1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190
|
-*
Copyright 2020, Giovanni Staglianò.
You may redistribute this file under the terms of the GNU General Public
License as published by the Free Software Foundation, either version 2 of
the License, or any later version.
*-
if version#"VERSION" < "1.18" then error "this package requires Macaulay2 version 1.18 or newer";
newPackage(
"MultiprojectiveVarieties",
Version => "2.6",
Date => "September 9, 2022",
Authors => {{Name => "Giovanni Staglianò", Email => "giovannistagliano@gmail.com"}},
Headline => "multi-projective varieties and multi-rational maps",
Keywords => {"Projective Algebraic Geometry"},
PackageImports => {"PrimaryDecomposition","TangentCone"},
PackageExports => {"Cremona","SparseResultants"},
DebuggingMode => false,
Reload => false,
Certification => {
"journal name" => "The Journal of Software for Algebra and Geometry",
"journal URI" => "http://j-sag.org/",
"article title" => "Computations with rational maps between multi-projective varieties",
"acceptance date" => "31 August 2021",
"published article URI" => "https://msp.org/jsag/2021/11-1/p14.xhtml",
"published article DOI" => "10.2140/jsag.2021.11.143",
"published code URI" => "https://msp.org/jsag/2021/11-1/jsag-v11-n1-x14-MultiprojectiveVarieties.m2",
"repository code URI" => "http://github.com/Macaulay2/M2/blob/master/M2/Macaulay2/packages/MultiprojectiveVarieties.m2",
"release at publication" => "5831dc6b020fae7365f257256b92539d5d496954", -- git commit number in hex
"version at publication" => "2.3",
"volume number" => "11",
"volume URI" => "https://msp.org/jsag/2021/11-1/"
}
)
if Cremona.Options.Version < "5.2" then (
<<endl<<"Your version of the Cremona package is outdated (required version 5.2 or newer);"<<endl;
<<"you can manually download the latest version from"<<endl;
<<"https://github.com/Macaulay2/M2/tree/master/M2/Macaulay2/packages."<<endl;
<<"To automatically download the latest version of Cremona in your current directory,"<<endl;
<<"you may run the following Macaulay2 code:"<<endl<<"***"<<endl<<endl;
<<///(makeDirectory("Cremona"), for f in {"Cremona.m2","Cremona/documentation.m2","Cremona/examples.m2","Cremona/tests.m2"} do run("curl -s -o "|f|" https://raw.githubusercontent.com/Macaulay2/M2/master/M2/Macaulay2/packages/"|f));///<<endl<<endl<<"***"<<endl;
error "required Cremona package version 5.2 or newer";
);
if SparseResultants.Options.Version < "1.1" then error "your version of the SparseResultants package is outdated (required version 1.1 or newer); you can download the latest version from https://github.com/Macaulay2/M2/tree/master/M2/Macaulay2/packages";
export{"MultiprojectiveVariety", "projectiveVariety", "Saturate", "projections", "fiberProduct",
"EmbeddedProjectiveVariety", "linearlyNormalEmbedding", "linearSpan", "tangentSpace", "coneOfLines", "sectionalGenus",
"MultirationalMap", "multirationalMap", "baseLocus", "degreeSequence", "inverse2", "toRationalMap",
"∏","⋂","⋃","PP",
"ambientVariety",
"GrassmannianVariety", "GG", "schubertCycle", "cycleClass",
"segreEmbedding"}
debug Cremona;
debug SparseResultants;
importFrom("Resultants",{"fanoVariety","varietySweptOutByLinearSpaces"});
MultiprojectiveVariety = new Type of MutableHashTable;
globalAssignment MultiprojectiveVariety;
MultiprojectiveVariety.synonym = "multi-projective variety";
EmbeddedProjectiveVariety = new Type of MultiprojectiveVariety;
globalAssignment EmbeddedProjectiveVariety;
EmbeddedProjectiveVariety.synonym = "embedded projective variety";
WeightedProjectiveVariety = new Type of MultiprojectiveVariety; -- this isn't really a subtype
globalAssignment WeightedProjectiveVariety;
WeightedProjectiveVariety.synonym = "weighted projective variety";
projectiveVariety = method(TypicalValue => MultiprojectiveVariety, Options => {MinimalGenerators => true, Saturate => true});
projectiveVariety Ideal := o -> I -> (
if I.cache#?GrassmannianVariety then return I.cache#GrassmannianVariety;
if I.cache#?"multiprojectiveVariety" then return I.cache#"multiprojectiveVariety";
R := ring I;
if not isPolynomialRing R then error "expected an ideal in a polynomial ring";
if not isField coefficientRing R then error "the coefficient ring needs to be a field";
m := multigens R;
if flatten m != gens R then error "the given grading on the polynomial ring is not allowed: the degree of each variable must be a standard basis vector of ZZ^r in the commonly used order";
if not isHomogeneous I then error ("attempting to construct projective variety from a non-homogeneous ideal: numgens ring: "|(toString numgens R)|", degrees: "|(toString toSequence degrees R));
J := I;
if o.Saturate then (
if not(J.cache#?"isMultisaturated" and J.cache#"isMultisaturated") then (
for x in m do J = saturate(J,ideal x,MinimalGenerators=>o.MinimalGenerators);
J.cache#"isMultisaturated" = true;
);
) else if o.MinimalGenerators then J = trim J;
if J === I then J = I;
if o.Saturate and (not I.cache#?"isMultisaturated") then I.cache#"isMultisaturated" = if I === J then true else I == J;
X := new MultiprojectiveVariety from {
symbol cache => new CacheTable,
"idealVariety" => J,
"ringVariety" => null,
"dimVariety" => null,
"dimAmbientSpaces" => apply(m, n -> (#n)-1),
"multigens" => m,
"multidegree" => null,
"projections" => null,
"expression" => null
};
if degreeLength R == 1 then (if max flatten degrees R >= 2 then X = new WeightedProjectiveVariety from X else X = new EmbeddedProjectiveVariety from X);
J.cache#"multiprojectiveVariety" = X;
I.cache#"multiprojectiveVariety" = J.cache#"multiprojectiveVariety"
);
projectiveVariety Ring := o -> R -> (
if R#?GrassmannianVariety then return R#GrassmannianVariety;
if R#?"multiprojectiveVariety" then return R#"multiprojectiveVariety";
I := ideal R;
if not isPolynomialRing ambient R then error "expected the ambient ring to be polynomial";
if o.Saturate or I.cache#?"isMultisaturated" then if not isMultisaturated I then error "the ideal is not multi-saturated";
if I.cache#?"multiprojectiveVariety" then (
X := I.cache#"multiprojectiveVariety";
if X#"ringVariety" === null then X#"ringVariety" = R;
if X#"ringVariety" === R then return (R#"multiprojectiveVariety" = X);
);
Y := projectiveVariety(I,MinimalGenerators=>false,Saturate=>false);
if Y#"ringVariety" =!= null then error "internal error encountered: double assignment for ring of projective variety";
Y#"ringVariety" = R;
R#"multiprojectiveVariety" = Y
);
isMultisaturated = (cacheValue "isMultisaturated") (I -> I == multisaturate I);
projectiveVariety MultidimensionalMatrix := o -> A -> projectiveVariety(ideal(A!),MinimalGenerators=>true,Saturate=>false);
projectiveVariety (List,Ring) := o -> (l,K) -> (
if not all(l,i -> instance(i,ZZ) and i >= 0) then error "expected a list of non-negative integers";
if not isField K then error "expected a field";
if #l == 0 then return projectiveVariety(K[],MinimalGenerators=>false,Saturate=>false);
X := projectiveVariety(ring first first gensRing(K,apply(l,i -> i+1)),MinimalGenerators=>false,Saturate=>false);
X.cache#"euler" = product apply(l,i -> i+1);
X.cache#"top" = X;
X.cache#"singularLocus" = 0_X;
X#"expression" = expression expressionVar(sum l,l);
return X;
);
projectiveVariety (ZZ,Ring) := o -> (l,K) -> projectiveVariety({l},K);
projectiveVariety (List,List,Ring) := o -> (n,d,K) -> (
if #n != #d then error "expected two lists of the same length";
if not all(n|d,i->instance(i,ZZ) and i >= 0) then error "expected two lists of nonnegative integers";
