1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860
|
-- -*- coding: utf-8 -*-
newPackage("Markov",
Authors => {
{Name => "Luis Garcia-Puente"},
{Name => "Mike Stillman"}
},
DebuggingMode => false,
Keywords => {"Statistics"},
Headline => "Markov ideals arising from Bayesian networks in statistics",
Version => "1.3",
Date => "May 15, 2021",
PackageImports => {"Elimination"}
)
------------------------------------------
-- markov ideals in Macaulay2
-- Authors: Luis Garcia and Mike Stillman
--
-- Routines:
-- makeGraph {{},{1},{1},{2,3},{2,4}}
-- displayGraph(name,G)
--
-- localMarkovStmts G -- G is a directed graph
-- globalMarkovStmts G
-- pairMarkovStmts G
--
-- markovRing (2,2,3,3)
--
-- marginMap(R,i) : R --> R
-- hiddenMap(R,i) : R --> S
--
-- markovMatrices S -- S is a list of independence statements
-- markovIdeal S
--
-- For examples of use, see the
------------------------------------------
export {"makeGraph", "displayGraph", "localMarkovStmts", "globalMarkovStmts", "pairMarkovStmts",
"markovRing", "marginMap", "hideMap", "markovMatrices", "markovIdeal", "writeDotFile", "removeRedundants",
"gaussRing", "gaussMinors", "gaussIdeal", "gaussTrekIdeal", "Graph"}
exportMutable {"dotBinary"}
-------------------------
-- Graph visualization --
-------------------------
-- Give a graph as a hash table i => descendents
-- Make a graph
-- Input: a directed acyclic graph in the form of a
-- list of lists of children.
-- the vertices must be named 1..n, some n.
-- ASSUMPTION: we assume that the descendents of vertex
-- i are all less than i. This only represents DAGS.
-- Output: A hashtable G with keys 1..n, and G#i is the
-- the set of all children of the vertex i.
-- This routine produces a useful version of a 'graph'
-- which we use in routines throughout this package.
Graph = new Type of HashTable
-- a directed graph is a hash table in the form:
-- { A => set {B,C,...}, ...}, where there are edges A->B, A->C, ...
-- and A,B,C are integers. The nodes of the graph must be 1,2,...,N.
makeGraph = method()
makeGraph List := (g) -> (
h := new MutableHashTable;
scan(#g, i -> h#(i+1) = set g#i);
new Graph from h)
-- dotBinary = "/sw/bin/dot"
dotBinary = "dot"
writeDotFile = method()
writeDotFile(String,Graph) := (filename,G) -> (
fil := openOut filename;
fil << "digraph G {" << endl;
q := pairs G;
for i from 0 to #q-1 do (
e := q#i;
fil << " " << toString e#0;
if #e#1 === 0 then
fil << ";" << endl
else (
fil << " -> {";
links := toList e#1;
for j from 0 to #links-1 do
fil << toString links#j << ";";
fil << "};" << endl;
)
);
fil << "}" << endl << close;
)
runcmd := cmd -> (
stderr << "--running: " << cmd << endl;
r := run cmd;
if r != 0 then error("--command failed, error return code ",r);
)
displayGraph = method()
displayGraph(String,String,Graph) := (dotfilename,jpgfilename,G) -> (
writeDotFile(dotfilename,G);
runcmd(dotBinary | " -Tjpg "|dotfilename | " -o "|jpgfilename);
show URL("file://" | toAbsolutePath jpgfilename);
)
displayGraph(String,Graph) := (dotfilename,G) -> (
jpgfilename := temporaryFileName() | ".jpg";
displayGraph(dotfilename,jpgfilename,G);
--removeFile jpgfilename;
)
displayGraph Graph := (G) -> (
dotfilename := temporaryFileName() | ".dot";
displayGraph(dotfilename,G);
--removeFile dotfilename;
)
-------------------------
-- Statements -----------
-------------------------
------------------
-- Graph basics --
------------------
descendents = method()
descendents(Graph,ZZ) := (G,v) -> (
-- returns a set of vertices
result := G#v;
scan(reverse(1..v-1), i -> (
if member(i,result) then result = result + G#i;
));
result)
nondescendents = method()
nondescendents(Graph,ZZ) := (G,v) -> set(1..#G) - descendents(G,v) - set {v}
parents = method()
parents(Graph,ZZ) := (G,v) -> set select(1..#G, i -> member(v, G#i))
children = method()
children(Graph,ZZ) := (G,v) -> G#v
removeNodes = method()
removeNodes(Graph,List) := (G,v) -> (
v = set v;
G = select(pairs G, x -> not member(x#0,v));
G = apply(G, x -> (x#0, x#1 - v));
new Graph from G
)
removeNodes(Graph,ZZ) := (G,v) -> removeNodes(G, {v})
--------------------------
-- Statement calculus ----
--------------------------
-- A dependency is a list {A,B,C}
-- where A,B,C are (disjoint) subsets of positive integers.
