1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392
|
newPackage(
"MultiGradedRationalMap",
Headline => "degree and birationality of multi-graded rational maps",
Authors => {{ Name => "Yairon Cid Ruiz",
Email => "ycid@ub.edu",
HomePage => "http://www.ub.edu/arcades/ycid.html"}},
Keywords => {"Commutative Algebra"},
Version => "0.1",
Date => "2018",
DebuggingMode => false,
Configuration => {},
PackageImports => {"ReesAlgebra"}
)
export {
-- Methods --
"degreeOfMap",
"jacobianDualRank",
"isBiratMap",
"satSpecialFiberIdeal",
"satSpecialFiber",
"gensSatSpecialFib",
"upperBoundDegreeSingleGraded",
"Hm1Rees0",
"partialJDRs",
"degreeOfMapIter",
-- Options --
"Hm1Rees0Strategy",
"SatSpecialFibStrategy"
}
--------------------
--------------------
---------- M2 code
--------------------
--------------------
------------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------------------------
-- SOME TECHNICAL/AUXILIARY FUNCTIONS
------------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------------------------
-- Computes the Rees algebra with emphasis on the R-grading.
-- It simply calls the package ``ReesAlgebras'' on Macaulay2.
RgradRees := (I) -> (
R := ring I;
n := numgens R;
lvars := flatten entries vars R;
ReesEq := reesIdeal I;
e := numgens ring ReesEq;
K := coefficientRing R;
Z := symbol Z;
xxx := symbol xxx;
AA := K[Z_1 .. Z_e][xxx_1 .. xxx_n, Degrees => degrees R]; --bigraded ring
AA' := ring ReesEq;
F := map(AA, AA', {Z_1 .. Z_e, xxx_1 .. xxx_n});
F(ReesEq)
)
-- This function tries to recover the multi-projective space encoded by R.
-- If R is not a multi-graded polynomial ring with weight 1 on each variable,
-- then it returns false.
getGrading := (R) -> (
L := degrees R;
m := length L_0;
D := new MutableList from toList(m:0);
for i from 0 to length L - 1 do (
j := 0, s := 0;
for k from 0 to m-1 do (
if L_i_k != 0 and L_i_k != 1 then return (, false);
s = s + L_i_k;
if L_i_k == 1 then j = k;
);
if s != 1 then return (, false);
D#j = D#j + 1;
);
(toList D, true)
)
-- Checks if an ideal is homogeneous and equally generated
isEquallyGenerated := (I) -> (
if not isHomogeneous I then return false;
L := flatten entries gens I;
f0 := L_0;
all(L, f -> (degree f) == (degree f0))
)
-- Makes some sanity checks in the multi-graded case
checkMultiGraded := (I) -> (
if not isEquallyGenerated I
then error "The ideal needs to be homogeneous and equally generated.";
R := ring I;
grading := getGrading R;
if not isPolynomialRing R or not grading_1
then error "The ring of the ideal needs to be a polynomial ring with standard multi-grading.";
grading_0
)
-- Makes some sanity checks in the single-graded case
checkSingleGraded := (I) -> (
if not isEquallyGenerated I
then error "The ideal needs to be homogeneous and equally generated.";
R := ring I;
grading := getGrading R;
if not isPolynomialRing R or not grading_1 or length grading_0 != 1
then error "The ring of the ideal needs to be a standard single-graded polynomial ring.";
)
-- Emulates the action of the elements of R over H_m^n(R),
-- where m is the maximal irrelevant ideal of R
prod := (X, Lmono) -> (
M := mutableMatrix(ring X, 1, numcols Lmono);
for i from 0 to (numcols Lmono)-1 do M_(0,i) = X // Lmono_(0,i);
matrix M
)
-- Computes the multi-homogeneous irrelevant ideal of R
getIrrelevantIdeal := (R) ->(
grading := getGrading R;
m := length grading_0;
NN := ideal(1_R);
for i from 1 to m do (
deg := toList((i-1):0) | {1} | toList((m-i):0);
NN = NN * ideal image super basis(deg, R);
);
NN
)
------------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------------------------
-- FUNCTIONS RELATED TO THE SATURATED SPECIAL FIBER RING
------------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------------------------
-- Given a map g: F --> G of free AA-modules, it gives the degree zero part in
-- R-grading of the induced map in top local cohomology.
-- INPUT: the ring of the variables Z_1,...,Z_e
-- INPUT: F free AA-module of the source
-- INPUT: G free AA-module of the image
-- INPUT: the map g is represented by the matrix A
-- OUTPUT: the matrix M representing the degree zero part the R-grading of
-- the induced map $H_m^n(g): H_m^n(F) --> H_m^n(G)$
getMapInLocalCohom := (kkZ, F, G, A) -> (
AA := ring F;
n := numgens AA;
-- get the size of the matrix M
colsM := 0;
rowsM := 0;
lMonoCols := { };
lMonoRows := { };
degCols := { };
degRows := { };
-- compute the form of the columns
for i from 0 to (rank F)-1 do (
di := (degree F_i)_0;
ei := (degree F_i)_1;
lMonoCols = append(lMonoCols,
flatten entries super basis(di-n, AA));
li := length lMonoCols_i;
degCols = join(degCols, toList(li:-ei));
colsM = colsM + li;
);
-- compute the form of the rows
for i from 0 to (rank G)-1 do (
di := (degree G_i)_0;
ei := (degree G_i)_1;
lMonoRows = append(lMonoRows,
flatten entries super basis({di-n, 0}, AA));
li := length lMonoRows_i;
degRows = join(degRows, toList(li:-ei));
rowsM = rowsM + li;
);
-- the matrix representing the map in local cohomology
M := mutableMatrix(AA, rowsM, colsM);
-- process of constructing the matrix M
counterCols := 0;
for j from 0 to (rank F)-1 do (
counterRows := 0;
for i from 0 to (rank G)-1 do (
a := A_(i,j);
if a != 0 and lMonoCols_j != {} and lMonoRows_i != {} then (
(Ma, Ca) := coefficients a;
for l from 0 to (length lMonoCols_j)-1 do (
X := lMonoCols_j_l;
newMa := prod(X, Ma);
Y := newMa * Ca;
(Mres, Cres) := coefficients(Y, Monomials => lMonoRows_i);
for k from 0 to (length lMonoRows_i)-1 do
M_(counterRows + k, counterCols + l) = Cres_(k, 0);
);
);
counterRows = counterRows + length lMonoRows_i;
);
counterCols = counterCols + length lMonoCols_j;
);
mapAAtokkZ := map(kkZ, AA, join(toList(n:0), flatten entries vars kkZ));
-- We compute $[H_m^1(Rees(I))]_0$ as a graded S-module
-- We use this computation to obtain an upper bound of the maximum degree of
-- the generators of the saturated special fiber ring
map(kkZ^degRows, kkZ^degCols, mapAAtokkZ matrix M)
)
-- Computes the module $[H_m^1(Rees(I))]_0$ in Corollary 2.12
--INPUT: the defining equations of Rees(I)
localHm1Rees0 := (ReesEq) -> (
AA := ring ReesEq;
n := numgens AA;
e := numgens coefficientRing AA;
K := coefficientRing coefficientRing AA;
Z := symbol Z;
kkZ := K[Z_1 .. Z_e];
-- It is computed by means of the spectral sequences coming from the double complex
-- obtained by the tensor product of a resolution of ReesEq and the Cech complex.