if K#?(n,d,"SegreVeroneseVariety") then return K#(n,d,"SegreVeroneseVariety");
P := projectiveVariety(n,K);
f := multirationalMap apply(#d, i -> rationalMap gens image basis(toList(i : 0) | {d_i} | toList(#d - i - 1 : 0),ring P));
f = multirationalMap(f,image f);
if f#"isDominant" =!= true then error "internal error encountered";
f#"isBirational" = true;
X := image f;
X.cache#"euler" = product apply(n,i -> i+1);
X.cache#"top" = X;
X.cache#"singularLocus" = 0_X;
X.cache#"rationalParametrization" = (parametrize source f) * f;
K#(n,d,"SegreVeroneseVariety") = X
);
projectiveVariety (ZZ,ZZ,Ring) := o -> (n,d,K) -> projectiveVariety({n},{d},K);
----------------------------------
higherSecantVarietyToRationalNormalScroll = method(); -- see p. 167 de [Hubert Flenner, Liam O’Carroll, Wolfgang Vogel]
higherSecantVarietyToRationalNormalScroll (Array,ZZ,Ring) := (d,k,K) -> (
if not (#d > 0 and all(d,i -> instance(i,ZZ))) then error "expected an array of integers";
d = toList d;
N := sum d + #d -1;
if k <= 0 or min d < 0 then return 0_(projectiveVariety(N,K));
if k+1 > sum(#d,s -> d_s-k+1) then return projectiveVariety(N,K);
t := gensRing(K,apply(d,i -> i+1));
M := sub(fold((x,y)->x|y,apply(#d,s -> matrix for i to k list for j to d_s-k list t_s_(i+j))),vars ring projectiveVariety(N,K));
X := projectiveVariety(ideal apply(subsets(numColumns M,k+1),m -> det submatrix(M,m)),MinimalGenerators=>false,Saturate=>false);
X#(symbol matrix) = M;
X
);
PP = new ScriptedFunctor from {
symbol ring => null,
argument => (
A -> (
if instance(A,Ring) then (if not isField A then error "expected a field" else (PP.ring = A; <<"-- the ring "<<toString(PP.ring)<<" is set to be the default coefficient ring; now PP may be used as an abbreviation for PP_"<<toString(PP.ring)<<endl; return PP));
if PP.ring === null then error "coefficient ring required: you may set a ring K as default coefficient ring using PP(K)";
return PP_(PP.ring) A;
)
),
superscript => (
B -> (
if PP.ring === null then error "coefficient ring required: you may set a ring K as default coefficient ring using PP(K)";
return PP_(PP.ring)^B;
)
),
subscript => (
K -> (
if not (instance(K,Ring) and isField K) then error "expected a field";
if PP.ring === null then PP.ring = K;
errStr := toString(///These are some ways of using PP:///||///PP^n -> n-dimensional projective space///||///PP^{n1,n2,...} -> product of projective spaces: PP^n1 x PP^n2 x ...///||///PP^(n,d) -> d-uple embedding of PP^n: v_d(PP^n)///||///PP^({n1,n2,...},{d1,d2,...}) -> Segre-Veronese variety: v_d1(PP^n1) x v_d2(PP^n2) x ...///||///PP[a1,a2,...] -> rational normal scroll: P(O(a1))+P(O(a2))+...///||///PP([a1,a2,...],k) -> k-th secant variety of PP[a1,a2,...]///||///(PP([a1,a2,...],k)).matrix -> the matrix from which PP([a1,a2,...],k) is constructed///||///PP(a1,a2,...) -> weighted-projective space///);
new ScriptedFunctor from {
superscript => (
l -> (
if instance(l,List) or instance(l,ZZ) then projectiveVariety(l,K)
else if instance(l,Sequence) and #l==2 then projectiveVariety(l_0,l_1,K)
else error errStr
)
),
argument => (
d -> (
if instance(d,Array) then higherSecantVarietyToRationalNormalScroll(d,1,K)
else if instance(d,Sequence) and #d==2 and instance(d_0,Array) then higherSecantVarietyToRationalNormalScroll(d_0,d_1,K)
else if instance(d,Sequence) and all(d,i->instance(i,ZZ) and i>=1) then projectiveVariety(newRing(Grass(0,#d-1,K),Degrees=>toList(d)),MinimalGenerators=>false,Saturate=>false)
else error errStr
)
)
}
)
)
};
----------------------------------
isPoint = (cacheValue "isPoint") (X -> (
n := X#"dimAmbientSpaces";
dim X == 0 and sort degrees X == sort pairs tally deepSplice apply(n,entries diagonalMatrix toList(#n:1),(i,d) -> i:d)
));
isGrass = (cacheValue "isGrass") (X -> (
if instance(X,GrassmannianVariety) then return true;
try (k,n,K,Vp) := Grass ring X then (
if isPolynomialRing ring X and k != 0 and k != n-1 then return false;
X.cache#"top" = X;
X.cache#"singularLocus" = 0_X;
X.cache#"GrassInfo" = (k,projectiveVariety(Grass(0,n,K,Vp),Saturate=>false));
return true;
) else return false;
));
expression MultiprojectiveVariety := X -> (
if X#"expression" =!= null then return X#"expression";
n := X#"dimAmbientSpaces";
if dim X == 0 and codim X > 0 then if isPoint X then return expression("a point in "|expressionVar(sum n,n));
expression expressionVar(dim X,n)
);
expression WeightedProjectiveVariety := X -> (
if X#"expression" =!= null then return X#"expression";
expression expressionVar(dim X,toSequence flatten degrees ring ideal X)
);
net MultiprojectiveVariety := X -> if hasAttribute(X,ReverseDictionary) then toString getAttribute(X,ReverseDictionary) else ?X;
texMath MultiprojectiveVariety := texMath @@ net;
MultiprojectiveVariety#{WebApp,AfterPrint} = MultiprojectiveVariety#{WebApp,AfterNoPrint} =
MultiprojectiveVariety#{Standard,AfterPrint} = MultiprojectiveVariety#{Standard,AfterNoPrint} = X -> (
<< endl << concatenate(interpreterDepth:"o") << lineNumber << " : " << "ProjectiveVariety, " << expression X;
if isSubvariety X then << " (subvariety of codimension " << dim ambientVariety X - dim X << " in " << ambientVariety X << ")";
<< endl;
);
toString MultiprojectiveVariety := X -> if codim X == 0 then "PP_("|(toString coefficientRing X)|")^"|(toString shape X) else "projectiveVariety("|(toString ring X)|")"; -- this doesn't work well
ideal MultiprojectiveVariety := X -> X#"idealVariety";
ring MultiprojectiveVariety := X -> (
if X#"ringVariety" =!= null then return X#"ringVariety";
I := ideal X;
R := (ring I)/I;
try assert(isPolynomialRing R or I.cache.QuotientRing === R) else error "internal error encountered";
X#"ringVariety" = R
);
coefficientRing MultiprojectiveVariety := X -> coefficientRing ring ideal X;
ambient MultiprojectiveVariety := (cacheValue "ambient") (X -> if ideal X == 0 then X else projectiveVariety ring ideal X);
dim MultiprojectiveVariety := X -> (
if X#"dimVariety" =!= null then return X#"dimVariety";
R := ring ideal X;
I := ideal X;
X#"dimVariety" = max(dim I - (# heft R),-1)
);
codim MultiprojectiveVariety := {} >> o -> X -> sum(X#"dimAmbientSpaces") - (dim X);
multidegree MultiprojectiveVariety := X -> (
if X#"multidegree" =!= null then return X#"multidegree";
X#"multidegree" = multidegree ideal X
);
degree MultiprojectiveVariety := X -> getMultidegree(multidegree X, X#"dimAmbientSpaces");
degree WeightedProjectiveVariety := X -> degree image segreEmbedding X;
projections = method();
projections MultiprojectiveVariety := X -> (
if X#"projections" =!= null then return X#"projections";
X#"projections" = apply(X#"multigens",x -> rationalMap(sub(matrix{x},ring X),Dominant=>"notSimplify"))
);
segre MultiprojectiveVariety := (cacheValue "SegreMap") (X -> segre ring X);
segre WeightedProjectiveVariety := (cacheValue "SegreMap") (X -> ( -- straightening out
d := lcm flatten degrees ring ideal X;
rationalMap(ideal(1_(ring X)),{d})
));
segreEmbedding = method();
segreEmbedding MultiprojectiveVariety := X -> (
s := multirationalMap segre X;
if ring source s =!= ring X then error "internal error encountered";
s#"source" = X;
s
);
toStringDegreesVar = X -> toString(concatenate for l in degrees X list (toString unsequence toSequence first l)|"^"|(toString(last l)|" "));
describe MultiprojectiveVariety := X -> (
n := X#"dimAmbientSpaces";
amb := "empty space";
if # n >= 1 and min n >= 0 then (
amb = "PP^"|toString(n_0);