-- The meaning is: A is independent of B given C.
-- A dependency list is a list of dependencies
-- No serious attempt is made to remove redundant dependencies.
-- However, we have several very simple routines to remove
-- the most obvious redundant elements
-- If S and T represent exactly the same dependency, return true.
equivStmts = (S,T) -> S#2 === T#2 and set{S#0,S#1} === set{T#0,T#1}
-- More serious removal of redundancies. This was taken from MES's indeps.m2
setit = (d) -> {set{d#0,d#1},d#2}
under = (d) -> (
d01 := toList d_0;
d0 := toList d01_0;
d1 := toList d01_1;
d2 := toList d_1;
e0 := subsets d0;
e1 := subsets d1;
z1 := flatten apply(e0, x -> apply(e1, y -> (
{set{d01_0 - set x, d01_1 - set y}, set x + set y + d_1})));
z2 := flatten apply(e0, x -> apply(e1, y -> (
{set{d01_0 - set x, d01_1 - set y}, d_1})));
z := join(z1,z2);
z = select(z, z0 -> not member(set{}, z0_0));
set z
)
-- input: ds
-- first make list where each element is {-a*b, set{A,B}, set C}
-- sort the list
-- remove the first element
sortdeps = Ds -> (
i := 0;
ds := apply(Ds, d -> (x := toList d#0; i=i+1; { - #x#0 * #x#1, i, d#0, d#1}));
ds = sort ds;
apply(ds, d -> {d#2, d#3})
)
normalizeStmt = (D) -> (
-- D has the form: {set{set{A},set{B}},set{C}}
-- output is {A,B,C}, where A,B,C are sorted in increasing order
-- and A#0 < B#0
D0 := sort apply(toList(D#0), x -> sort toList x);
D1 := toList(D#1);
{D0#0, D0#1, D1}
)
minimize = (Ds) -> (
-- each element of Ds should be a list {A,B,C}
answer := {};
-- step 1: first make the first two elements of each set a set
Ds = Ds/setit;
while #Ds > 0 do (
Ds = sortdeps Ds;
f := Ds_0;
funder := under f;
answer = append(answer, f);
Ds = set Ds - funder;
Ds = toList Ds;
);
apply(answer, normalizeStmt))
removeRedundants = (Ds) -> (
-- Ds is a list of triples of sets {A,B,C}
-- test1: returns true if D1 can be removed
-- Return a sublist of Ds which removes any
-- that test1 declares not necessary.
test1 := (D1,D2) -> (D1_2 === D2_2 and
((isSubset(D1_0, D2_0) and isSubset(D1_1, D2_1))
or (isSubset(D1_1, D2_0) and isSubset(D1_0, D2_1))));
-- first remove non-unique elements, if any
Ds = apply(Ds, d -> {set{d#0,d#1}, d#2});
Ds = unique Ds;
Ds = apply(Ds, d -> append(toList(d#0), d#1));
c := toList select(0..#Ds-1, i -> (
a := Ds_i;
D0 := drop(Ds,{i,i});
all(D0, b -> not test1(a,b))));
minimize(Ds_c))
--------------------------
-- Bayes ball algorithm --
--------------------------
bayesBall = (A,C,G) -> (
-- A is a set in 1..n (n = #G)
-- C is a set in 1..n (the "blocking set")
-- G is a DAG
-- Returns the subset B of 1..n which is
-- independent of A given C.
