1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
|
document {
Key => CoherentSheaf,
Headline => "the class of all coherent sheaves"
}
document {
Key => sheaf,
Headline => "make a coherent sheaf"
}
document {
Key => (sheaf, Variety, Module),
Headline => "make a coherent sheaf",
Usage => "sheaf(X,M)",
Inputs => {"X","M"},
Outputs => {{ "the coherent sheaf on the variety ", TT "X", " corresponding to the module ", TT "M" }},
PARA{
"If ", TT "X", " is the affine variety ", TT "Spec R", ", then ", TT "M", " should be an ", TT "R", "-module. If ", TT "X", " is
the projective variety ", TT "Proj R", ", then ", TT "M", " should be a homogeneous ", TT "R", "-module."
}
}
document {
Key => (sheaf, Variety, Ring),
Headline => "make a coherent sheaf of rings",
TT "sheaf(X,R)", " -- produce the coherent sheaf on the variety ", TT "X", " corresponding
to the ring ", TT "R", ". The variety ", TT "X", " must be ", TT "Spec R", " or ", TT "Proj R", ".",
EXAMPLE lines ///
R = QQ[x,y,z]
X = Proj R
Y = Spec R
sheaf(X,R)
sheaf(Y,R)
///}
document {
Key => (sheaf, Variety),
Headline => "make a coherent sheaf",
Usage => "sheaf X",
Inputs => {"X"},
Outputs => {{ "the structure sheaf of rings on the variety ", TT "X" }},
EXAMPLE lines ///
R = QQ[x,y,z]
X = Proj R
Y = Spec R
sheaf X
sheaf Y
///
}
document {
Key => {(sheaf, Module),(symbol ~, Module)},
Headline => "make a coherent sheaf",
Usage => "sheaf M\nM~",
Inputs => {"M" => "homogeneous" },
Outputs => {{ "the coherent sheaf on a projective variety ", TT "X", " corresponding to ", TT "M" }},
EXAMPLE lines ///
R = QQ[x,y,z];
X = Proj R
M = R^{1,2,3}
sheaf M
M~
///
}
document {
Key => {(sheaf, Ring),(symbol ~, Ring)},
Headline => "make a coherent sheaf of rings",
Usage => "sheaf R\nR~",
Inputs => {"R"},
Outputs => {{"the coherent sheaf on a projective variety ", TT "X", " corresponding to ", TT "M"}},
EXAMPLE lines ///
R = QQ[x,y,z];
X = Proj R
sheaf R
R~
///
}
document {
Key => {(Proj, Ring), Proj},
Headline => "make a projective variety",
Usage => "Proj R",
Inputs => {"R"},
Outputs => {{ "the projective variety (or scheme) formed from the graded ring ", TT "R" }},
EXAMPLE lines ///
R = QQ[x,y];
Proj R
///
}
document {
Key => (module, CoherentSheaf),
Headline => "get the module defining a coherent sheaf",
Usage => "module F",
Inputs => {"F"},
Outputs => {{"the module from which the coherent sheaf ", TT "F", " was defined"}},
EXAMPLE lines ///
X = Proj(QQ[x,y,z])
F = OO_X(3)
module F
degrees oo
///,
SeeAlso => { OO, degrees, Proj }
}
document {
Key => (symbol ++, CoherentSheaf, CoherentSheaf),
Headline => "direct sum of coherent sheaves",
Usage => "F ++ G",
Inputs => {"F","G"},
Outputs => {{"the direct sum of ", TT "F", " and ", TT "G"}},
EXAMPLE lines ///
X = Proj(QQ[x,y,z])
OO_X(3) ++ OO_X(4)
module oo
///
}
document {
Key => (symbol **, CoherentSheaf, CoherentSheaf),
Headline => "tensor produce of coherent sheaves",
Usage => "F ** G",
Inputs => {"F","G"},
Outputs => {{"the tensor product of ", TT "F", " and ", TT "G"}},
EXAMPLE lines ///
X = Proj(QQ[x,y,z])
OO_X(-3) ++ OO_X(4)
oo ** oo
///
}
document {
Key => {(symbol SPACE, CoherentSheaf, ZZ), (symbol SPACE, SheafOfRings, ZZ)},
Headline => "canonical twist of a coherent sheaf",
Usage => "F(n)",
Inputs => {"F" => {"or ", ofClass SheafOfRings, ", on a projective variety"}, "n"},
Outputs => { CoherentSheaf => "the twist of F on a projective variety by the n-th power of the hyperplane line bundle." },
EXAMPLE lines ///
X = Proj(QQ[x,y,z])
F = OO_X
G = F(3)
module G
degrees oo
///
}
document {
Key => {(symbol /, CoherentSheaf, CoherentSheaf), (symbol /, CoherentSheaf, Ideal)},
Headline => "quotient of coherent sheaves",
Usage => "F / G",
Inputs => { "F", "G" => {"or ", ofClass Ideal} },
Outputs => { CoherentSheaf => {"the quotient sheaf ", TT "F/G"} },
"We compute the cohomology of two sheaves supported on an elliptic curve.",
EXAMPLE lines ///
X = Proj(QQ[x,y,z])
I = ideal(y^2*z-x*(x-z)*(x-11*z))
N = (sheaf module I)/(sheaf module I^2)
G = OO_X^1/I
HH^1(G)
HH^1(N)
///,
SeeAlso => {Proj, Spec, sheaf, (cohomology,ZZ,CoherentSheaf), OO}
}
document {
Key => (exteriorPower, ZZ, CoherentSheaf),
Usage => "exteriorPower(i,F)",
Inputs => {"i","F"},
Outputs => {{ "the ", TT "i", "-th exterior power of ", TT "F"}}
}
|