for i from 1 to #n-1 do amb = amb | " x PP^" | toString(n_i);
);
if instance(X,WeightedProjectiveVariety) then amb = "PP"|(toString toSequence flatten degrees ring ideal X);
s := "ambient:.............. "|toString(amb)|newline;
s = s|"dim:.................. "|toString(dim X);
if dim X == -1 then return s;
s = s|newline|"codim:................ "|toString(codim X);
if codim X == 0 then return s;
s = s|newline|"degree:............... "|toString(degree X);
if codim X == 0 then return s;
s = s|newline;
if # n > 1 then s = s|"multidegree:.......... "|toString(multidegree X)|newline;
s = s|"generators:........... "|toStringDegreesVar(X)|newline;
purity := X == top X;
s = s|"purity:............... "|toString(purity);
if purity then (
s = s|newline|"dim sing. l.:......... "|toString(dim singularLocus X);
if dim singularLocus X >= 0 then s = s|newline|"gens sing. l.:........ "|toStringDegreesVar(singularLocus X);
);
if # n > 1 then (
s = s|newline|"Segre embedding:...... "|"map to PP^"|toString(numgens target segre X -1);
N := product apply(n, i -> i+1) -1;
if numgens target segre X -1 < N then s = s|" ⊂ PP^"|toString(N);
);
return s;
);
? MultiprojectiveVariety := X -> (
if dim X == -1 or codim X <= 0 then return toString expression X;
if (not instance(X,WeightedProjectiveVariety)) and isPoint X then return ("point of coordinates "|toString coordinates X);
n := X#"dimAmbientSpaces";
degs := degrees ideal X;
m := "multi-";
if #n == 1 then m = "";
if instance(X,WeightedProjectiveVariety) then n = toSequence flatten degrees ring ideal X;
if # degs == 1 then return(toString expressionVar(dim X,n)|" defined by a "|m|"form of "|m|"degree "|toString(unsequence toSequence first degs));
cutOut:=""; if #degs>1 then cutOut = if # unique degs == 1 then " cut out by "|toString(#degs)|" hypersurfaces of "|m|"degree "|toString(unsequence toSequence first degs) else " cut out by "|toString(#degs)|" hypersurfaces of "|m|"degrees "|toStringDegreesVar(X);
(expressionVar(dim X,n))|cutOut
);
degrees MultiprojectiveVariety := (cacheValue "degreesGensIdeal") (X -> sort pairs tally degrees ideal X);
shape MultiprojectiveVariety := X -> X#"dimAmbientSpaces";
singularLocus MultiprojectiveVariety := (cacheValue "singularLocus") (X -> (
if X.cache#?"top" then if X != top X then error "expected an equidimensional projective variety";
if instance(X,EmbeddedProjectiveVariety) and X.cache#?"nonSaturatedSingularLocus" then return projectiveVariety(saturate ideal singularLocus(X,Saturate=>false),MinimalGenerators=>false,Saturate=>false);
I := ideal X;
projectiveVariety(I + minors(codim X,jacobian I,Strategy=>Cofactor),MinimalGenerators=>true,Saturate=>true)
));
singularLocus (EmbeddedProjectiveVariety,Option) := (X,opt) -> (
if first toList opt =!= Saturate then error "Saturate is the only available option for singularLocus(EmbeddedProjectiveVariety)";
if (last opt) or X.cache#?"singularLocus" then return singularLocus X;
if X.cache#?"nonSaturatedSingularLocus" then return X.cache#"nonSaturatedSingularLocus";
if X.cache#?"top" then if X != top X then error "expected an equidimensional projective variety";
I := ideal X;
X.cache#"nonSaturatedSingularLocus" = projectiveVariety(I + minors(codim X,jacobian I,Strategy=>Cofactor),MinimalGenerators=>true,Saturate=>false)
);
top MultiprojectiveVariety := (cacheValue "top") (X -> (
T := top ideal X;
if T == ideal X then X else projectiveVariety(T,MinimalGenerators=>true,Saturate=>false)
));
decompose MultiprojectiveVariety := {} >> o -> X -> (
if X.cache#?"Decomposition" then return X.cache#"Decomposition";
X.cache#"Decomposition" = apply(decompose ideal X,D -> projectiveVariety(D,MinimalGenerators=>true,Saturate=>false))
);
support MultiprojectiveVariety := (cacheValue "Support") (X -> (
I := radical ideal X;
if I === ideal X then return X;
projectiveVariety(I,Saturate=>false)
));
MultiprojectiveVariety == MultiprojectiveVariety := (X,Y) -> (
if ring ideal X =!= ring ideal Y then error "expected varieties in the same ambient space";
if X === Y or ideal X === ideal Y then return true;
if dim X != dim Y then return false;
ideal X == ideal Y
);
SchubertCycle22 = X -> (
if instance(X,GrassmannianVariety) then (
k := X#"dimLinearSpaces";
a := {2,2}|toList(k-1:0);
return schubertCycle(a,X,Standard=>true);
);
makeSubvariety(SchubertCycle22(GG X),X,Verify=>true)
);
SchubertCycle22OnLinearSectionOfG14 = X -> (
if dim X == 6 then (
J := parametrize random(1,0_X);
return J SchubertCycle22OnLinearSectionOfG14(J^^ X);
);
if dim X == 5 then (
p := pointOnLinearSectionOfG14 X;
V := coneOfLines(X,p);
j := parametrize linearSpan V;
h := (rationalMap(j^^ p))|(j^^ V);
return j h^* dual top singularLocus(projectiveVariety(dualVariety ideal image h,MinimalGenerators=>false,Saturate=>false),Saturate=>false);
);
if dim X == 4 then ( -- Todd's result: a quintic del Pezzo fourfold contains exactly one rho-plane (Roth, "Algebraic varieties with canonical curve section", p. 95)
planes := Fano(2,X); Y := null;
if not(dim planes == 1 and degree planes == 5 and genera ideal planes == {-1,4}) then (
<<"-- re-executing Fano(2,...,AffineChartGrass=>true)"<<endl;
f := rationalMap {for i to 7 list random(1,ring ambient X)};
Y = f^^ X;
planes = Fano(2,Y);
if not(dim planes == 1 and degree planes == 5 and genera ideal planes == {-1,4}) then error "error occurred trying to pick rho-plane in del Pezzo fourfold";
);
l := parametrize linearSpan planes;
P := Fano(l((l^^planes)\top(l^^ planes)) % ambientVariety planes);
if Y =!= null then P = (inverse f)^^ P;
if not (dim P == 2 and degree P == 1 and isSubset(P,X)) then "error occurred trying to pick rho-plane in del Pezzo fourfold";
return P;
);
error "expected dimension of quintic del Pezzo variety to be 4, 5, or 6";
);
parametrize MultiprojectiveVariety := (cacheValue "rationalParametrization") (X -> (
inv := if X#?InverseMethod then X#InverseMethod else inverse;
if dim X == -1 then error "expected a non-empty variety";
if X.cache#?"top" then if X != top X then error "expected an equidimensional variety";
if # X#"dimAmbientSpaces" != 1 then (
f := parametrizeWithAnEmbeddedProjectiveVariety X;
return (parametrize source f) * f;
);
-- linear varieties
if codim X == 0 then return 1_X;
if degree X == 1 then (
N := mingens kernel transpose sub(last coefficients(gens ideal X,Monomials=>gens ring ambient X),coefficientRing X);
R := ring projectiveVariety(dim X,coefficientRing X);
return multirationalMap rationalMap map(R,ring X,(vars R) * (transpose N));
);
-- zero-dimensional varieties (hidden to the user)
if dim X == 0 then return inv multirationalMap rationalMap(sub(matrix{{random(1,ring ambient X),random(1,ring ambient X)}},ring X),Dominant=>true);
-- Grassmannians
if instance(X,GrassmannianVariety) then return inv(rationalMap SchubertCycle22 X,Verify=>-1);
if isGrass X then return inv((rationalMap SchubertCycle22 X)|X,Verify=>-1);
-- quadrics
if degree X == 2 then return inv(multirationalMap rationalMap(trim sub(ideal point X,ring X),1),Verify=>-1);
-- linear span
if codim linearSpan X > 0 then (g := (parametrize linearSpan X)||X; return (parametrize source g) * g);
-- Severi varieties (in particular, varieties projectively equivalent to G(1,5))
if ((dim X == 2 and dim ambient X == 5 and degree X == 4) or
(dim X == 4 and dim ambient X == 8 and degree X == 6) or
(dim X == 8 and dim ambient X == 14 and degree X == 14) or
(dim X == 16 and dim ambient X == 26 and degree X == 78)) and