-- (check Proposition 2.7(i) for more details)
rs := res ReesEq;
M1 := getMapInLocalCohom(kkZ, rs_(n-1), rs_(n-2), rs.dd_(n-1));
M2 := getMapInLocalCohom(kkZ, rs_n, rs_(n-1), rs.dd_(n));
(ker M1) / (image M2)
)
-- It simply calls localHm1Rees0 after a sanity check.
-- INPUT: A single-graded ideal I.
-- OUTPUT: it computes the module $[H_m^1(Rees(I))]_0$.
-- CAVEAT: For the moment, it only supports single-graded ideals on a polynomial ring.
Hm1Rees0 = method()
Hm1Rees0(Ideal) := (I) -> (
checkSingleGraded(I);
localHm1Rees0 RgradRees I
)
-- By considering the powers {I^1, I^2, ..., I^nsteps} of I, it computes a set of generators of the saturated special fiber ring.
-- The algorithm is correct only if nsteps is big enough to obtain all the generators.
-- INPUT: A multi-graded ideal.
-- INPUT: The number of steps.
-- OUTPUT: Computes the possible generators of the saturated special fiber ring in the graded parts
-- given by [(I^1)^sat]_d, [(I^2)^sat]_2d, ..., [(I^nsteps)^sat]_nsteps*d.
gensSatSpecialFib = method()
gensSatSpecialFib(Ideal, ZZ) := (I, nsteps) -> (
checkMultiGraded(I);
d := degree (gens I)_(0,0);
NN := getIrrelevantIdeal ring I;
satIpow := saturate(I, NN);
tot := flatten entries super basis(d, satIpow);
L := { ideal tot };
for i from 2 to nsteps do (
satIpow = saturate(I * satIpow, NN);
curr := ideal image super basis(i*d, satIpow);
-- delete those that can be also obtained by multiplication of lower graded parts
toDel := ideal();
for j from 1 to i - 1 do toDel = toDel + (L_(j-1) * L_(i-j-1));
toAdd := flatten entries mingens (curr / toDel);
tot = join(tot, toAdd);
L = append(L, curr);
);
tot
)
-- This method first computes an upper bound for nsteps and then simply calls gensSatSpecialFib(Ideal, ZZ)
-- INPUT: A single-graded ideal.
-- OUTPUT: The generators of the saturated special fiber ring
-- CAVEAT: It only works for an ideal in a single graded polynomial rings
gensSatSpecialFib(Ideal) := (I) -> (
checkSingleGraded(I);
nsteps := max flatten degrees Hm1Rees0 I;-- degree of the generators of Hm1Rees0
nsteps = max(nsteps, 1); -- degree of the generators of S
gensSatSpecialFib(I, nsteps)
)
-- Tries to compute the defining ideal of the saturated special fiber ring.
-- INPUT: A multi-graded ideal.
-- INPUT: nsteps is the number of steps used in the process of obtaining a set of generators.
-- OUTPUT: returns the ideal defining the saturated special fiber ring.
-- CAVEAT: It only gives a correct answer if nsteps is bigger than the highest degree of the generators of the
-- saturated special fiber ring.
satSpecialFiberIdeal = method()
satSpecialFiberIdeal(Ideal, ZZ) := (I, nsteps) -> (
checkMultiGraded(I);
R := ring I;
d := degree (gens I)_(0,0);
lGens := gensSatSpecialFib(I, nsteps);
lDegs := apply(lGens, G -> (degree G)_0 // d_0);
K := coefficientRing R;
Z := symbol Z;
B := K[Z_1 .. Z_(length lGens), Degrees => lDegs];
F := map(R, B, lGens);
ker F
)
-- This method first computes an upper bound for nsteps and then simply calls satSpecialFiberIdeal(Ideal, ZZ)
-- INPUT: A single-graded ideal.
-- OUTPUT: The defining ideal of the saturated special fiber ring
-- CAVEAT: It only works for an ideal in a single graded polynomial rings
satSpecialFiberIdeal(Ideal) := (I) -> (
checkSingleGraded(I);
nsteps := max flatten degrees Hm1Rees0 I;-- degree of the generators of Hm1Rees0
nsteps = max(nsteps, 1); -- degree of the generators of S
satSpecialFiberIdeal(I, nsteps)
)
-- It simply calls the method satSpecialFiberIdeal
-- INPUT: A multi-graded ideal.
-- INPUT: nsteps is the number of steps used in the process of obtaining a set of generators.
-- OUTPUT: returns the saturated special fiber ring.
-- CAVEAT: It only gives a correct answer if nsteps is bigger than the highest degree of the generators of the
-- saturated special fiber ring.
satSpecialFiber = method()
satSpecialFiber(Ideal, ZZ) := (I, nsteps) -> (
checkMultiGraded(I);
satFibEq := satSpecialFiberIdeal(I, nsteps);
(ring satFibEq) / satFibEq
)
-- This method first computes an upper bound for nsteps and then simply calls satSpecialFiber(Ideal, ZZ)
-- INPUT: A single-graded ideal.
-- OUTPUT: The saturated special fiber ring
-- CAVEAT: It only works for an ideal in a single graded polynomial rings
satSpecialFiber(Ideal) := (I) -> (
checkSingleGraded(I);
nsteps := max flatten degrees Hm1Rees0(I);-- degree of the generators of Hm1Rees0
nsteps = max(nsteps, 1); -- degree of the generators of S
satSpecialFiber(I, nsteps)
)
------------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------------------------
-- FUNCTIONS RELATED TO THE DEGREE AND BIRATIONALITY OF RATIONAL MAPS
------------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------------------------
degreeOfMap = method(Options => {Strategy => Hm1Rees0Strategy})
-- Computes the degree of the rational represented by the generators of the ideal I.
-- It contains a computational implementation of Corollary 2.12.
-- CAVEAT: For the moment, it only supports projective spaces.
-- INPUT: A single-graded ideal.
-- OUTPUT: Returns the degree of the rational map.