-- The algorithm is the Bayes Ball algorithm,
-- as implemented by Luis Garcia, after
-- the paper of Ross Schlacter
n := #G;
zeros := toList((n+1):false);
visited := new MutableList from zeros;
blocked := new MutableList from zeros;
up := new MutableList from zeros;
down := new MutableList from zeros;
top := new MutableList from zeros;
bottom := new MutableList from zeros;
vqueue := sort toList A;
-- Now initialize vqueue, set blocked
scan(vqueue, a -> up#a = true);
scan(toList C, c -> blocked#c = true);
local pa;
local ch;
while #vqueue > 0 do (
v := vqueue#-1;
vqueue = drop(vqueue,-1);
visited#v = true;
if not blocked#v and up#v
then (
if not top#v then (
top#v = true;
pa = toList parents(G,v);
scan(pa, i -> up#i = true);
vqueue = join(vqueue,pa);
);
if not bottom#v then (
bottom#v = true;
ch = toList children(G,v);
scan(ch, i -> down#i = true);
vqueue = join(vqueue,ch);
);
);
if down#v
then (
if blocked#v and not top#v then (
top#v = true;
pa = toList parents(G,v);
scan(pa, i -> up#i = true);
vqueue = join(vqueue,pa);
);
if not blocked#v and not bottom#v then (
bottom#v = true;
ch = toList children(G,v);
scan(ch, i -> down#i = true);
vqueue = join(vqueue,ch);
);
);
); -- while loop
set toList select(1..n, i -> not blocked#i and not bottom#i)
)
--------------------------
-- Markov relationships --
--------------------------
pairMarkovStmts = method()
pairMarkovStmts Graph := (G) -> (
-- given a graph G, returns a list of triples {A,B,C}
-- where A,B,C are disjoint sets, and for every vertex v
-- and non-descendent w of v,
-- {v, w, nondescendents(G,v) - w}
removeRedundants flatten apply(toList(1..#G), v -> (
ND := nondescendents(G,v);
W := ND - parents(G,v);
apply(toList W, w -> {set {v}, set{w}, ND - set{w}}))))
localMarkovStmts = method()
localMarkovStmts Graph := (G) -> (
-- Given a graph G, return a list of triples {A,B,C}
-- of the form {v, nondescendents - parents, parents}
result := {};
scan(1..#G, v -> (
ND := nondescendents(G,v);
P := parents(G,v);
if #(ND - P) > 0 then
result = append(result,{set{v}, ND - P, P})));
removeRedundants result)
globalMarkovStmts = method()
globalMarkovStmts Graph := (G) -> (
-- Given a graph G, return a complete list of triples {A,B,C}
-- so that A and B are d-separated by C (in the graph G).
-- If G is large, this should maybe be rewritten so that
-- one huge list of subsets is not made all at once
n := #G;
vertices := toList(1..n);
result := {};
AX := subsets vertices;
AX = drop(AX,1); -- drop the empty set
AX = drop(AX,-1); -- drop the entire set
scan(AX, A -> (
A = set A;
Acomplement := toList(set vertices - A);
CX := subsets Acomplement;
CX = drop(CX,-1); -- we don't want C to be the entire complement
scan(CX, C -> (
C = set C;
B := bayesBall(A,C,G);
if #B > 0 then (
B1 := {A,B,C};
if all(result, B2 -> not equivStmts(B1,B2))
then
result = append(result, {A,B,C});
)))));
removeRedundants result
)
-------------------
-- Markov rings ---
-------------------
protect markov
markovRingList = new MutableHashTable;
markovRing = d -> (
-- d should be a sequence of integers di >= 1
if any(d, di -> not instance(di,ZZ) or di <= 0)
then error "useMarkovRing expected positive integers";
if not markovRingList#?d then (
start := (#d):1;
p := getSymbol "p";
markovRingList#d = QQ[p_start .. p_d];
markovRingList#d.markov = d;
);
markovRingList#d
)
--------------
-- marginMap
-- Return the ring map F : R --> R such that
-- F p_(u1,u2,..., +, ,un) = p_(u1,u2,..., 1, ,un)
-- and
-- F p_(u1,u2,..., j, ,un) = p_(u1,u2,..., j, ,un), for j >= 2.