degrees X == {({2},dim ambient X +1)}
then return inv(multirationalMap rationalMap(trim sub((ideal X) + secantCone(toList coordinates point linearSpan {point X,point X},ideal X),ring X),1),Verify=>-1);
-- cubic scrolls (this makes the function "===>" work with del Pezzo fivefolds and del Pezzo sixfolds in every characteristic)
if codim X == 2 and degree X == 3 and sectionalGenus X == 0 then (
if dim X == 2 then (
dirLine := dual top singularLocus(projectiveVariety(dualVariety ideal X,MinimalGenerators=>false,Saturate=>false),Saturate=>false);
rulLine := (X * tangentSpace(X,point dirLine))\dirLine;
hX2 := inv(multirationalMap rationalMap sub(ideal rulLine,ring X),Verify=>-1);
return sendFewPoints(projectiveVariety ideal submatrix(vars ring source hX2,{0,1}),baseLocus hX2) * hX2;
);
if dim X == 3 then (
hX3 := multirationalMap({segre projectiveVariety({2,1},coefficientRing X)},ambient X) * (inv rationalMap flatten entries syz gens ideal X);
return check multirationalMap((parametrize projectiveVariety({2,1},coefficientRing X)) * hX3,X);
);
);
-- minimal degree varieties
if degree X == codim X + 1 and sectionalGenus X == 0
then return inv(multirationalMap rationalMap trim sub(ideal linearSpan apply(degree X -1,i -> point X),ring X),Verify=>-1);
-- del Pezzo fourfolds, fivefolds, and sixfolds
if (dim X == 4 or dim X == 5 or dim X == 6) and codim X == 3 and degree X == 5 and sectionalGenus X == 1
then return inv(multirationalMap rationalMap sub(ideal SchubertCycle22OnLinearSectionOfG14 X,ring X),Verify=>-1);
-- complete intersections of two quadrics
if codim X == 2 and degree X == 4 and sectionalGenus X == 1
then return inv(multirationalMap rationalMap(sub(ideal line X,ring X),1),Verify=>-1);
-- some special Fano fourfolds
if dim X == 4 and codim X == 5 and degree X == 12 and sectionalGenus X == 7
then return inv(multirationalMap rationalMap(sub(ideal tangentSpace(X,point X),ring X),1),Verify=>-1);
if dim X == 4 and codim X == 6 and degree X == 14 and sectionalGenus X == 8
then return inv(multirationalMap rationalMap(sub(ideal (point X + tangentSpace(X,point X)),ring X),1),Verify=>-1);
if dim X == 4 and codim X == 7 and degree X == 16 and sectionalGenus X == 9
then return inv(multirationalMap rationalMap(sub(ideal (line X + tangentSpace(X,point X)),ring X),1),Verify=>-1);
if dim X == 4 and codim X == 8 and degree X == 18 and sectionalGenus X == 10 then (
Conic := {}; t := 0;
while #Conic <= 1 and t <= 14 do (
Conic = select(decompose coneOfLines(X,point X),l -> dim l == 1 and degree l == 1);
t = t+1;
);
if #Conic <= 1 then error "failed to find reducible conic on fourfold of genus 10 (15 attempts performed); try executing again";
Conic = Conic_0 + Conic_1;
return inv(multirationalMap rationalMap(sub(ideal (Conic + tangentSpace(X,point X)),ring X),1),Verify=>-1);
);
error("not (yet) able to parametrize "|toString(? X)|" defined over "|toString(coefficientRing X));
));
parametrizeWithAnEmbeddedProjectiveVariety = (cacheValue "parameterizedWithAnEmbeddedProjectiveVariety") (X -> (
local G;
if # X#"dimAmbientSpaces" == 1
then G = 1_X
else (
t := local t;
g := parametrizeProductOfProjectiveSpaces(ring ambient X,t);
G = (multirationalMap(apply(projections ambient X,p -> rationalMap(g * (map p),Dominant=>"notSimplify")),ambient X))||X;
);
degs := degrees ideal source G;
if (#degs>0 and all(degs,d -> d == {1})) then G = (parametrize ring source G) * G;
G
));
point (MultiprojectiveVariety,Boolean) := (X,b) -> (
if # X#"dimAmbientSpaces" == 1 and
(not X.cache#?"rationalParametrization") and
(not X.cache#?"parameterizedWithAnEmbeddedProjectiveVariety") and
(codim X == 0 or any(degrees ideal X,d -> d != {1}))
then return projectiveVariety(point(ideal X,b),MinimalGenerators=>false,Saturate=>false);
f := if X.cache#?"rationalParametrization"
then X.cache#"rationalParametrization"
else parametrizeWithAnEmbeddedProjectiveVariety X;
p := f projectiveVariety(point(ideal source f,false),MinimalGenerators=>false,Saturate=>false);
if b then if not (isPoint p and isSubset(p,X)) then error("something went wrong in trying to pick a random "|toString(coefficientRing X)|"-rational point on the variety");
return p;
);
point MultiprojectiveVariety := X -> (
p := point(X,true);
if isSubvariety X then p = makeSubvariety(p,ambientVariety X,Verify=>false);
return p;
);
point (MultiprojectiveVariety,VisibleList) := (X,l) -> (
if # shape X == 1 and # l == numgens ring ideal X and # l > 1 then return point(X,{l});
if # l != # shape X then error("expected "|(toString # shape X)|" lists of coefficients");
F := apply(projections ambient X,matrix);
p := projectiveVariety sum for i to #l-1 list minors(2,(F_i || matrix {toList l_i}));
if not isPoint p then error "the output of point(MultiprojectiveVariety,List) is not a point";
if not isSubset(p,X) then error "the point does not belong to the variety";
if isSubvariety X then p = makeSubvariety(p,ambientVariety X,Verify=>false);
return p;
);
point WeightedProjectiveVariety := X -> (
if codim X > 0 then return (segreEmbedding X)^* point image segreEmbedding X;
a := flatten degrees ring ideal X;
n := #a-1;
p := apply(n+1,i -> random coefficientRing X);
x := gens ring X;
P := projectiveVariety ideal flatten for k to n list for i to n list ((p_i)^(a_k) * (x_k)^(a_i) - (p_k)^(a_i) * (x_i)^(a_k));
assert(dim P == 0);
P.cache#"isPoint" = true;
P.cache#"coordinates" = new Array from p;
P
);
point (WeightedProjectiveVariety,VisibleList) := (X,p) -> (
n := dim ambient X;
if # p == n + 1 and # p > 1 then return point(X,{p});
a := flatten degrees ring ideal X;
x := gens ring ideal X;
p = first p;
P := projectiveVariety ideal flatten for k to n list for i to n list ((p_i)^(a_k) * (x_k)^(a_i) - (p_k)^(a_i) * (x_i)^(a_k));
if dim P != 0 then error "the output of point(WeightedProjectiveVariety,List) is not a point";
if not isSubset(P,X) then error "the point does not belong to the variety";
if isSubvariety X then P = makeSubvariety(P,ambientVariety X,Verify=>false);
return P;
);
pointOnLinearSectionOfG14 = X -> (
j := parametrize projectiveVariety(ideal apply(dim X -2,i -> random(1,ring ambient X)),MinimalGenerators=>true,Saturate=>false);
S := j^^ X;
T := random({{2},{2},{2}},S) \ S;
i := parametrize linearSpan T;
L := i dual top singularLocus(projectiveVariety(dualVariety ideal(i^^ T),MinimalGenerators=>false,Saturate=>false),Saturate=>false);
j(L * S)
);
coordinates = (cacheValue "coordinates") (p -> (
if not isPoint p then error "expected a point";
unsequence toSequence apply(projections p,h -> new Array from flatten entries coefficients parametrize image h)
));
|- MultiprojectiveVariety := X -> coordinates X;
MultiprojectiveVariety ** MultiprojectiveVariety := (X,Y) -> productVars(X,Y);
∏ = method();
∏ List := L -> productVars L;
quotientRingMem = memoize(I -> (ring I)/I); -- this makes the product strict associative
productMem = memoize(L -> (
if not (#L > 0 and all(L,X -> instance(X,MultiprojectiveVariety))) then error "expected a list of multi-projective varieties";
if #L == 1 then return first L;
K := coefficientRing first L;
for i from 1 to #L-1 do if K =!= coefficientRing(L_i) then error "different coefficient rings encountered";
if any(L,X -> instance(X,WeightedProjectiveVariety)) then error "not implemented yet: product of weighted projective varieties";
n := toSequence apply(L,X -> apply(X#"dimAmbientSpaces",i->i+1));
R := ring first first gensRing(K,join n);
j := for i to #L list sum toList join take(n,i);