-- If the map is not generically finite then the output is 0.
degreeOfMapHm1Rees0 := (I) -> (
checkSingleGraded(I);
R := ring I;
ReesEq := RgradRees(I); -- equations of Rees(I)
AA := ring ReesEq;
-- computes degree of the image of phi
mm := ideal vars AA;
S := AA / (mm + ReesEq);
degIm := degree S;
-- if the map is not genericaly finite, then return 0
if dim S < dim R then return 0;
-- computes multiplicity of $[H_m^1(Rees(I))]_0$ in Corollary 2.12
L := localHm1Rees0(ReesEq);
if dim L < dim S then return 1;
mult := degree L;
-- the degree of phi
1 + mult//degIm
)
-- This method first computes an upper bound for nsteps and then simply calls degreeOfMapIter(Ideal, ZZ)
-- It is extremely slow compared with the other strategy, because it actually needs to compute Hm1Rees0
-- INPUT: A single-graded ideal.
-- OUTPUT: The degree of the map represented by the generators of I
degreeOfMapSatStrategy := (I) -> (
checkSingleGraded(I);
nsteps := max flatten degrees Hm1Rees0 I;-- degree of the generators of Hm1Rees0
nsteps = max(nsteps, 1); -- degree of the generators of S
degreeOfMapIter(I, nsteps)
)
-- This method computes the degree of a map depending on the stratey used.
-- By default the it is used -Hm1Rees0Strategy-
-- INPUT: A single-graded ideal.
-- OUTPUT: The degree of the map represented by the generators of I
degreeOfMap(Ideal) := opts -> (I) -> (
if opts.Strategy == Hm1Rees0Strategy then
degreeOfMapHm1Rees0(I)
else if opts.Strategy == SatSpecialFibStrategy then
degreeOfMapSatStrategy(I)
else
error "The Strategy has to be either -Hm1Rees0Strategy- or -SatSpecialFibStrategy-"
)
degreeOfMapIter = method()
-- This map compute the degree of rational map by computing the multiplicity of the saturated special fiber ring (see Theorem 2.4).
-- It also works in the multi-graded setting.
-- INPUT: A multi-graded ideal.
-- INPUT: The number of steps for computing the saturated special fiber ring.
-- OUTPUT: The degree of the rational map represented by the generators of I.
-- If the map is not generically finite then the output is 0.
-- CAVEAT: It only gives a correct answer if nsteps is bigger than the highest degree of the generators of the
-- saturated special fiber ring.
degreeOfMapIter(Ideal, ZZ) := (I, nsteps) -> (
grading := checkMultiGraded(I);
r := (sum grading) - (length grading);
S := specialFiber I;
-- if the map is not genericaly finite, then return 0
if (dim S) - 1 < r then return 0;
satFib := satSpecialFiber(I, nsteps);
N := numerator reduceHilbert hilbertSeries satFib;
mult := sub(N, { (vars ring N)_(0,0) => 1 });
degIm := degree S;
mult // degIm
)
-- It computes the partial Jacobian dual ranks.
-- INPUT: A multi-graded ideal.
-- OUTPUT: The partial Jacobian dual ranks.
partialJDRs = method()
partialJDRs(Ideal) := (I) -> (
grading := checkMultiGraded(I);
R := ring I;
m := length grading;
ReesEq := RgradRees(I);
AA := ring ReesEq;
gensRees := flatten entries gens ReesEq;
-- coordinate ring of the image
mm := ideal vars AA;
S := AA / (mm + ReesEq);
JDRs := { };
-- compute the JDRs
for i from 1 to m do (
deg := toList((i-1):0) | {1} | toList((m-i):0);
L := select(gensRees, f -> apply(m, j -> (degree f)_j) == deg);
if L == {} then JDRs = append(JDRs, 0)
else (
M := jacobian matrix{L};
JDRs = append(JDRs, rank(M ** S));
);
);
JDRs
)
-- Computes the full Jacobian dual rank of a rational map (this is defined in Notation 4.2)
-- INPUT: A multi-graded ideal.
-- OUTPUT: The full Jacobian dual rank.
-- CAVEAT: For the moment, it only supports multi-projective spaces in the source.
jacobianDualRank = method()
jacobianDualRank(Ideal) := (I) -> (
checkMultiGraded(I);
ReesEq := RgradRees(I); -- equations of Rees(I)
AA := ring ReesEq;
m := length (getGrading ring I)_0;
-- computes the total Jacobian dual matrix
L := select(flatten entries gens ReesEq, f -> sum(m, j -> (degree f)_j) == 1);
if L == {} then return 0;
M := jacobian matrix{L};
--coordinate ring of the image
mm := ideal vars AA;
S := AA / (mm + ReesEq);
-- computes the total Jacobian dual rank
rank (M ** S)
)
-- Given a multigraded rational map, it determines the birationality of the rational map
-- INPUT: A multi-graded ideal
-- OUTPUT: true/false if the rational map is birational/non-birational onto its image
-- CAVEAT: For the moment, it only supports multi-projective spaces in the source
-- REMARK: From Theorem 4.4 we can simply compute the rank of the "full" Jacobian dual matrix.
-- Therefore, we only need to check the rank of one matrix and it allows us to treat
-- the multi-graded case similarly to the single-graded.
isBiratMap = method()
isBiratMap(Ideal) := (I) -> (
grading := checkMultiGraded(I);
r := (sum grading) - (length grading);
JDR := jacobianDualRank I;
(JDR == r)
)
-- This function computes the upper bound given in Theorem 3.22 for a single graded rational map.
-- INPUT: A single-graded ideal.
-- OUTPUT: An upper bound which can be computed with some Hilbert function computations.
upperBoundDegreeSingleGraded = method()
upperBoundDegreeSingleGraded(Ideal) := (I) -> (
checkSingleGraded(I);
if dim I > 1 then
error "The base locus should have dimension zero.";
d := (degree I_0)_0;
n := numgens ring I;
J := saturate(I);
B := 1 + binomial(d-1,n-1) + hilbertFunction(d,I) - hilbertFunction(d,J);
for i from 2 to n-2 do B = B + hilbertFunction((n-i)*d-n,I);
B
)
------------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------------------------
--------------------
--------------------
---------- Documentation
--------------------
--------------------
beginDocumentation()
doc ///
Key
MultiGradedRationalMap
Description
Text
MultiGradedRationalMap provides functions for computing the degree of a multi-graded rational map.
In the paper @ HREF("https://arxiv.org/abs/1805.05180", "Degree and birationality of multi-graded rational maps") @, a new algebra called the {\bf saturated special fiber ring} was introduced.
This algebra is related to several features in the study of rational maps.
Some functions of this package are capable of working in the multi-graded setting.