--------------
marginMap = method()
marginMap(ZZ,Ring) := (v,R) -> (
-- R should be a Markov ring
v = v-1;
d := R.markov;
use R; -- this should set p
p := value getSymbol "p";
F := toList apply(((#d):1) .. d, i -> (
if i#v > 1 then p_i
else (
i0 := drop(i,1);
p_i - sum(apply(toList(2..d#v), j -> (
newi := join(take(i,v), {j}, take(i,v-#d+1));
--print p_newi;
p_newi))))));
map(R,R,F))
hideMap = method()
hideMap(ZZ,Ring) := (v,A) -> (
-- creates a ring map inclusion F : S --> A.
v = v-1;
R := ring presentation A;
d := R.markov;
e := drop(d, {v,v});
S := markovRing e;
dv := d#v;
use A; -- this should set p
p := value getSymbol "p";
F := toList apply(((#e):1) .. e, i -> (
sum(apply(toList(1..dv), j -> (
newi := join(take(i,v), {j}, take(i,v-#d+1));
--print p_newi;
p_newi)))));
map(A,S,F))
-------------------------------------------------------
-- Constructing the ideal of a independence relation --
-------------------------------------------------------
cartesian := (L) -> (
if #L == 1 then
return toList apply (L#0, e -> 1:e);
L0 := L#0;
Lrest := drop (L,1);
C := cartesian Lrest;
flatten apply (L0, s -> apply (C, c -> prepend (s,c))))
possibleValues := (d,A) ->
cartesian (toList apply(1..#d, i ->
if member(i,A)
then toList(1..d#(i-1))
else {0}))
prob = (d,s) -> (
p := value getSymbol "p"; -- ?? has "use" been applied to the ring yet?
L := cartesian toList apply (#d, i ->
if s#i === 0
then toList(1..d#i)
else {s#i});
sum apply (L, v -> p_v))
markovMatrices = method()
markovMatrices(Ring,List) := (R, Stmts) -> (
-- R should be a Markov ring, and S is a list of
-- independence statements
d := R.markov;
flatten apply(Stmts, stmt -> (
Avals := possibleValues(d,stmt#0);
Bvals := possibleValues(d,stmt#1);
Cvals := possibleValues(d,stmt#2);
apply(Cvals, c -> (
matrix apply(Avals,
a -> apply(Bvals, b -> (
e := toSequence(toList a + toList b + toList c);
prob(d,e))))))))
)
markovIdeal = method()
markovIdeal(Ring,List) := (R,Stmts) -> (
M := markovMatrices(R,Stmts);
sum apply(M, m -> minors(2,m))
)
gaussRing = method(Options=>{CoefficientRing=>QQ, Variable=>"s"})
gaussRing ZZ := opts -> (n) -> (
x := opts.Variable;
if instance(x,String) then x = getSymbol x;
kk := opts.CoefficientRing;
v := flatten apply(1..n, i -> apply(i..n, j -> x_(i,j)));
R := kk[v, MonomialSize=>16];
R#gaussRing = n;
R
)
gaussMinors = method()
gaussMinors(Matrix,List) := (M,D) -> (
-- M should be an n by n symmetric matrix, D mentions variables 1..n (at most)
rows := join(D#0, D#2);
rows = rows/(i -> i-1);
cols := join(D#1, D#2);
cols = cols/(i -> i-1);
M1 := submatrix(M,rows,cols);
minors(#D#2 + 1, M1)
)
gaussIdeal = method()
gaussIdeal(Ring, List) := (R,Stmts) -> (
-- for each statement, we take a set of minors
if not R#?gaussRing then error "expected a ring created with gaussRing";
M := genericSymmetricMatrix(R, R#gaussRing);
sum apply(Stmts, D -> gaussMinors(M,D))
)
gaussIdeal(Ring,Graph) := (R,G) -> gaussIdeal(R,globalMarkovStmts G)
gaussTrekIdeal = method()
gaussTrekIdeal(Ring, Graph) := (R,G) -> (
n := max keys G;
P := toList apply(1..n, i -> toList parents(G,i));
nv := max(P/(p -> #p));
t := local t;
S := (coefficientRing R)[generators R, t_1 .. t_nv];
newvars := toList apply(1..nv, i -> t_i);
I := trim ideal(0_S);
s := value getSymbol "s"; -- is this right?