s := for i to #L-1 list map(R,ring ideal L_i,submatrix(vars R,j_i .. j_(i+1)-1));
W := projectiveVariety(quotientRingMem trim sum(#L,i -> s_i ideal L_i),MinimalGenerators=>false,Saturate=>false);
W#"projections" = apply(projections W,apply(join toSequence apply(L,projections),target),(f,T) -> rationalMap((map f) * (map rationalMap(target f,T)),Dominant=>"notSimplify"));
if all(L,X -> X.cache#?"euler") then W.cache#"euler" = product(L,euler);
W
));
productVars = L -> (
W := productMem L;
if not (#L > 1 and all(L,X -> hasAttribute(X,ReverseDictionary) or X#"expression" =!= null)) then return W;
e := apply(L,X -> if hasAttribute(X,ReverseDictionary) then toString getAttribute(X,ReverseDictionary) else toString X#"expression");
W#"expression" = e_0;
for i from 1 to #L-1 do W#"expression" = W#"expression" | " x " | e_i;
W#"expression" = expression W#"expression";
W
);
MultiprojectiveVariety ^ ZZ := (X,n) -> (
if n < 0 then error "expected a nonnegative integer";
if n == 0 then return projectiveVariety((coefficientRing X)[],Saturate=>false);
productVars toList(n : X)
);
ZZ * MultiprojectiveVariety := (n,X) -> (
if n < 0 then error "expected a nonnegative integer";
makeSubvariety(projectiveVariety gens saturate (idealOfSubvariety X)^n,ambientVariety X)
);
MultiprojectiveVariety + MultiprojectiveVariety := (X,Y) -> ⋃ {X,Y};
⋃ = method();
⋃ List := L -> (
if not(#L>0 and all(L,X -> instance(X,MultiprojectiveVariety))) then error "expected a list of multi-projective varieties";
if #L == 1 then return first L;
if not (first L).cache#?("union",L) then (
if not same apply(L,ambient) then error "expected varieties in the same ambient multi-projective space";
(first L).cache#("union",L) = projectiveVariety(intersect apply(L,ideal),MinimalGenerators=>true,Saturate=>false);
);
makeSubvariety((first L).cache#("union",L),L)
);
MultiprojectiveVariety \ MultiprojectiveVariety := (X,Y) -> (
if X.cache#?("difference1",Y) then return X.cache#("difference1",Y);
if ring ideal X =!= ring ideal Y then error "expected varieties in the same ambient multi-projective space";
X.cache#("difference1",Y) = projectiveVariety(quotient(ideal X,ideal Y,MinimalGenerators=>true),MinimalGenerators=>false,Saturate=>false)
);
MultiprojectiveVariety \\ MultiprojectiveVariety := (X,Y) -> (
if X.cache#?("difference2",Y) then return X.cache#("difference2",Y);
if ring ideal X =!= ring ideal Y then error "expected varieties in the same ambient multi-projective space";
X.cache#("difference2",Y) = projectiveVariety(saturate(ideal X,ideal Y,MinimalGenerators=>true),MinimalGenerators=>false,Saturate=>false)
);
MultiprojectiveVariety * MultiprojectiveVariety := (X,Y) -> ⋂ {X,Y};
⋂ = method();
⋂ List := L -> (
if not(#L>0 and all(L,X -> instance(X,MultiprojectiveVariety))) then error "expected a list of multi-projective varieties";
if #L == 1 then return first L;
if not (first L).cache#?("intersection",L) then (
if not same apply(L,ambient) then error "expected varieties in the same ambient multi-projective space";
(first L).cache#("intersection",L) = projectiveVariety(sum apply(L,ideal),MinimalGenerators=>true,Saturate=>true);
);
makeSubvariety((first L).cache#("intersection",L),L)
);
isSubset (MultiprojectiveVariety,MultiprojectiveVariety) := (X,Y) -> (
if (ideal X).cache#?("isSubsetAsVarietyOf",ideal Y) then return (ideal X).cache#("isSubsetAsVarietyOf",ideal Y);
if ring ideal X =!= ring ideal Y then error "expected varieties in the same ambient multi-projective space";
if X === Y then return (ideal X).cache#("isSubsetAsVarietyOf",ideal Y) = true;
(ideal X).cache#("isSubsetAsVarietyOf",ideal Y) = isSubset(ideal Y,ideal X)
);
fiberProductInt = (phi,psi) -> (
if target phi =!= target psi then error "expected two morphisms with the same target";
if not isMorphism phi then <<"--warning: the first map is not a morphism"<<endl;
if not isMorphism psi then <<"--warning: the second map is not a morphism"<<endl;
ambX := projectiveVariety ambient source phi;
ambY := projectiveVariety ambient source psi;
ambXxY := ambX ** ambY;
R := ring ambXxY;
n := numgens ring ambX -1;
sx := map(R,ring ambX,submatrix(vars R,{0..n}));
sy := map(R,ring ambY,submatrix'(vars R,{0..n}));
I := sx ideal source phi;
J := sy ideal source psi;
F := apply(maps phi,f -> sx lift(toMatrix f,ring ambX));
G := apply(maps psi,g -> sy lift(toMatrix g,ring ambY));
Z := projectiveVariety(I + J + intersect flatten for f in F list for g in G list saturate(saturate(minors(2,f||g),ideal f),ideal g),MinimalGenerators=>true,Saturate=>true);
Z#"projections" = apply(projections Z,projections ambXxY,(f,g) -> rationalMap((map f) * (map rationalMap(target f,target g)),Dominant=>"notSimplify"));
Z
);
fiberProduct = method(TypicalValue => MultiprojectiveVariety);
fiberProduct (MultihomogeneousRationalMap,MultihomogeneousRationalMap) := (phi,psi) -> fiberProductInt(phi,psi);
fiberProduct (MultihomogeneousRationalMap,RationalMap) := (phi,psi) -> fiberProductInt(phi,psi);
fiberProduct (RationalMap,MultihomogeneousRationalMap) := (phi,psi) -> fiberProductInt(phi,psi);
fiberProduct (RationalMap,RationalMap) := (phi,psi) -> fiberProductInt(phi,psi);
euler (MultiprojectiveVariety,Option) := (X,opt) -> (
o := toList opt;
if not(#o == 2 and first o === Verify) then error "Verify is the only available option for euler(MultiprojectiveVariety)";
if not instance(last o,Boolean) then error "option Verify accepts true or false";
if X.cache#?"euler" then return X.cache#"euler";
local e;
if # X#"dimAmbientSpaces" == 1 then (
if codim X == 0 then return X.cache#"euler" = numgens ring ideal X;
e = EulerCharacteristic(ideal X,Certify=>last o,Verbose=>false);
) else (
-- <<"--warning: code to be improved"<<endl;
e = EulerCharacteristic(image segre X,Certify=>last o,Verbose=>false);
);
if last o then X.cache#"euler" = e;
return e;
);
euler MultiprojectiveVariety := X -> euler(X,Verify=>true);
basisMem = (d,X) -> (
if X.cache#?(d,"basis") then return X.cache#(d,"basis");
J := ideal select(flatten entries gens ideal X,g -> all(degree g,d,(i,j) -> i<=j));
if numgens J == 0 then J = sub(J,ring ideal X);
X.cache#(d,"basis") = flatten entries gens image basis(d,J)
);
random (List,MultiprojectiveVariety) := o -> (l,X) -> (
l = deepSplice l;
K := coefficientRing X;
n := # X#"dimAmbientSpaces";
if #l == n and all(l,j -> instance(j,ZZ)) then return random({l},X);
L := pairs tally l;
if not all(L,i -> instance(first i,List) and # first i == n and all(first i,j -> instance(j,ZZ))) then error("expected lists of integers of length "|toString(n));
local B;
Y := projectiveVariety ideal flatten for d in L list (
B = basisMem(first d,X);
if #B == 0 then error("unable to find random elements of degree "|(toString first d));
for i from 1 to last d list sum(B,b -> (random K) * b)
);
if codim Y != #l then error "unable to find random elements, too many multi-degrees are given";
return Y;
);
random (ZZ,MultiprojectiveVariety) := o -> (i,X) -> random({i},X);
random MultiprojectiveVariety := o -> X -> (
P := ambient X;
if P == X then return X;
Phi := rationalMap(apply(entries diagonalMatrix toList(# shape P : 1),shape P,(d,i) -> apply(i+1,j -> random(d,ring P))),P);
-- assert(isIsomorphism Phi);
if # shape P == 1 then Phi^^ X else Phi X
);
MultiprojectiveVariety ** Ring := (X,K) -> (
if not isField K then (
if instance(K,QuotientRing) or instance(K,PolynomialRing) then if coefficientRing K === coefficientRing X then return X ** (projectiveVariety K);