Let $R$ be the multi-homogeneous polynomial ring $R=k[x_{1,0},x_{1,1},...,x_{1,r_1}, x_{2,0},x_{2,1},...,x_{2,r_2}, ......, x_{m,0},x_{m,1},...,x_{m,r_m}]$ where the multidegree of a variable $x_{i,j}$ is $\{0,...,1,...,0\}$.
Let $\mathbf{m}$ be the multi-homogeneous irrelevant ideal $\mathbf{m}=(x_{1,0},x_{1,1},...,x_{1,r_1})\cap (x_{2,0},x_{2,1},...,x_{2,r_2}) \cap ... \cap (x_{m,0},x_{m,1},...,x_{m,r_m})$ of $R$.
Let $I$ be a multi-homogeneous ideal in $R$, which is generated by multi-homogeneous polynomials of the same multi-degree.
The saturated special fiber ring of $I$ is defined by the algebra
$$
\oplus_{n=0}^\infty [(I^n)^{sat}]_{n*d}.
$$
The main idea of this package is to exploit this algebra to compute the degree and test the birationality of rational maps.
We also implement the Jacobian dual criterion in the multi-graded setting.
{\bf Overlap with other packages:} {\bf -} The package @ HREF("https://faculty.math.illinois.edu/Macaulay2/doc/Macaulay2-1.12/share/doc/Macaulay2/Cremona/html/", "Cremona") @ performs several computations related to rational and birational maps between irreducible projective varieties.
Among other things, it can compute the degree of a rational map, test birationality and find the inverse of a birational map.
There is a deterministic implementation and a fast probabilistic implementation.
{\bf -} The package @ HREF("https://faculty.math.illinois.edu/Macaulay2/doc/Macaulay2-1.11/share/doc/Macaulay2/RationalMaps/html/index.html", "RationalMaps") @ computes several things related to rational maps between projective varieties.
Among other things, it can detect birationality and compute the inverse of a rational map.
It contains an implementation of the remarkable Jacobian dual criterion.
{\bf -} The package @ HREF("https://faculty.math.illinois.edu/Macaulay2/doc/Macaulay2-1.11/share/doc/Macaulay2/Parametrization/html/index.html", "Parametrization") @ mostly deals with rational parametrizations of rational curves defined over ℚ.
It includes a function to compute the inverse of a rational map.
{\bf -} The present implementation of this package can only handle rational maps where the source is a multiprojective space.
On the other hand, the packages @ HREF("https://faculty.math.illinois.edu/Macaulay2/doc/Macaulay2-1.12/share/doc/Macaulay2/Cremona/html/", "Cremona") @, @ HREF("https://faculty.math.illinois.edu/Macaulay2/doc/Macaulay2-1.11/share/doc/Macaulay2/RationalMaps/html/index.html", "RationalMaps") @ and @ HREF("https://faculty.math.illinois.edu/Macaulay2/doc/Macaulay2-1.11/share/doc/Macaulay2/Parametrization/html/index.html", "Parametrization") @ can handle more general varieties.
{\bf Acknowledgements:} The author is grateful to the organizers of the Macaulay2 workshop in Leipzig.
The author is grateful to Laurent Busé for his support on the preparation of this package.
///
doc ///
Key
degreeOfMap
(degreeOfMap,Ideal)
Headline
computes the degree of a rational map
Usage
degreeOfMap(I)
Inputs
I : Ideal
an ideal defining the map
Outputs
:ZZ
the degree of the corresponding rational map
Description
Text
Let $R$ be the polynomial ring $R=k[x_0,...,x_r]$ and $I$ be the homogeneous ideal $I=(f_0,f_1,...,f_s)$ where $deg(f_i)=d$.
We compute the degree of the rational map $\mathbb{F}: \mathbb{P}^r \to \mathbb{P}^s$ defined by
$$
(x_0: ... :x_r) \to (f_0(x_0,...,x_r), f_1(x_0,...,x_r), ..... , f_s(x_0,...,x_r)).
$$
The degree can be computed by two different strategies and the default one is "Hm1Rees0Strategy".
The following example is a rational map without base points:
Example
R = QQ[x,y,z]
I = ideal(random(4, R), random(4, R), random(4, R));
betti res I
degreeOfMap I
Text
In the following examples we play with the relations of the Hilbert-Burch presentation and the degree of $\mathbb{F}$ (see Proposition 5.2 and Theorem 5.12):
Example
A = matrix{ {x, x^2 + y^2},
{-y, y^2 + z*x},
{0, x^2}
};
I = minors(2, A) -- a birational map
degreeOfMap I
A = matrix{ {x^2, x^2 + y^2},
{-y^2, y^2 + z*x},
{0, x^2}
};
I = minors(2, A) -- a non birational map
degreeOfMap I
A = matrix{ {x^3, x^2 + y^2},
{-y^3, y^2 + z*x},
{0, x^2}
};
I = minors(2, A) -- a non birational map
degreeOfMap I
A = matrix{ {x^3, x^4},
{-y^3, y^4},
{z^3, x^4}
};
I = minors(2, A) -- a non birational map
degreeOfMap I
Text
The following examples are computed with the strategy "SatSpecialFibStrategy".
Example
R = QQ[x,y,z,v,w]
I = ideal(random(1, R), random(1, R), random(1, R), random(1, R), random(1, R));
degreeOfMap(I, Strategy=>SatSpecialFibStrategy)
I = ideal(29*x^3 + 55*x*y*z, 7*y^3, 14*z^3, 17*v^3, 12*w^3)
degreeOfMap(I, Strategy=>SatSpecialFibStrategy)
Caveat
To call the method "degreeOfMap(I)", the ideal $I$ should be in a single graded polynomial ring.
///
doc ///
Key
degreeOfMapIter
(degreeOfMapIter,Ideal,ZZ)
Headline
computes the degree of a rational map
Usage
degreeOfMapIter(I, nsteps)
Inputs
I : Ideal
an ideal defining the map
nsteps: ZZ
the number of steps used for computing the saturated special fiber ring
Outputs
:ZZ
the degree of the corresponding rational map
Description
Text
Let $R$ be the multi-homogeneous polynomial ring $R=k[x_{1,0},x_{1,1},...,x_{1,r_1}, x_{2,0},x_{2,1},...,x_{2,r_2}, ......, x_{m,0},x_{m,1},...,x_{m,r_m}]$ and $I$ be the multi-homogeneous ideal $I=(f_0,f_1,...,f_s)$ where the polynomials $f_i$'s have the same multi-degree.