sp := (i,j) -> if i > j then s_(j,i) else s_(i,j);
for i from 1 to n-1 do (
J := ideal apply(1..i, j -> s_(j,i+1)
- sum apply(#P#i, k -> S_(k + numgens R) * sp(j,P#i#k)));
I = eliminate(newvars, I + J);
);
substitute(I,R)
)
beginDocumentation()
doc ///
Key
Markov
Headline
Markov ideals, arising from Bayesian networks in statistics
Description
Text
This package is used to construct ideals corresponding to discrete graphical models,
as described in several places, including the paper: Garcia, Stillman and Sturmfels,
"The algebraic geometry of Bayesian networks", J. Symbolic Comput., 39(3-4):331–355, 2005.
The paper also constructs Gaussian ideals, as described in the paper by Seth Sullivant:
"Algebraic geometry of Gaussian Bayesian networks", Adv. in Appl. Math. 40 (2008), no. 4, 482--513.
Here is a typical use of this package. We create the ideal in 16 variables whose zero set
represents the probability distributions on four binary random variables which satisfy the
conditional independence statements coming from the "diamond" graph 4 --> 2,3 --> 1.
Example
R = markovRing(2,2,2,2)
G = makeGraph{{},{1},{1},{2,3}}
S = globalMarkovStmts G
I = markovIdeal(R,S)
Text
Sometime an ideal can be simplified by changing variables. Very often, by using @TO marginMap@,
such ideals can be transformed to binomial ideals. This is the case here.
Example
F = marginMap(1,R)
J = F I;
netList pack(2,J_*)
Text
This ideal has 5 primary components. The first is the one that has statistical significance.
The significance of the other components is still poorly understood.
Example
time netList primaryDecomposition J
Caveat
The parts of the package involving graphs might eventually be changed to use a package dealing
specifically with graphs. This might change the interface to this package.
///
document {
Key => {gaussRing, (gaussRing,ZZ)},
Headline => "ring of gaussian correlations on n random variables",
Usage => "gaussRing n",
Inputs => {
"n" => ZZ => "the number of random variables",
CoefficientRing => "a coefficient field or ring",
Variable => "a symbol, the variables in the ring will be s_(1,1),..."
},
Outputs => {
Ring => "a ring with indeterminates s_(i,j), 1 <= i <= j <= n"
},
"The routines ", TO "gaussMinors", ", ", TO "gaussIdeal", ", ", TO "gaussTrekIdeal",
" all require that the ring
be created by this function.",
PARA{},
EXAMPLE lines ///
R = gaussRing 5;
gens R
genericSymmetricMatrix(R,5)
///,
SeeAlso => {"gaussMinors", "gaussIdeal", "gaussTrekIdeal"}
}
document {
Key => {gaussIdeal, (gaussIdeal,Ring,Graph), (gaussIdeal,Ring,List)},
Headline => "correlation ideal of a Bayesian network of joint Gaussian variables",
Usage => "gaussIdeal(R,G)",
Inputs => {
"R" => Ring => {"created with ", TO "gaussRing", ""},
"G" => {ofClass Graph, " or ", ofClass List}
},
Outputs => {
"the ideal in R of the relations in the correlations of the random variables implied by the
independence statements of the graph G or the list of independence statements G"
},
"These ideals were first written down by Seth Sullivant, in \"Algebraic geometry of Gaussian Bayesian networks\".