error "expected a field";
);
if (char coefficientRing X =!= char K and char coefficientRing X =!= 0) then error "characteristic not valid";
R := ring projectiveVariety(shape X,K);
if instance(X,WeightedProjectiveVariety) then R = newRing(R,Degrees=>degrees ring ideal X);
projectiveVariety(sub(ideal X,vars R),Saturate=>false,MinimalGenerators=>true)
);
MultiprojectiveVariety ? MultiprojectiveVariety := (X,Y) -> (
if ring ideal X =!= ring ideal Y then return incomparable;
if X == Y then return symbol ==;
if isSubset(X,Y) then return symbol <;
if isSubset(Y,X) then return symbol >;
return incomparable;
);
variety EmbeddedProjectiveVariety := (cacheValue "ProjOfRing") (X -> Proj ring X);
linearSpan = method();
linearSpan EmbeddedProjectiveVariety := (cacheValue "linearSpan") (X -> (
L := select(flatten entries gens ideal X,i -> degree i == {1});
if #L == 0 then return ambient X;
Y := projectiveVariety(ideal L,MinimalGenerators=>true,Saturate=>false);
if Y == X then return X else return Y;
));
linearSpan List := L -> (
if #L == 0 then error "expected a nonempty list";
if not all(L,X -> instance(X,EmbeddedProjectiveVariety)) then error "expected a list of embedded projective varieties";
linearSpan ⋃ L
);
sectionalGenus = method();
sectionalGenus EmbeddedProjectiveVariety := (cacheValue "sectionalGenus") (X -> (
if dim X <= 0 then error "expected a positive dimensional variety";
if X.cache#?(true,"HilbertPolynomial") then return 1 - euler diff(hilbertPolynomial X,dim X -1);
(reverse genera ideal X)_1
));
hilbertPolynomial EmbeddedProjectiveVariety := o -> ((cacheValue (o.Projective,"HilbertPolynomial")) (X -> hilbertPolynomial(ideal X,Projective=>o.Projective)));
EmbeddedProjectiveVariety ! := X -> (
if coefficientRing X === QQ then (
p := nextPrime random(300,10000000);
-- <<"*** reduction to char "<< p <<" ***"<<endl;
return (X ** (ZZ/p))!;
);
<<"dim:.................. "<<dim X;<<endl;
<<"codim:................ "<<codim X<<endl;
if dim X == -1 then return;
<<"degree:............... "<<degree X<<endl;
if codim X == 0 then return;
if dim X >= 2 then <<"sectional genus:...... "<<sectionalGenus X<<endl;
if dim X == 1 then <<"genus:................ "<<sectionalGenus X<<endl;
<<"generators:........... "<<toStringDegreesVar X<<endl;
d := null;
if # degrees X == 1 and first first degrees X >= {2} and last first degrees X >= dim ambient X +1 then <<"degree associated map: "<<toString(d = degreeMap rationalMap ideal X)<<endl;
ln := null;
if linearSpan X == ambient X then <<"linear normality:..... "<<toString(ln = rank HH^0(OO_(variety X)(1)) == dim ambient X + 1)<<endl;
nc := null;
<<"connected components:. "<<toString(nc = rank HH^0(OO_(variety X)))<<endl;
<<"purity:............... "<<X == top X<<endl;
if X == top X then (
<<"dim sing. l.:......... "<<dim singularLocus X<<endl;
if dim singularLocus X >= 0 then <<"degree sing. l.:...... "<<degree singularLocus X<<endl;
if dim singularLocus X >= 0 then <<"gens. sing. l.:....... "<<toStringDegreesVar singularLocus X<<endl;
) else return;
if ln === true and linearSpan X == ambient X and nc === 1 and X == top X and dim singularLocus X == -1 and dim X >= 1 and codim X > 1 and codim X == degree X - 1 then (if codim X == 3 and dim X == 2 and d === 1 then (<<"*** This is the Veronese surface in P^5 ***"<<endl) else (if dim X > 1 then <<"*** This is a rational normal scroll of dimension "<<dim X<<" and degree "<<degree X<<" in PP^"<<first shape X<<" ***"<<endl else <<"*** This is a rational normal curve of degree "<<degree X<<" in PP^"<<first shape X<<" ***"<<endl));
if # degrees X == 1 and d === 1 then (
<<"*** This is the base locus of a ";
if X == top X and dim singularLocus X == -1 and nc === 1 then <<"special ";
if last first degrees X == first shape X + 1 then <<"Cremona " else <<"birational ";
<<"transformation of PP^"<<first shape X<<" ***"<<endl;
);
if codim X == 1 and X == top X then (
<<"*** This is a";
if dim singularLocus X == -1 then <<" smooth" else if dim singularLocus X < dim X - 3 then <<" factorial";
<<" hypersurface of degree "<<degree X<<" in PP^"<<first shape X<<" ***"<<endl;
);
if codim X > 1 and X == top X and numgens ideal X == codim X then (
<<"*** This is a";
if dim singularLocus X == -1 then <<" smooth" else if dim singularLocus X < dim X - 3 then <<" factorial";
<<" complete intersection of type "<<toString(toSequence flatten degrees ideal X)<<" in PP^"<<first shape X<< " ***"<<endl;
);
if ln === true and linearSpan X == ambient X and X == top X and dim singularLocus X == -1 and nc === 1 and codim X == 4 and dim X == 3 and degree X == 6 and d === 0 then (<<"*** This is P^1xP^1xP^1 in P^7 ***"<<endl);
);
dual EmbeddedProjectiveVariety := {} >> o -> X -> (
if codim linearSpan X > 0 then return projectiveVariety(dualVariety ideal X,MinimalGenerators=>false,Saturate=>false); -- from Resultants
x := local x;
I := sub(ideal X,vars((coefficientRing X)[x_0..x_(dim ambient X)]));
D := sub(dualvariety I,vars ring ambient X); -- from SparseResultants
return projectiveVariety(D,MinimalGenerators=>false,Saturate=>false);
);
conormalVariety EmbeddedProjectiveVariety := o -> X -> (
S := o.SingularLocus;
if instance(S,EmbeddedProjectiveVariety) then S = ideal S;
if S === null and X.cache#?"singularLocus" then S = ideal singularLocus X;
idW := conormalVariety(ideal X,Variable=>o.Variable,Strategy=>o.Strategy,SingularLocus=>S);
W := projectiveVariety(idW,MinimalGenerators=>true,Saturate=>false);
W#"projections" = apply(projections W,f -> rationalMap((map f) * (map rationalMap(target f,ring ambient X)),Dominant=>"notSimplify"));
return W;
);
EmbeddedProjectiveVariety ++ EmbeddedProjectiveVariety := (X,Y) -> (
if ring ideal X =!= ring ideal Y then error "expected varieties in the same ambient projective space";
K := coefficientRing X;
n := dim ambient X;
(t,x,y,z) := (local t,local x,local y,local z);
R := K[t_0,t_1,x_0..x_n,y_0..y_n,z_0..z_n,MonomialOrder=>Eliminate (2*n+4)];
sx := map(R,ring ambient X,{x_0..x_n});
sy := map(R,ring ambient Y,{y_0..y_n});
W := (sx ideal X) + (sy ideal Y) + ideal(matrix{{z_0..z_n}} - t_0*matrix{{x_0..x_n}} - t_1*matrix{{y_0..y_n}});
I := sub(sub(ideal selectInSubring(1,gens gb W),K[z_0..z_n]),vars ring ambient X);
projectiveVariety(I,MinimalGenerators=>true,Saturate=>false)
);
tangentSpace = method();
tangentSpace (EmbeddedProjectiveVariety,EmbeddedProjectiveVariety) := (X,p) -> (
if not isPoint p then if isPoint X then return tangentSpace(p,X);
if not (isPoint p and isSubset(p,X)) then error "expected a point on the variety";
I := ideal X;
subs := apply(gens ring I,toList coordinates p,(x,s) -> x => s);
projectiveVariety(ideal((vars ring I) * sub(jacobian I,subs)),MinimalGenerators=>true,Saturate=>false)
);
tangentCone (EmbeddedProjectiveVariety,EmbeddedProjectiveVariety) := o -> (X,p) -> (
if not isPoint p then if isPoint X then return tangentCone(p,X);
if not (isPoint p and isSubset(p,X)) then error "expected a point on the variety";
K := coefficientRing X;
n := dim ambient X;
a := toList coordinates p;
j := 0; while a_j == 0 do j = j+1;
A := transpose matrix{a} | submatrix'(diagonalMatrix toList(n+1:1),{j});
t := local t;
T := K[t_0..t_n];
f := map(T,ring ambient X,(vars T) * (transpose A));
I := trim f ideal X;
-- assert(f ideal p == ideal submatrix'(vars T,{0}));
J := (inverse f) sub(tangentCone(sub(sub(I,t_0=>1),K[t_1..t_n]),Strategy=>o.Strategy),T);
projectiveVariety(J,MinimalGenerators=>true,Saturate=>false)