We compute the degree of the rational map $\mathbb{F}: \mathbb{P}^{r_1} \times \mathbb{P}^{r_2} \times ... \times \mathbb{P}^{r_m} \to \mathbb{P}^s$ defined by
$$
(x_{1,0} : ... : x_{1,r_1}; ...... ;x_{m,0} : ... : x_{m,r_m}) \to (f_0(x_{1,0},...,x_{1,r_1}, ...... ,x_{m,0},...,x_{m,r_m}), ..... , f_0(x_{1,0},...,x_{1,r_1}, ...... ,x_{m,0},...,x_{m,r_m})).
$$
This method calls "satSpecialFiber(I, nsteps)" in order to obtain the saturated special fiber ring and then computes the degree of $\mathbb{F}$ from the multiplicity of the saturated special fiber ring.
Example
R = QQ[x,y,u,v, Degrees => {{1,0}, {1,0}, {0,1}, {0,1}}]
I = ideal(x*u, y*u, y*v) -- a birational map
degreeOfMapIter(I, 5)
I = ideal(x*u, y*v, x*v + y*u) -- a non birational map
degreeOfMapIter(I, 5)
A = matrix{ {x^5*u, x^2*v^2},
{y^5*v, x^2*u^2},
{0, y^2*v^2}
};
I = minors(2, A) -- a non birational
degreeOfMapIter(I, 5)
Caveat
It only gives the correct answer if nteps is big enough to attain all the generators of the saturated special fiber ring.
///
doc ///
Key
isBiratMap
(isBiratMap ,Ideal)
Headline
tests the birationality of a rational with the Jacobian dual criterion
Usage
isBiratMap(I)
Inputs
I : Ideal
an ideal defining the map
Outputs
:Boolean
true/false if the rational map is birational/non birational
Description
Text
Let $R$ be the multi-homogeneous polynomial ring $R=k[x_{1,0},x_{1,1},...,x_{1,r_1}, x_{2,0},x_{2,1},...,x_{2,r_2}, ......, x_{m,0},x_{m,1},...,x_{m,r_m}]$ and $I$ be the multi-homogeneous ideal $I=(f_0,f_1,...,f_s)$ where the polynomials $f_i$'s have the same multi-degree.
We compute the degree of the rational map $\mathbb{F}: \mathbb{P}^{r_1} \times \mathbb{P}^{r_2} \times ... \times \mathbb{P}^{r_m} \to \mathbb{P}^s$ defined by
$$
(x_{1,0} : ... : x_{1,r_1}; ...... ;x_{m,0} : ... : x_{m,r_m}) \to (f_0(x_{1,0},...,x_{1,r_1}, ...... ,x_{m,0},...,x_{m,r_m}), ..... , f_0(x_{1,0},...,x_{1,r_1}, ...... ,x_{m,0},...,x_{m,r_m})).
$$
This method calls "jacobianDualRank" in order to obtain the full Jacobian dual rank and then it tests the birationality of $\mathbb{F}$ (see Theorem 4.4 in @ HREF("https://arxiv.org/abs/1805.05180", "Degree and birationality of multi-graded rational maps")@).
First, we compute some examples in the bigraded setting.
Example
R = QQ[x,y,u,v, Degrees => {{1,0}, {1,0}, {0,1}, {0,1}}]
I = ideal(x*u, y*u, y*v) -- a birational map
isBiratMap I
I = ideal(x*u, y*v, x*v + y*u) -- a non birational map
isBiratMap I
A = matrix{ {x^5*u, x^2*v^2},
{y^5*v, x^2*u^2},
{0, y^2*v^2}
};
I = minors(2, A) -- a non birational
isBiratMap I
I = ideal(x*u^2, y*u^2, x*v^2) -- a non birational map
isBiratMap I
Text
Next, we test some rational maps over three projective spaces.
Example
R = QQ[x,y,z,w]
A = matrix{ {x + y, x, x},
{3*z - 4*w, y, z},
{w, z, z + w},
{y - z, w, x + y}
};
I = minors(3, A) -- a birational map
isBiratMap I
I = ideal(random(2, R), random(2, R), random(2, R), random(2, R)); -- a non birational
isBiratMap I
///
doc ///
Key
Hm1Rees0
(Hm1Rees0, Ideal)
Headline
computes the module [Hm^1(Rees(I))]_0
Usage
Hm1Rees0(I)
Inputs
I : Ideal
an ideal in a single graded polynomial ring
Outputs
: Module
the module $[H_m^1(Rees(I))]_0$
Description
Text
Let $R$ be the polynomial ring $R=k[x_0,...,x_n]$ and $\mathbf{m}$ be the maximal irrelevant ideal $\mathbf{m}=(x_0,...,x_n)$.
Let $I \subset R$ be the ideal $I=(f_0,...,f_m)$ where $deg(f_i)=d$.
The Rees algebra $\mathcal{R}(I)$ is a bigraded algebra which can be given as a quotient of the polynomial ring $\mathcal{A}=R[y_0,...,y_m]$.
We denote by $S$ the polynomial ring $S=k[y_0,...,y_m]$.
The local cohomology module $H_{m}^1(\mathcal{R}(I))$ with respect to the maximal irrelevant ideal $\mathbf{m}$ is actually a bigraded $\mathcal{A}$-module.
We denote by $[H_m^1(Rees(I))]_0$ the restriction to degree zero part in the $R$-grading, that is $[H_m^1(Rees(I))]_0=[H_m^1(Rees(I))]_{(0,*)}$.
So we have that $[H_m^1(Rees(I))]_0$ is naturally a graded $S$-module.
Example
R = QQ[x,y,z]
A = matrix{ {x, x^6 + y^6 + z*x^5},
{-y, y^6 + z*x^3*y^2},
{0, x^6 + x*y^4*z}
};
I = minors(2, A) -- a birational map
prune Hm1Rees0 I
A = matrix{ {x^2, x^2 + y^2},
{-y^2, y^2 + z*x},
{0, x^2}
};
I = minors(2, A) -- a non birational map
Hm1Rees0 I
Caveat
To call the method "Hm1Rees0(I)", the ideal $I$ should be in a single graded polynomial ring.
///
doc ///
Key
gensSatSpecialFib
(gensSatSpecialFib, Ideal, ZZ)
(gensSatSpecialFib, Ideal)
Headline
computes generators of the saturated special fiber ring
Usage
gensSatSpecialFib(I, nsteps)
gensSatSpecialFib(I)
Inputs
I : Ideal
a homogeneous ideal generated by elements of the same degree
nteps : ZZ
the number steps in the saturation of the powers of I. Optional.
Outputs
: List
a list of generators of the saturated special fiber ring.
In the case where we use the function as "gensSatSpecialFib(I, nsteps)", the answer is correct only if nsteps is big enough to attain all the generators.
Description
Text
This function computes generators of the saturated special fiber ring.