The routines in this package involving Gaussian variables are all based on that paper.",
EXAMPLE lines ///
R = gaussRing 5;
G = makeGraph {{2},{3},{4,5},{5},{}}
(globalMarkovStmts G)/print;
J = gaussIdeal(R,G)
///,
PARA{},
"A list of independence statements (as for example returned by globalMarkovStmts)
can be provided instead of a graph.",
PARA{},
"The ideal corresponding to a conditional independence statement {A,B,C} (where A,B,C,
are disjoint lists of integers in the range 1..n (n is the number of random variables)
is the #C+1 x #C+1 minors of the submatrix of the generic symmetric matrix M = (s_(i,j)), whose
rows are in A union C, and whose columns are in B union C. In general, this does not need to
be a prime ideal.",
EXAMPLE lines ///
I = gaussIdeal(R,{{{1,2},{4,5},{3}}, {{1},{2},{3,4,5}}})
codim I
///,
SeeAlso => {"makeGraph", "globalMarkovStmts", "localMarkovStmts", "gaussRing", "gaussMinors", "gaussTrekIdeal"}
}
doc ///
Key
markovRing
Headline
ring of probability distributions on several discrete random variables
Usage
markovRing(d1,d2,...,dr)
Inputs
di:ZZ
Each d_i should be a positive integer
Outputs
R:Ring
A polynomial ring with d1*d2*...*dr variables $p_{(i1,...,ir)}$,
with each i_j satisfying 1 <= i_j <= d_j.
Consequences
Item
Information about this sequence of integers is placed into the ring, and is used
by other functions in this package. Also, at most one ring for each such sequence
is created: the results are cached.
Description
Example
R = markovRing(2,3,4,5);
numgens R
R_0, R_1, R_119
coefficientRing R
Caveat
Currently, the user has no choice about the names of the variables.
Also, the base field is set to be QQ, without option of changing it.
These will hopefully change in a later version.
SeeAlso
///
end
doc ///
Key
Headline
Usage
Inputs
Outputs
Consequences
Description
Text
Text
Example
Text
Example
Caveat
SeeAlso
///
doc ///
Key
Headline
Usage
Inputs
Outputs
Consequences
Description
Text
Text
Example
Text
Example
Caveat
SeeAlso
///
end
restart
loadPackage "Markov"
installPackage "Markov"
G = makeGraph{{},{1},{1},{2,3},{2,3}}
S = globalMarkovStmts G
R = markovRing(2,2,2,2,2)
markovIdeal(R,S)
R = gaussRing(5)
M = genericSymmetricMatrix(R,5)
describe R
gaussMinors(M,S_0)
J = trim gaussIdeal(R,S)
J1 = ideal drop(flatten entries gens J,1)
res J1
support J1
globalMarkovStmts G
minimize oo
G = makeGraph{{2,3},{4},{4},{}}
G1 = makeGraph{{},{1},{1},{2,3}}
globalMarkovStmts G
globalMarkovStmts G1
G4 = {{},{1},{1},{2,3}}
restart
loadPackage "Markov"
G4 = makeGraph{{2,3},{4},{4},{}}
R = gaussRing 4
I = gaussTrekIdeal(R,G4)
J = gaussIdeal(R,G4)
I == J
G4 = makeGraph{{2,3},{4},{4,5},{},{}}
G = makeGraph{{3},{3,4},{4},{}}
R = gaussRing 4
I = gaussTrekIdeal(R,G)
J = gaussIdeal(R,G)
I == J
load "/Users/mike/local/src/M2-mike/markov/dags5.m2"
D5s
D5s = apply(D5s, g -> (
