: 3,821; sh: 3,580; lisp: 764; yacc: 590; xml: 177; python: 140; perl: 114; lex: 65; awk: 3
file content (150 lines) | stat: -rw-r--r-- 4,301 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
--- status: draft
--- author(s): Decker, Popescu, Smith
--- notes: 

document { 
     Key => dim,
     Headline => "compute the Krull dimension",
     Caveat => {"To compute the dimension of a vector space, 
	one should use ", TO rank, ".",
	PARA{},
	"Over the integers, the computation effectively 
	 tensors first with the rational numbers, yielding the wrong 
	 answer in some cases."},
     SeeAlso => {codim}
     }

document { 
     Key => {(dim,Ring),(dim,FractionField),(dim,GaloisField),(dim,PolynomialRing),(dim,QuotientRing),(dim, InexactField)},
     Usage => "dim R",
     Inputs => {"R"},
     Outputs => {ZZ},
     "Computes the Krull dimension of the given ring.",
     PARA{},
     "The singular locus of a cuspidal plane curve", 
     EXAMPLE {
	  "R = QQ[x,y,z]",
	  "I =ideal(y^2*z-x^3)",
	  "sing = singularLocus(R/I)",
	  "dim sing"
	  },
     "The exterior algebra is artinian:",
     EXAMPLE {
	  "R = ZZ/101[a,b,SkewCommutative => true]",
	  "dim R"
	  },
     "The Weyl algebra in 2 variables:",
     EXAMPLE {
          "R = ZZ/101[x,dx,y,dy,WeylAlgebra => {x=>dx, y=>dy}];",
	  "dim R"
	  },
     SeeAlso => {codim, (dim,AffineVariety)}
     }
document { 
     Key => (dim,AffineVariety),
     Headline => "dimension of the affine variety",
     Usage => "dim V",
     Inputs => {"V"
	  },
     Outputs => {ZZ
	  },
     "Computes the dimension of the affine algebraic set ", TT "V"," as the Krull dimension
      of its affine coordinate ring.",
     EXAMPLE {
	  "R = ZZ/101[x,y];",
          "point = ideal(x,y);",
	  "line = ideal(2*x+3*y-1);",
	  "V=Spec(R/intersect(point,line))",	  
	  "dim V",
	  "Z=Spec(R/(point+line))",
	  "dim Z"
	  },
     SeeAlso => {Spec, (dim,ProjectiveVariety)}
     }
document { 
     Key => (dim,ProjectiveVariety),
     Headline => "dimension of the projective variety",
     Usage => "dim V",
     Inputs => {"V"
	  },
     Outputs => {ZZ
	  },
     "Computes the dimension of the projective algebraic set from 
      the Krull dimension of its homogeneous coordinate ring.",
     EXAMPLE {
	  "R = ZZ/101[x_0..x_4];",
	  "M = matrix{{x_0,x_1,x_2,x_3},{x_1,x_2,x_3,x_4}}",
	  "V = Proj(R/minors(2,M));",
	  "degree V",
	  "dim V",
	  "dim minors(2,M)"
	  },
     SeeAlso => {Proj, (dim, AffineVariety)}
     }
document { 
     Key => (dim,Module),
     Usage => "dim M",
     Inputs => {"M"
	  },
     Outputs => {ZZ
	  },
     "Computes the Krull dimension of the module ", TT "M",
     EXAMPLE {
	  "R = ZZ/31991[a,b,c,d]",
	  "I = monomialCurveIdeal(R,{1,2,3})",
	  "M = Ext^1(I,R)",
	  "dim M",
	  "N = Ext^0(I,R)",
	  "dim N"
	  },
     "Note that the dimension of the zero module is ", TT "-1", ".",
     SeeAlso => {(dim,Ring),(dim,Ideal)}
     }
document { 
     Key => (dim,ProjectiveHilbertPolynomial),
     Headline => "the degree of the Hilbert polynomial",
     Usage => "dim P",
     Inputs => {"P"
	  },
     Outputs => {"ZZ"
	  },
     "The command ", TO dim,  "is designed so that the result 
     is the dimension of the projective scheme that 
     may have been used to produce the given Hilbert polynomial.",
     EXAMPLE {
	  "V = Proj(QQ[x_0..x_5]/(x_0^3+x_5^3))",
	  "P = hilbertPolynomial V",
	  "dim P"
	  },
      SeeAlso => {hilbertPolynomial, (degree,ProjectiveHilbertPolynomial), (euler,ProjectiveHilbertPolynomial)}
     }
document { 
     Key => {(dim,Ideal),(dim,MonomialIdeal)},
     Usage => "dim I",
     Inputs => {"I"},
     Outputs => {ZZ},
     "Computes the Krull dimension of the base ring of ", TT "I", " mod ", TT "I", ".",
     PARA{},
     "The ideal of 3x3 commuting matrices:",
     EXAMPLE {
	  "R = ZZ/101[x_(0,0)..x_(2,2),y_(0,0)..y_(2,2)]",
	  "M = genericMatrix(R,x_(0,0),3,3)",
	  "N = genericMatrix(R,y_(0,0),3,3)",
	  "I = ideal flatten(M*N-N*M);",
	  "dim I" 
	  },
     "The dimension of a Stanley-Reisner monomial ideal associated to a simplicial complex.", 
     PARA{},
     "A hollow tetrahedron:",
     EXAMPLE {
	  "needsPackage \"SimplicialComplexes\"", 
	  "R = QQ[a..d]",
	  "D = simplicialComplex {a*b*c,a*b*d,a*c*d,b*c*d}",
	  "I = monomialIdeal D",
          "facets D",
          "dim D",
	  "dim I"
	  },
     "Note that the dimension of the zero ideal is ", TT "-1", ".",
     SeeAlso => {ideal, monomialIdeal, "SimplicialComplexes::SimplicialComplexes"}
     }