1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
|
--- status: draft
--- author(s): Decker, Popescu
--- notes:
document {
Key => genera,
Headline => "list of the successive linear sectional arithmetic genera",
SeeAlso => {genus,hilbertPolynomial,euler}
}
document {
Key => (genera,Ring),
Usage => "genera R",
Inputs => {"R"
},
Outputs => {List =>{"of the successive linear sectional
arithmetic genera of projective scheme ", TT "V"," with homogeneous coordinate
ring ", TT "R"}
},
"Computes the list of successive linear sectional arithmetic genera,
where the i-th entry in the list is the arithmetic genus of the i-th
successive generic hyperplane section of ", TT "V", " ",
"(= (-1)^dim-lin-section * (chi(OO_lin-section) - 1)).",
EXAMPLE {
"R = ZZ/101[x_0..x_4];",
"I = ideal random(R^1, R^{-2,-3});",
"genera(R/I)"
},
SeeAlso => {genus, euler}
}
document {
Key => {(genera,CoherentSheaf), (genera,Module)},
Usage => "genera M",
Inputs => {"M"
},
Outputs => {List =>{"of the successive linear sectional
arithmetic genera of the successive generic hyperplane restrictions
of ", TT "M"}
},
"Computes the list of successive generic linear sectional arithmetic genera,
where the i-th entry in the list is
(-1)^dim-support -i * (chi(M ** OO_lin-section) - 1)).",
EXAMPLE {
"V = Proj(ZZ/101[x_0..x_2]);",
"M = sheaf(image matrix {{x_0^3+x_1^3+x_2^3}})",
"genera M"
},
SeeAlso => {euler}
}
document {
Key => (genera,Ideal),
Usage => "genera I",
Inputs => {"I"
},
Outputs => {List =>{"of the successive linear sectional
arithmetic genera of ", TT "I"}
},
"Computes the list of successive linear sectional arithmetic genera,
where the i-th entry in the list is the arithmetic genus of the i-th
successive generic hyperplane section of the zero-locus of ", TT "I", " ",
"(= (-1)^dim-lin-section * (chi(OO_lin-section) - 1)).",
PARA{},
"A complete intersection of type (2,3) in projective fourspace;
its hyperplane section is a canonical curve of genus 4:",
EXAMPLE {
"R = ZZ/101[x_0..x_4];",
"I = ideal random(R^1, R^{-2,-3});",
"genera I"
},
SeeAlso => {euler, genus}
}
document {
Key => {(genera,ProjectiveVariety)},
Usage => "genera V",
Inputs => {"V"
},
Outputs => {List => {"of the successive linear sectional
arithmetic genera of ", TT "V"}
},
"Computes the list of successive linear sectional arithmetic genera,
where the i-th entry in the list is the arithmetic genus of the i-th
successive generic hyperplane section of ", TT "V", " ",
"(= (-1)^dim-lin-section * (chi(OO_lin-section) - 1)).",
PARA{},
"A complete intersection of type (2,3) in projective fourspace;
its hyperplane section is a canonical curve of genus 4:",
EXAMPLE {
"R = ZZ/101[x_0..x_4];",
"V = Proj(R/(ideal random(R^1, R^{-2,-3})));",
"genera V"
},
SeeAlso => {euler,genus}
}
|