);
coneOfLines = method(TypicalValue => EmbeddedProjectiveVariety);
coneOfLines (EmbeddedProjectiveVariety,EmbeddedProjectiveVariety) := (X,p) -> (
if not isPoint p then if isPoint X then return coneOfLines(p,X);
if not (isPoint p and isSubset(p,X)) then error "expected a point on the variety";
K := coefficientRing X;
n := dim ambient X;
a := toList coordinates p;
j := 0; while a_j == 0 do j = j+1;
A := transpose matrix{a} | submatrix'(diagonalMatrix toList(n+1:1),{j});
t := local t;
T := K[t_0..t_n];
f := map(T,ring ambient X,(vars T) * (transpose A));
I := trim f ideal X;
-- assert(f ideal p == ideal submatrix'(vars T,{0}));
R := K[t_1..t_n]; Rt0 := R[t_0];
V := (inverse f) sub(ideal flatten entries sub(last coefficients(gens sub(I,Rt0)),R),T);
projectiveVariety(V,MinimalGenerators=>true,Saturate=>false)
);
line = method();
line (EmbeddedProjectiveVariety,EmbeddedProjectiveVariety) := (X,p) -> (
V := coneOfLines(X,p);
if dim V <= 0 then error("failed to find line in "|toString(? X));
if dim V >= 2 then return linearSpan {p,point V};
L := select(decompose V,l -> dim l == 1 and degree l == 1);
if # L == 0 then error("failed to find line in "|toString(? X));
first random L
);
line EmbeddedProjectiveVariety := X -> line(X,point X);
linearlyNormalEmbedding = method();
linearlyNormalEmbedding EmbeddedProjectiveVariety := X -> (
Phi := multirationalMap X;
f := first factor Phi;
d := degreeSequence f;
if not(#factor Phi == 1 and #d == #(maps f)) then error "internal error encountered";
if #d == 1 then return Phi;
local I;
for i to #d-1 do (
I = rationalMap(saturate ideal matrix(i,f),d_i);
if numgens ambient target I -1 > dim linearSpan X then (
I = multirationalMap rationalMap(I,Dominant=>true);
if ring source I =!= ring X then error "internal error encountered";
I#"source" = X;
if dim target I == dim X then (I#"isBirational" = true; return I);
);
);
error "failed to construct the embedding";
);
sendFewPoints = (X,Y) -> (
n := X#"dimAmbientSpaces";
K := coefficientRing X;
assert(dim X == 0 and dim Y == 0 and degree X == degree Y and #n == 1 and n == Y#"dimAmbientSpaces" and K === coefficientRing Y);
dX := decompose X,
dY := decompose Y;
if not (all(dX|dY,p -> isPoint p) and #dX == degree X and #dY == degree Y) then error("cannot decompose zero-dimensional subscheme of PP^"|toString(n_0)|" into the union of rational points");
if degree X == n_0+2 then (
MX' := transpose matrix apply(take(dX,#dX-1),p -> toList coordinates p);
MX' = transpose matrix apply(flatten entries solve(MX',transpose matrix{toList coordinates last dX}),entries transpose MX',(i,j) -> i*j);
MY' := transpose matrix apply(take(dY,#dY-1),p -> toList coordinates p);
MY' = transpose matrix apply(flatten entries solve(MY',transpose matrix{toList coordinates last dY}),entries transpose MY',(i,j) -> i*j);
return multirationalMap rationalMap(ring ambient X,ring ambient Y,(vars ring ambient X) * transpose(MY' * MX'^-1));
);
if degree X > n_0+2 then error("too many pairs of points of PP^"|toString(n_0)|" to be identified");
MX := (transpose matrix apply(dX,p -> toList coordinates p)) | random(K^(n_0+1),K^(n_0-#dX+1));
MY := (transpose matrix apply(dY,p -> toList coordinates p)) | random(K^(n_0+1),K^(n_0-#dY+1));
multirationalMap rationalMap(ring ambient X,ring ambient Y,(vars ring ambient X) * transpose(MY * MX^-1))
);
findIsomorphism = method(Options => {Verify => true});
findIsomorphism (EmbeddedProjectiveVariety,EmbeddedProjectiveVariety) := o -> (X,Y) -> (
verify := f -> (
if o.Verify then (
if not(source f === ambient X and target f === ambient Y and f X == Y and isIsomorphism f) then (
error("failed attempt to find an isomorphism from "|toString(?X)|" to "|(if ?X ==?Y then "another of the same type" else toString(?Y)));
);
);
f.cache#("directImage",X) = Y;
f.cache#("inverseImage",Y) = X;
return f;
);
K := coefficientRing X;
if K =!= coefficientRing Y then error "expected varieties over the same coefficient ring";
if dim X != dim Y then error "expected varieties of the same dimension";
if dim ambient X != dim ambient Y then error "the ambient projective spaces must have the same dimension";
if dim X == -1 or codim X == 0 or X === Y then return verify rationalMap(ambient X,ambient Y);
if degree X != degree Y then error "expected varieties of the same degree";
if degrees X != degrees Y then error "the two varieties are not projectively equivalent";
natMap := rationalMap(ambient X,ambient Y); if natMap X == Y then return verify natMap;
if dim X == 0 then return verify sendFewPoints(X,Y);
if linearSpan X != ambient X then (
pLX := parametrize linearSpan X; X' := pLX^^ X;
if X.cache#?"rationalParametrization" and (not X'.cache#?"rationalParametrization")
then X'.cache#"rationalParametrization" = check rationalMap((parametrize X) * inverse(pLX,Verify=>true),X');
pLY := parametrize linearSpan Y; Y' := pLY^^ Y;
if Y.cache#?"rationalParametrization" and (not Y'.cache#?"rationalParametrization")
then Y'.cache#"rationalParametrization" = check rationalMap((parametrize Y) * inverse(pLY,Verify=>true),Y');
phi := inverse(pLX,Verify=>false) * findIsomorphism(X',Y',Verify=>false) * pLY;
L := flatten entries gens ideal linearSpan X;
Phi := rationalMap(ring ambient X,ring ambient Y,
apply(flatten entries lift(matrix first factor phi,ring ambient X),
e -> e + sum(L,w -> (random K)*w)));
return verify multirationalMap Phi;
);
pX := parametrize X;
pY := parametrize Y;
I := findIsomorphism(baseLocus pX,baseLocus pY,Verify=>false);
M := solve(transpose coefficients first factor pX,transpose coefficients first factor (I*pY));
return verify multirationalMap rationalMap(ring ambient X,ring ambient Y,(vars ring ambient X) * M);
);
EmbeddedProjectiveVariety ===> EmbeddedProjectiveVariety := (X,Y) -> findIsomorphism(X,Y,Verify=>true);
EmbeddedProjectiveVariety <=== EmbeddedProjectiveVariety := (X,Y) -> findIsomorphism(Y,X,Verify=>true);
ambientVariety = method(TypicalValue => MultiprojectiveVariety);
ambientVariety MultiprojectiveVariety := X -> if X#?"ambientVariety" then X#"ambientVariety" else ambient X;
isSubvariety = method(TypicalValue => Boolean);
isSubvariety MultiprojectiveVariety := X -> codim ambientVariety X > 0;
idealOfSubvariety = X -> (
if not isSubvariety X then return ideal X;
Y := ambientVariety X;
if X.cache#?("idealOfSubvariety",Y) then return X.cache#("idealOfSubvariety",Y);
X.cache#("idealOfSubvariety",Y) = trim sub(ideal X,ring Y)
);
makeSubvariety = method(TypicalValue => MultiprojectiveVariety, Options => {Verify => false});
makeSubvariety (MultiprojectiveVariety,MultiprojectiveVariety) := o -> (X,Y) -> (
if ring ideal X =!= ring ideal Y then error "expected varieties in the same ambient multi-projective space";
if o.Verify then if not isSubset(X,Y) then error "the first variety must be a subvariety of the second one";
X#"ambientVariety" = Y;
return X;
);
makeSubvariety Ideal := o -> I -> (
Y := projectiveVariety(ring I,MinimalGenerators=>false,Saturate=>false);
if # shape Y == 1 and dim Y >= 4 and codim Y > 0 and isGrass Y then Y = GG Y;
X := projectiveVariety(lift(I,ambient ring I),MinimalGenerators=>true,Saturate=>false);
(ideal X).cache#("isSubsetAsVarietyOf",ideal Y) = true;
makeSubvariety(X,Y,Verify=>o.Verify)
);
makeSubvariety RingElement := o -> F -> makeSubvariety(ideal F,Verify=>o.Verify);
makeSubvariety (MultiprojectiveVariety,List) := o -> (X,L) -> makeSubvariety(X,if same apply(L,ambientVariety) then ambientVariety first L else ambient X,Verify=>o.Verify);