When we call "gensSatSpecialFib(I, nsteps)", the method iteratively computes the graded pieces
$$
[(I^1)^{sat}]_d, [(I^2)^{sat}]_{2d}, ......... , [(I^{nsteps})^{sat}]_{nsteps*d},
$$
where $(I^k)^{sat}$ denotes the saturation of $I$ with respect to the irrelevant ideal.
When we call "gensSatSpecialFib(I)", the method first computes the module $[H_m^1(Rees(I))]_0$ from which an upper bound nsteps.
After that, it simply calls "gensSatSpecialFib(I, nsteps)".
First, we compute some examples in the case of plane rational maps.
Example
R = QQ[x,y,z]
A = matrix{ {x, x^2 + y^2},
{-y, y^2 + z*x},
{0, x^2}
};
I = minors(2, A) -- a birational map
gensSatSpecialFib I
gensSatSpecialFib(I, 5)
A = matrix{ {x^3, x^2 + y^2},
{-y^3, y^2 + z*x},
{0, x^2}
};
I = minors(2, A) -- a non birational map
gensSatSpecialFib I
gensSatSpecialFib(I, 5)
Text
Next, we compute an example in the bigraded case.
Example
R = QQ[x,y,u,v, Degrees => {{1,0}, {1,0}, {0,1}, {0,1}}]
I = ideal(x*u, y*v, x*v + y*u) -- a non birational map
gensSatSpecialFib(I, 5)
Caveat
To call the method "gensSatSpecialFib(I)", the ideal $I$ should be in a single graded polynomial ring.
///
doc ///
Key
satSpecialFiberIdeal
(satSpecialFiberIdeal, Ideal, ZZ)
(satSpecialFiber, Ideal)
Headline
computes the defining equations of the saturated special fiber ring
Usage
satSpecialFiberIdeal(I, nsteps)
satSpecialFiberIdeal(I)
Inputs
I : Ideal
a homogeneous ideal generated by elements of the same degree
nteps : ZZ
the number steps in the saturation of the powers of I. Optional.
Outputs
:Ideal
the defining equations of the saturated special fiber ring
Description
Text
The purpose of this function is to compute the defining equations of the special fiber ring.
Suppose that $\{g_1,...,g_m\}$ is the set of generators of the saturated special fiber ring (which can be obtained from "gensSatSpecialFib").
This function returns the kernel of the map $k[z_1, ... ,z_m] \to k[g_1, ... ,g_m]$ which is given by
$$
z_i \to g_i.
$$
First, we compute some examples of plane rational maps.
Example
R = QQ[x,y,z]
A = matrix{ {x, x^5 + y^5},
{-y, y^5 + z*x^2*y^2},
{0, x^5}
};
I = minors(2, A) -- a birational map
satSpecialFiberIdeal I
A = matrix{ {x^3, x^2 + y^2},
{-y^3, y^2 + z*x},
{0, x^2}
};
I = minors(2, A) -- a non birational map
satSpecialFiberIdeal I
Text
Next, we test some bigraded rational maps.
Example
R = QQ[x,y,u,v, Degrees => {{1,0}, {1,0}, {0,1}, {0,1}}]
I = ideal(x*u, y*u, y*v) -- a birational map
satSpecialFiberIdeal(I, 5)
I = ideal(x*u, y*v, x*v + y*u) -- a non birational map
satSpecialFiberIdeal(I, 5)
Caveat
To call the method "satSpecialFiberIdeal(I)", the ideal $I$ should be in a single graded polynomial ring.
The answer of "satSpecialFiberIdeal(I, nsteps)" is correct only if nsteps is big enough to attain all the generators of the saturated special fiber ring.
///
doc ///
Key
jacobianDualRank
(jacobianDualRank ,Ideal)
Headline
computes the full Jacobian dual rank
Usage
jacobianDualRank(I)
Inputs
I : Ideal
an ideal defining the map
Outputs
:ZZ
the total Jacobian dual rank
Description
Text
Let $R$ be the multi-homogeneous polynomial ring $R=k[x_{1,0},x_{1,1},...,x_{1,r_1}, x_{2,0},x_{2,1},...,x_{2,r_2}, ......, x_{m,0},x_{m,1},...,x_{m,r_m}]$ and $I$ be the multi-homogeneous ideal $I=(f_0,f_1,...,f_s)$ where the polynomials $f_i$'s have the same multi-degree.
We compute the degree of the rational map $\mathbb{F}: \mathbb{P}^{r_1} \times \mathbb{P}^{r_2} \times ... \times \mathbb{P}^{r_m} \to \mathbb{P}^s$ defined by
$$
(x_{1,0} : ... : x_{1,r_1}; ...... ;x_{m,0} : ... : x_{m,r_m}) \to (f_0(x_{1,0},...,x_{1,r_1}, ...... ,x_{m,0},...,x_{m,r_m}), ..... , f_0(x_{1,0},...,x_{1,r_1}, ...... ,x_{m,0},...,x_{m,r_m})).
$$
This function computes the full Jacobian dual rank of $\mathbb{F}$ (see Notation 4.2 in @ HREF("https://arxiv.org/abs/1805.05180", "Degree and birationality of multi-graded rational maps")@).
First, we compute some examples in the bigraded setting.
Example
R = QQ[x,y,u,v, Degrees => {{1,0}, {1,0}, {0,1}, {0,1}}]
I = ideal(x*u, y*u, y*v) -- a birational map
jacobianDualRank I
I = ideal(x*u, y*v, x*v + y*u) -- a non birational map
jacobianDualRank I
A = matrix{ {x^5*u, x^2*v^2},
{y^5*v, x^2*u^2},
{0, y^2*v^2}
};
I = minors(2, A) -- a non birational
jacobianDualRank I
I = ideal(x*u^2, y*u^2, x*v^2) -- non birational map
jacobianDualRank I
Text
Next, we test some rational maps over three projective spaces.
Example
R = QQ[x,y,z,w]
A = matrix{ {x + y, x, x},
{3*z - 4*w, y, z},
{w, z, z + w},
{y - z, w, x + y}
};
I = minors(3, A) -- a birational map
jacobianDualRank I
I = ideal(random(2, R), random(2, R), random(2, R), random(2, R)); -- a non birational
jacobianDualRank I
///
doc ///
Key
partialJDRs
(partialJDRs ,Ideal)
Headline
computes the partial Jacobian dual ranks
Usage
partialJDRs(I)
Inputs
I : Ideal
an ideal defining the map
Outputs
:List
the partial Jacobian dual ranks
Description
Text
Let $R$ be the multi-homogeneous polynomial ring $R=k[x_{1,0},x_{1,1},...,x_{1,r_1}, x_{2,0},x_{2,1},...,x_{2,r_2}, ......, x_{m,0},x_{m,1},...,x_{m,r_m}]$ and $I$ be the multi-homogeneous ideal $I=(f_0,f_1,...,f_s)$ where the polynomials $f_i$'s have the same multi-degree.
