1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
|
--- status: draft
--- author(s): Sorin Popescu
--- notes:
document {
Key => euler,
Headline => "Euler characteristic",
SeeAlso => {eulers, genus}
}
document {
Key => (euler,ProjectiveHilbertPolynomial),
Headline => "constant term of the Hilbert polynomial",
Usage => "euler P",
Inputs => {"P"
},
Outputs => {ZZ =>" the constant term of the Hilbert polynomial"},
"The command returns ", TT "P(0)", " the constant term of P.
This is also the Euler characteristic of the sheaf of rings of a projective
variety with Hilbert polynomial ", TT "P", ".",
PARA{},
EXAMPLE {
"R = QQ[x_0..x_3]",
"C = Proj(R/monomialCurveIdeal(R, {1,3,4}));",
"P = hilbertPolynomial C",
"euler P"
},
SeeAlso => {hilbertPolynomial,eulers,genus}
}
document {
Key => (euler,ProjectiveVariety),
Headline => "topological Euler characteristic of a (smooth) projective variety",
Usage => "euler V",
Inputs => {"V"
},
Outputs => {ZZ =>"the topological Euler characteristics of the variety V"
},
"The command computes the topological Euler characteristic of the (smooth) projective
variety V as an alternated sum of its Hodge numbers. The Hodge numbers can be computed
directly using the command ", TO "hh", ".",
PARA{},
"A smooth plane quartic curve has genus 3 and topological Euler characteristic -4:",
EXAMPLE {
"Quartic = Proj(QQ[x_0..x_2]/ideal(x_0^4+x_1^4+x_2^4))",
"euler(Quartic)"
},
PARA{},
"The topological Euler characteristic of a smooth quintic hypersurface in
projective fourspace is -200:",
EXAMPLE {
"Quintic = Proj(QQ[x_0..x_4]/ideal(x_0^5+x_1^5+x_2^5+x_3^5+x_4^5-101*x_0*x_1*x_2*x_3*x_4))",
"euler(Quintic)"
},
Caveat => {"No test is made to see if the projective variety is smooth"},
SeeAlso => {Proj,genus,hh}
}
document {
Key => (euler,CoherentSheaf),
Headline => "Euler characteristic of coherent sheaf",
Usage => "euler F",
Inputs => {"F"
},
Outputs => {ZZ =>" the Euler characteristic of the cohomology of the sheaf"},
"The command returns ", TT "chi(F)", " the Euler characteristic of the sheaf ",
TT "F", " i.e. the alternated sum of the dimensions of its cohomology groups",
PARA{},
SeeAlso => {(eulers,CoherentSheaf),genus}
}
document {
Key => (euler,Module),
"This needs to be documented.",
SeeAlso => {(eulers,Module),genus}
}
document {
Key => (euler,Ring),
"This needs to be documented.",
SeeAlso => {(eulers,Ring),genus}
}
document {
Key => (euler,Ideal),
"This needs to be documented.",
SeeAlso => {(eulers,Ideal),genus}
}
document {
Key => eulers,
Headline => "list the sectional Euler characteristics",
SeeAlso => {euler,genera,genus}
}
document {
Key => {(eulers, CoherentSheaf),(eulers,Module)},
Usage => "eulers E",
Inputs => {"E"
},
Outputs => {List =>"the successive sectional Euler characteristics of a coherent sheaf, or a module."
},
"Computes a list of the successive sectional Euler characteristics of a coherent sheaf,
the i-th entry on the list being the Euler characteristic of the i-th
generic hyperplane restriction of ", TT "E",
PARA{},
"The Horrocks-Mumford bundle on the projective fourspace:",
EXAMPLE {
"R = QQ[x_0..x_4];",
"a = {1,0,0,0,0}",
"b = {0,1,0,0,1}",
"c = {0,0,1,1,0}",
"M1 = matrix table(5,5, (i,j)-> x_((i+j)%5)*a_((i-j)%5))",
"M2 = matrix table(5,5, (i,j)-> x_((i+j)%5)*b_((i-j)%5))",
"M3 = matrix table(5,5, (i,j)-> x_((i+j)%5)*c_((i-j)%5))",
"M = M1 | M2 | M3;",
"betti (C=res coker M)",
"N = transpose submatrix(C.dd_3,{10..28},{2..36});",
"betti (D=res coker N)",
"Pfour = Proj(R)",
"HorrocksMumford = sheaf(coker D.dd_3);",
"HH^0(HorrocksMumford(1))",
"HH^0(HorrocksMumford(2))",
"eulers(HorrocksMumford(2))"
},
SeeAlso => {genera,genus}
}
document {
Key => (eulers,Ideal),
Usage => "eulers I",
Inputs => {"I"
},
Outputs => {List =>"the successive sectional Euler
characteristics of an ideal (sheaf)."
},
"Computes a list of the successive sectional Euler
characteristics of an ideal (sheaf), the i-th entry
in the list being the Euler characteristic of the i-th
generic hyperplane restriction of ", TT "I",
EXAMPLE {
"R = ZZ/101[a,b,c];",
"I =ideal(a^3+b^3+c^3)",
"eulers I"
},
SeeAlso => {genera,genus}
}
document {
Key => (eulers,Ring),
Usage => "eulers R",
Inputs => {"R"
},
Outputs => {List =>"the successive sectional Euler
characteristics of a (sheaf of) ring(s)."
},
"Computes a list of the successive sectional Euler
characteristics of a ring (sheaf of), the i-th entry
in the list being the Euler characteristic of the i-th
generic hyperplane restriction of ", TT "R",
EXAMPLE {
"S = ZZ/101[a,b,c];",
"I = ideal(a^3+b^3+c^3)",
"R = S/I",
"eulers(R)",
"J = substitute(ideal(b,a+c),R)",
"eulers(R/J)"
},
SeeAlso => {genera,genus},
}
|