G := reverse g;
G = apply(G, s -> sort apply(s, si -> 6-si));
G))
R = gaussRing 5
apply(D5s, g -> (
G := makeGraph g;
I := gaussTrekIdeal(R,G);
J := gaussIdeal(R,G);
if I != J then << "NOT EQUAL on " << g << endl;
I != J))
Gs = select(D5s, g -> (
G := makeGraph g;
I := gaussTrekIdeal(R,G);
J := gaussIdeal(R,G);
if I != J then << "NOT EQUAL on " << g << endl;
I != J))
Gs/print;
Gs = {
{{4}, {4}, {4, 5}, {5}, {}},
{{3, 5}, {3}, {4}, {5}, {}},
{{2, 4}, {4}, {4, 5}, {5}, {}},
{{2, 4}, {3, 5}, {4}, {5}, {}},
{{3, 5}, {3, 4}, {4}, {5}, {}},
{{2, 3, 5}, {4}, {4}, {5}, {}},
{{2, 4}, {3, 5}, {4, 5}, {5}, {}},
{{2, 3, 5}, {4}, {4, 5}, {5}, {}},
{{2, 4, 5}, {3, 5}, {4}, {5}, {}}
}
Gs/(g -> globalMarkovStmts makeGraph g)
scan(oo, s -> (s/print; print "-----------"));
G = makeGraph {{4}, {4}, {4, 5}, {5}, {}}
G = makeGraph {{3, 5}, {3}, {4}, {5}, {}}
G = makeGraph {{2, 4}, {4}, {4, 5}, {5}, {}}
G = makeGraph {{2, 4}, {3, 5}, {4}, {5}, {}}
G = makeGraph {{3, 5}, {3, 4}, {4}, {5}, {}}
G = makeGraph {{2, 3, 5}, {4}, {4}, {5}, {}}
G = makeGraph {{2, 4}, {3, 5}, {4, 5}, {5}, {}}
G = makeGraph {{2, 3, 5}, {4}, {4, 5}, {5}, {}}
G = makeGraph {{2, 4, 5}, {3, 5}, {4}, {5}, {}}
(globalMarkovStmts G)/print;
J = gaussIdeal(R,G)
I = gaussTrekIdeal(R,G)
J : I
res ideal select(flatten entries gens trim J, f -> first degree f > 1)
betti oo
i = 0
G = makeGraph D5s#i
I = gaussTrekIdeal(R,G)
J = gaussIdeal(R,G)
I == J
removeNodes(G4,4)
G3 = drop(G4,-1)
G2 = drop(G3,-1)
debug Markov
G4 = makeGraph G4
parents(G4, 1)
parents(G4, 2)
parents(G4, 3)
parents(G4, 4)
-- We need a method to create all of the dags of size 6,7,8 (maybe not 8?)
- By hand let's do 6:
X = select(partitions 13, p -> #p <= 5)
X = select(X, p -> p#0 <= 5)
X = select(X, p -> #p <= 1 or p#1 <= 4)
X = select(X, p -> #p <= 2 or p#2 <= 3)
X = select(X, p -> #p <= 3 or p#3 <= 2)
X = select(X, p -> #p <= 4 or p#4 <= 1)
X = select(partitions 11, p -> #p <= 6);
X = select(X, p -> p#0 <= 6);
X = select(X, p -> #p <= 1 or p#1 <= 5);
X = select(X, p -> #p <= 2 or p#2 <= 4);
X = select(X, p -> #p <= 3 or p#3 <= 3);
X = select(X, p -> #p <= 4 or p#4 <= 2);
X = select(X, p -> #p <= 5 or p#5 <= 1)
-- n=7 examples
restart
loadPackage "Markov"
load "/Users/mike/local/src/M2-mike/markov/dags5.m2"
F = lines get "dags7-part";
R = gaussRing 7
scan(F, g -> (
g = value g;
G := makeGraph g;
I := gaussTrekIdeal(R,G);
J := gaussIdeal(R,G);
<< g;
if I != J then << " NOT EQUAL" << endl else << " equal" << endl;
))
scan(F, g -> (
g = value g;
G := makeGraph g;
--I := gaussTrekIdeal(R,G);
J := trim gaussIdeal(R,G);
linears = ideal select(flatten entries gens J, f -> first degree f == 1);
J = trim ideal(gens J % linears);
<< g << codim J << ", " << betti res J << endl;
))
-- Local Variables:
-- compile-command: "make -C $M2BUILDDIR/Macaulay2/packages PACKAGES=Markov pre-install"
-- End:
|