We compute the degree of the rational map $\mathbb{F}: \mathbb{P}^{r_1} \times \mathbb{P}^{r_2} \times ... \times \mathbb{P}^{r_m} \to \mathbb{P}^s$ defined by
$$
(x_{1,0} : ... : x_{1,r_1}; ...... ;x_{m,0} : ... : x_{m,r_m}) \to (f_0(x_{1,0},...,x_{1,r_1}, ...... ,x_{m,0},...,x_{m,r_m}), ..... , f_0(x_{1,0},...,x_{1,r_1}, ...... ,x_{m,0},...,x_{m,r_m})).
$$
This function computes the partial Jacobian dual ranks of $\mathbb{F}$ (see Notation 4.2 in @ HREF("https://arxiv.org/abs/1805.05180", "Degree and birationality of multi-graded rational maps")@).
First, we compute some examples in the bigraded setting.
Example
R = QQ[x,y,u,v, Degrees => {{1,0}, {1,0}, {0,1}, {0,1}}]
I = ideal(x*u, y*u, y*v) -- a birational map
partialJDRs I
I = ideal(x*u, y*v, x*v + y*u) -- a non birational map
partialJDRs I
A = matrix{ {x^5*u, x^2*v^2},
{y^5*v, x^2*u^2},
{0, y^2*v^2}
};
I = minors(2, A) -- a non birational
partialJDRs I
I = ideal(x*u^2, y*u^2, x*v^2) -- non birational map
partialJDRs I
Text
Next, we test some rational maps over three projective spaces.
Example
R = QQ[x,y,z,w]
A = matrix{ {x + y, x, x},
{3*z - 4*w, y, z},
{w, z, z + w},
{y - z, w, x + y}
};
I = minors(3, A) -- a birational map
partialJDRs I
I = ideal(random(2, R), random(2, R), random(2, R), random(2, R)); -- a non birational
partialJDRs I
///
doc ///
Key
upperBoundDegreeSingleGraded
(upperBoundDegreeSingleGraded,Ideal)
Headline
computes an upper bound for the degree of a rational map
Usage
upperBoundDegreeSingleGraded(I)
Inputs
I : Ideal
an ideal defining the map
Outputs
:ZZ
an upper bound for the degree of the corresponding rational map
Description
Text
Let $R$ be the polynomial ring $R=k[x_0,...,x_r]$ and $I$ be the homogeneous ideal $I=(f_0,f_1,...,f_s)$ where $deg(f_i)=d$.
We compute the degree of the rational map $\mathbb{F}: \mathbb{P}^r \to \mathbb{P}^s$ defined by
$$
(x_0: ... :x_r) \to (f_0(x_0,...,x_r), f_1(x_0,...,x_r), ..... , f_s(x_0,...,x_r)).
$$
Using certain Hilbert functions the degree of the map is bounded (see Theorem 3.22 in @ HREF("https://arxiv.org/abs/1805.05180", "Degree and birationality of multi-graded rational maps")@).
The following example is a rational map without base points:
Example
R = QQ[x,y,z]
I = ideal(random(4, R), random(4, R), random(4, R));
betti res I
degreeOfMap I
upperBoundDegreeSingleGraded I
Text
In the following examples we play with the relations of the Hilbert-Burch presentation and the degree of $\mathbb{F}$ (see Proposition 5.2 and Theorem 5.12):
Example
A = matrix{ {x, x^2 + y^2},
{-y, y^2 + z*x},
{0, x^2}
};
I = minors(2, A) -- a birational map
degreeOfMap I
upperBoundDegreeSingleGraded I
A = matrix{ {x^2, x^2 + y^2},
{-y^2, y^2 + z*x},
{0, x^2}
};
I = minors(2, A) -- a non birational map
degreeOfMap I
upperBoundDegreeSingleGraded I
A = matrix{ {x^3, x^2 + y^2},
{-y^3, y^2 + z*x},
{0, x^2}
};
I = minors(2, A) -- a non birational map
degreeOfMap I
upperBoundDegreeSingleGraded I
Caveat
To call the method "degreeOfMap(I)", the ideal $I$ should be in a single graded polynomial ring and dim(R/I) <= 1.
///
doc ///
Key
Hm1Rees0Strategy
Headline
A strategy for degreeOfMap
Description
Text
When this strategy is used then the degree of the map is computed directly from the multiplicity of $[H_m^1(Rees(I))]_0$.
It contains an implementation of Corollary 2.12 in @ HREF("https://arxiv.org/abs/1805.05180", "Degree and birationality of multi-graded rational maps")@.
///
doc ///
Key
SatSpecialFibStrategy
Headline
A strategy for degreeOfMap
Description
Text
When this strategy is used then the degree of the map is computed directly from the multiplicity of the saturated special fiber ring of $I$.
The degree of the rational map then can be obtained from Theorem 2.4 in @ HREF("https://arxiv.org/abs/1805.05180", "Degree and birationality of multi-graded rational maps")@.
///
doc ///
Key
[degreeOfMap, Strategy]
Headline
Choose a strategy for computing the degree of map
Usage
degreeOfMap(...,Strategy => ...)
Description
Text
Depending on this strategy the function "degreeOfMap" computes the degree of a map by two different approaches.
The two strategies are "Hm1Rees0Strategy" and "SatSpecialFibStrategy".
