File: euler-doc.m2

package info (click to toggle)
macaulay2 1.21%2Bds-3
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 133,096 kB
  • sloc: cpp: 110,377; ansic: 16,306; javascript: 4,193; makefile: 3,821; sh: 3,580; lisp: 764; yacc: 590; xml: 177; python: 140; perl: 114; lex: 65; awk: 3
file content (173 lines) | stat: -rw-r--r-- 5,289 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
--- status: draft
--- author(s): Sorin Popescu
--- notes: 



document {
     Key => euler,
     Headline => "Euler characteristic",
     SeeAlso => {eulers, genus}
     }


document {
     Key => (euler,ProjectiveHilbertPolynomial),
     Headline => "constant term of the Hilbert polynomial",
     Usage => "euler P",
     Inputs => {"P"
	  },
     Outputs => {ZZ =>" the constant term of the Hilbert polynomial"},
     "The command returns ", TT "P(0)", " the constant term of P. 
      This is also the Euler characteristic of the sheaf of rings of a projective 
      variety with Hilbert polynomial ", TT "P", ".",
      PARA{},
      EXAMPLE {	   
	   "R = QQ[x_0..x_3]",
	   "C = Proj(R/monomialCurveIdeal(R, {1,3,4}));",
	   "P = hilbertPolynomial C",
	   "euler P"
	   },
     SeeAlso => {hilbertPolynomial,eulers,genus}
     }

document {
     Key => (euler,ProjectiveVariety),
     Headline => "topological Euler characteristic of a (smooth) projective variety",
     Usage => "euler V",
     Inputs => {"V"
	  },
     Outputs => {ZZ =>"the topological Euler characteristics of the variety V"
	  },    
     "The command computes the topological Euler characteristic of the (smooth) projective 
     variety V as an alternated sum of its Hodge numbers. The Hodge numbers can be computed 
     directly using the command ", TO "hh", ".",
     PARA{},
     "A smooth plane quartic curve has genus 3 and topological Euler characteristic -4:",  
     EXAMPLE {
	  "Quartic = Proj(QQ[x_0..x_2]/ideal(x_0^4+x_1^4+x_2^4))",
	  "euler(Quartic)"
	  },
     PARA{},
     "The topological Euler characteristic of a smooth quintic hypersurface in
     projective fourspace is -200:",     
     EXAMPLE {
	  "Quintic = Proj(QQ[x_0..x_4]/ideal(x_0^5+x_1^5+x_2^5+x_3^5+x_4^5-101*x_0*x_1*x_2*x_3*x_4))",
	  "euler(Quintic)"
	  },
     Caveat  => {"No test is made to see if the projective variety is smooth"}, 
     SeeAlso => {Proj,genus,hh}
     }

document {
     Key => (euler,CoherentSheaf),
     Headline => "Euler characteristic of coherent sheaf",
     Usage => "euler F",
     Inputs => {"F"
	  },
     Outputs => {ZZ =>" the Euler characteristic of the cohomology of the sheaf"},
     "The command returns ", TT "chi(F)", " the Euler characteristic of the sheaf ",
      TT "F", " i.e. the alternated sum of the dimensions of its cohomology groups",
     PARA{},
      
     SeeAlso => {(eulers,CoherentSheaf),genus}
     }

document {
     Key => (euler,Module),
     "This needs to be documented.",
     SeeAlso => {(eulers,Module),genus}
     }

document {
     Key => (euler,Ring),
     "This needs to be documented.",
     SeeAlso => {(eulers,Ring),genus}
     }

document {
     Key => (euler,Ideal),
     "This needs to be documented.",
     SeeAlso => {(eulers,Ideal),genus}
     }

document { 
     Key => eulers,
     Headline => "list the sectional Euler characteristics",
     SeeAlso => {euler,genera,genus}
     }

document { 
     Key => {(eulers, CoherentSheaf),(eulers,Module)},
     Usage => "eulers E",
     Inputs => {"E"
	  },
     Outputs => {List =>"the successive sectional Euler characteristics of a coherent sheaf, or a module."
	  },
     "Computes a list of the successive sectional Euler characteristics of a coherent sheaf,
     the i-th entry on the list being the Euler characteristic of the i-th
     generic hyperplane restriction of ", TT "E",
     PARA{},
     "The Horrocks-Mumford bundle on the projective fourspace:",
     EXAMPLE {
	  "R = QQ[x_0..x_4];",
	  "a = {1,0,0,0,0}",
	  "b = {0,1,0,0,1}",
	  "c = {0,0,1,1,0}",
	  "M1 = matrix table(5,5, (i,j)-> x_((i+j)%5)*a_((i-j)%5))",
	  "M2 = matrix table(5,5, (i,j)-> x_((i+j)%5)*b_((i-j)%5))",
	  "M3 = matrix table(5,5, (i,j)-> x_((i+j)%5)*c_((i-j)%5))",
	  "M = M1 | M2 | M3;",
	  "betti (C=res coker M)",
	  "N = transpose submatrix(C.dd_3,{10..28},{2..36});",
	  "betti (D=res coker N)",
	  "Pfour = Proj(R)",
	  "HorrocksMumford = sheaf(coker D.dd_3);",
	  "HH^0(HorrocksMumford(1))",
	  "HH^0(HorrocksMumford(2))",
	  "eulers(HorrocksMumford(2))"
	  },
     SeeAlso => {genera,genus}
     }
document { 
     Key => (eulers,Ideal),
     Usage => "eulers I",
     Inputs => {"I"
	  },
     Outputs => {List =>"the successive sectional Euler 
	  characteristics of an ideal (sheaf)."
          },
     "Computes a list of the successive sectional Euler 
     characteristics of an ideal (sheaf), the i-th entry 
     in the list being the Euler characteristic of the i-th
     generic hyperplane restriction of ", TT "I",     
     EXAMPLE {
	  "R = ZZ/101[a,b,c];",
	  "I =ideal(a^3+b^3+c^3)", 
	  "eulers I"
	  },
     SeeAlso => {genera,genus}
     }
document { 
     Key => (eulers,Ring),
     Usage => "eulers R",
     Inputs => {"R"
	  },
     Outputs => {List =>"the successive sectional Euler 
	       characteristics of a (sheaf of) ring(s)."
	  },
     "Computes a list of the successive sectional Euler 
     characteristics of a ring (sheaf of), the i-th entry 
     in the list being the Euler characteristic of the i-th
     generic hyperplane restriction of ", TT "R",     
     EXAMPLE {
	  "S = ZZ/101[a,b,c];",
	  "I = ideal(a^3+b^3+c^3)", 
	  "R = S/I",
	  "eulers(R)",
	  "J = substitute(ideal(b,a+c),R)",
	  "eulers(R/J)"
	  },
     SeeAlso => {genera,genus},
     }