///
TEST ///
R = QQ[x,y,z]
I = ideal(random(4, R), random(4, R), random(4, R));
betti res I
assert(degreeOfMap I != 1)
A = matrix{ {x, x^2 + y^2},
{-y, y^2 + z*x},
{0, x^2}
};
I = minors(2, A) -- a birational map
assert(degreeOfMap I == 1)
A = matrix{ {x^2, x^2 + y^2},
{-y^2, y^2 + z*x},
{0, x^2}
};
I = minors(2, A) -- a non birational map
assert(degreeOfMap I != 1)
A = matrix{ {x^3, x^2 + y^2},
{-y^3, y^2 + z*x},
{0, x^2}
};
I = minors(2, A) -- a non birational map
assert(degreeOfMap I != 1)
A = matrix{ {x^3, x^4},
{-y^3, y^4},
{z^3, x^4}
};
I = minors(2, A) -- a non birational map
assert(degreeOfMap I != 1)
R = QQ[x,y,z,v,w]
I = ideal(random(1, R), random(1, R), random(1, R), random(1, R), random(1, R));
degreeOfMap(I, Strategy=>SatSpecialFibStrategy)
I = ideal(29*x^3 + 55*x*y*z, 7*y^3, 14*z^3, 17*v^3, 12*w^3)
degreeOfMap(I, Strategy=>SatSpecialFibStrategy)
///
TEST ///
R = QQ[x,y,u,v, Degrees => {{1,0}, {1,0}, {0,1}, {0,1}}]
I = ideal(x*u, y*u, y*v) -- a birational map
assert(degreeOfMapIter(I, 5) == 1)
I = ideal(x*u, y*v, x*v + y*u) -- a non birational map
assert(degreeOfMapIter(I, 5) != 1)
A = matrix{ {x^5*u, x^2*v^2},
{y^5*v, x^2*u^2},
{0, y^2*v^2}
};
I = minors(2, A) -- a non birational
assert(degreeOfMapIter(I, 5) != 1)
///
TEST ///
R = QQ[x,y,z]
A = matrix{ {x, x^2 + y^2},
{-y, y^2 + z*x},
{0, x^2}
};
I = minors(2, A) -- a birational map
assert(length gensSatSpecialFib I == 3)
assert(length gensSatSpecialFib(I,5) == 3)
A = matrix{ {x^3, x^2 + y^2},
{-y^3, y^2 + z*x},
{0, x^2}
};
I = minors(2, A) -- a non birational map
assert(length gensSatSpecialFib I != 3)
assert(length gensSatSpecialFib(I,5) != 3)
R = QQ[x,y,u,v, Degrees => {{1,0}, {1,0}, {0,1}, {0,1}}]
I = ideal(x*u, y*v, x*v + y*u) -- a non birational map
assert(length gensSatSpecialFib(I,5) != 3)
///
TEST ///
R = QQ[x,y,z]
A = matrix{ {x, x^5 + y^5},
{-y, y^5 + z*x^2*y^2},
{0, x^5}
};
I = minors(2, A) -- a birational map
assert(isPolynomialRing satSpecialFiber I)
A = matrix{ {x^3, x^2 + y^2},
{-y^3, y^2 + z*x},
{0, x^2}
};
I = minors(2, A) -- a non birational map
assert(not isPolynomialRing satSpecialFiber I)
R = QQ[x,y,u,v, Degrees => {{1,0}, {1,0}, {0,1}, {0,1}}]
I = ideal(x*u, y*u, y*v) -- a birational map
assert(isPolynomialRing satSpecialFiber(I,5))
satSpecialFiber(I, 5)
I = ideal(x*u, y*v, x*v + y*u) -- a non birational map
assert(not isPolynomialRing satSpecialFiber(I,5))
///
TEST ///
R = QQ[x,y,z]
A = matrix{ {x, x^5 + y^5},
{-y, y^5 + z*x^2*y^2},
{0, x^5}
};
I = minors(2, A) -- a birational map
assert(numgens satSpecialFiberIdeal I == 0)
A = matrix{ {x^3, x^2 + y^2},
{-y^3, y^2 + z*x},
{0, x^2}
};
I = minors(2, A) -- a non birational map
assert(numgens satSpecialFiberIdeal I != 0)
R = QQ[x,y,u,v, Degrees => {{1,0}, {1,0}, {0,1}, {0,1}}]
I = ideal(x*u, y*u, y*v) -- a birational map
assert(numgens satSpecialFiberIdeal(I,5) == 0)
satSpecialFiberIdeal(I, 5)
I = ideal(x*u, y*v, x*v + y*u) -- a non birational map
satSpecialFiberIdeal(I, 5)
assert(numgens satSpecialFiberIdeal(I,5) != 0)
///
TEST ///
R = QQ[x,y,u,v, Degrees => {{1,0}, {1,0}, {0,1}, {0,1}}]
I = ideal(x*u, y*u, y*v) -- a birational map
assert(jacobianDualRank I == 2)
I = ideal(x*u, y*v, x*v + y*u) -- a non birational map
assert(jacobianDualRank I != 2)
A = matrix{ {x^5*u, x^2*v^2},
{y^5*v, x^2*u^2},
{0, y^2*v^2}
};
I = minors(2, A) -- a non birational
assert(jacobianDualRank I != 2)
I = ideal(x*u^2, y*u^2, x*v^2) -- non birational map
jacobianDualRank I
R = QQ[x,y,z,w]
A = matrix{ {x + y, x, x},
{3*z - 4*w, y, z},
{w, z, z + w},
{y - z, w, x + y}
};
I = minors(3, A) -- a birational map
assert(jacobianDualRank I == 3)
I = ideal(random(2, R), random(2, R), random(2, R), random(2, R)); -- a non birational
assert(jacobianDualRank I != 3)
///
TEST ///
R = QQ[x,y,u,v, Degrees => {{1,0}, {1,0}, {0,1}, {0,1}}]
I = ideal(x*u, y*u, y*v) -- a birational map
assert((partialJDRs I) == {1,1})
I = ideal(x*u, y*v, x*v + y*u) -- a non birational map
partialJDRs I
A = matrix{ {x^5*u, x^2*v^2},
{y^5*v, x^2*u^2},
{0, y^2*v^2}
};
I = minors(2, A) -- a non birational
assert((partialJDRs I) != {1,1})
I = ideal(x*u^2, y*u^2, x*v^2) -- non birational map
partialJDRs I
R = QQ[x,y,z,w]
A = matrix{ {x + y, x, x},
{3*z - 4*w, y, z},
{w, z, z + w},
{y - z, w, x + y}
};
I = minors(3, A) -- a birational map
partialJDRs I
I = ideal(random(2, R), random(2, R), random(2, R), random(2, R)); -- a non birational
partialJDRs I
///
TEST ///
R = QQ[x,y,z]
I = ideal(random(4, R), random(4, R), random(4, R));
betti res I
assert((degreeOfMap I) <= (upperBoundDegreeSingleGraded I))
A = matrix{ {x, x^2 + y^2},
{-y, y^2 + z*x},
{0, x^2}
};
I = minors(2, A) -- a birational map
assert((degreeOfMap I) <= (upperBoundDegreeSingleGraded I))
A = matrix{ {x^2, x^2 + y^2},
{-y^2, y^2 + z*x},
{0, x^2}
};
I = minors(2, A) -- a non birational map
assert((degreeOfMap I) <= (upperBoundDegreeSingleGraded I))
A = matrix{ {x^3, x^2 + y^2},
{-y^3, y^2 + z*x},
{0, x^2}
};
I = minors(2, A) -- a non birational map
assert((degreeOfMap I) <= (upperBoundDegreeSingleGraded I))
///
end--
uninstallPackage "MultiGradedRationalMap"
restart
installPackage "MultiGradedRationalMap"
viewHelp "MultiGradedRationalMap"
check "MultiGradedRationalMap"
loadPackage "MultiGradedRationalMap"
|