MultiprojectiveVariety % MultiprojectiveVariety := (X,Y) -> makeSubvariety(X,Y,Verify=>true);
projectiveVariety Matrix := o -> M -> makeSubvariety(ideal M,Verify=>false);
projectiveVariety RingElement := o -> f -> makeSubvariety(f,Verify=>false);
tangentialChowForm (EmbeddedProjectiveVariety,ZZ,ZZ) := o -> (X,s,l) -> (
S := o.SingularLocus;
if instance(S,EmbeddedProjectiveVariety) then S = ideal S;
if S === null and X.cache#?"singularLocus" then S = ideal singularLocus X;
W := makeSubvariety tangentialChowForm(ideal X,s,l,Variable=>(ring ambient X),Duality=>o.Duality,AffineChartGrass=>o.AffineChartGrass,AssumeOrdinary=>o.AssumeOrdinary,AffineChartProj=>o.AffineChartProj,SingularLocus=>S);
try return makeSubvariety(W,GG(l,ambient X),Verify=>true) else error "something went wrong with the ambient Grassmannian of the tangential Chow Form";
);
tangentialChowForm (EmbeddedProjectiveVariety,ZZ) := o -> (X,s) -> tangentialChowForm(X,s,codim X -1 + s,Variable=>o.Variable,Duality=>o.Duality,AffineChartGrass=>o.AffineChartGrass,AssumeOrdinary=>o.AssumeOrdinary,AffineChartProj=>o.AffineChartProj,SingularLocus=>o.SingularLocus);
chowForm EmbeddedProjectiveVariety := o -> X -> tangentialChowForm(X,0,Variable=>o.Variable,Duality=>o.Duality,AffineChartGrass=>o.AffineChartGrass,AffineChartProj=>o.AffineChartProj);
Fano (ZZ,EmbeddedProjectiveVariety,Option) := (k,X,opt) -> (
o := toList opt;
if not(#o == 2 and first o === AffineChartGrass) then error "AffineChartGrass is the only available option for Fano(ZZ,EmbeddedProjectiveVariety)";
if k <= -1 then error "expected a nonnegative integer";
F := makeSubvariety fanoVariety(ideal X,k,AffineChartGrass=>last o);
try return makeSubvariety(F,GG(k,ambient X),Verify=>true) else error "something went wrong with the ambient Grassmannian of the Fano variety";
);
Fano (ZZ,EmbeddedProjectiveVariety) := (k,X) -> Fano(k,X,AffineChartGrass=>true);
Fano (EmbeddedProjectiveVariety,Option) := (X,opt) -> (
o := toList opt;
if not(#o == 2 and first o === AffineChartGrass) then error "AffineChartGrass is the only available option for Fano(EmbeddedProjectiveVariety)";
if instance(ambientVariety X,GrassmannianVariety) then (
I := varietySweptOutByLinearSpaces(idealOfSubvariety X,AffineChartGrass=>last o);
return projectiveVariety(sub(I,vars ring (ambientVariety X)#"ProjectiveSpace"),MinimalGenerators=>true,Saturate=>false);
);
if unique flatten apply(degrees X,first) == {1} then (
F := makeSubvariety plucker(ideal X,AffineChartGrass=>last o);
k := first Grass ring ambient F;
try return makeSubvariety(F,GG(k,ambient X),Verify=>true) else error "something went wrong with the ambient Grassmannian";
) else return Fano(dim X,X,AffineChartGrass=>last o);
);
Fano EmbeddedProjectiveVariety := X -> Fano(X,AffineChartGrass=>true);
MultirationalMap = new Type of MutableHashTable;
globalAssignment MultirationalMap;
MultirationalMap.synonym = "multi-rational map";
WeightedRationalMap = new Type of MultirationalMap; -- this isn't really a subtype
globalAssignment WeightedRationalMap;
WeightedRationalMap.synonym = "weighted-rational map";
expression MultirationalMap := Phi -> (
X := if hasAttribute(source Phi,ReverseDictionary) then toString getAttribute(source Phi,ReverseDictionary) else toString expression source Phi;
Y := if hasAttribute(target Phi,ReverseDictionary) then toString getAttribute(target Phi,ReverseDictionary) else toString expression target Phi;
if dim source Phi == -1 or dim target Phi == -1 then return expression("map from " | X | " to " | Y);
if Phi#"baseLocus" =!= null and (Phi#"baseLocus")#"dimVariety" === -1 then (
if Phi#"inverse" =!= null and (Phi#"inverse")#"baseLocus" =!= null and ((Phi#"inverse")#"baseLocus")#"dimVariety" === -1 then (
if source Phi === target Phi and X == Y then return expression("automorphism of " | X) else return expression("isomorphism from " | X | " to " | Y);
) else (
return expression((if Phi#"isBirational" === true then "birational morphism " else (if Phi#"isDominant" === true then "dominant morphism " else "morphism ")) | "from " | X | " to " | Y);
);
);
return expression((if Phi#"isBirational" === true then "birational " else (if Phi#"isDominant" === true then "dominant rational " else "rational "))| "map from " | X | " to " | Y);
);
net MultirationalMap := Phi -> if hasAttribute(Phi,ReverseDictionary) then toString getAttribute(Phi,ReverseDictionary) else ?Phi;
texMath MultirationalMap := texMath @@ net;
MultirationalMap#{WebApp,AfterPrint} = MultirationalMap#{WebApp,AfterNoPrint} =
MultirationalMap#{Standard,AfterPrint} = MultirationalMap#{Standard,AfterNoPrint} = Phi -> (
<< endl << concatenate(interpreterDepth:"o") << lineNumber << " : " << class Phi << " (" << expression Phi << ")" << endl;
);
toString MultirationalMap := Phi -> "rationalMap("|(toString apply(factor Phi,f -> toString super f))|","|(toString target Phi)|")"; -- this doesn't work well
multirationalMap = method(TypicalValue => MultirationalMap);
multirationalMap (List,MultiprojectiveVariety) := (L,Y) -> (
if not (# L > 0 and all(L,f -> instance(f,RationalMap) or instance(f,MultihomogeneousRationalMap))) then error "expected a list of rational maps";
R := unique apply(L,source);
if #R != 1 then error "expected a list of rational maps from the same source variety";
R = first R;
K := coefficientRing ambient R;
if K =!= coefficientRing Y then error("expected a multi-projective variety defined over "|toString(K));
m := apply(L,f -> if instance(f#"dimAmbientSource",ZZ) then f#"dimAmbientSource" else if instance(f#"dimAmbientSource",Sequence) then #(f#"dimAmbientSource")-1 else error "internal error encountered");
if m =!= Y#"dimAmbientSpaces"
then if # m == 1
then error("expected a subvariety of PP^"|toString(first m))
else error("expected a subvariety of a product of "|toString(# m)|" projective spaces of dimensions "|(toString toSequence m));
Phi := new MultirationalMap from {
symbol cache => new CacheTable,
"maps" => L,
"target" => Y,
"source" => projectiveVariety(R,Saturate=>false),
"image" => null,
"isDominant" => null,
"isBirational" => null,
"graph" => null,
"multidegree" => null,
"baseLocus" => null,
"inverse" => null
};
if instance(Phi#"source",WeightedProjectiveVariety) or instance(Phi#"target",WeightedProjectiveVariety) then Phi = new WeightedRationalMap from Phi;
return Phi;
);
multirationalMap List := L -> (
if not (# L > 0 and all(L,f -> instance(f,RationalMap) or instance(f,MultihomogeneousRationalMap))) then error "expected a list of rational maps";
Y := productVars apply(L,f -> projectiveVariety(target f,Saturate=>false));
Phi := multirationalMap(L,Y);
if #L == 1 then (
if (map first L).cache#?"toMultirationalMapFromRationalMap" then Phi = (map first L).cache#"toMultirationalMapFromRationalMap" else (
Phi.cache#"toRationalMapFromMultirationalMap" = first L;
(map first L).cache#"toMultirationalMapFromRationalMap" = Phi;
);
Phi#"isDominant" = (first L)#"isDominant";
Phi#"isBirational" = (first L)#"isBirational";
if # (first L)#"projectiveDegrees" > 0 then Phi#"multidegree" = (first L)#"projectiveDegrees";
if instance(first L,RationalMap) and (first L)#"inverseRationalMap" =!= null then (
Phi#"inverse" = multirationalMap({(first L)#"inverseRationalMap"},source Phi);
if ring source Phi#"inverse" =!= ring Y then error "internal error encountered";
(Phi#"inverse")#"source" = Y;
(Phi#"inverse")#"isDominant" = true;
(Phi#"inverse")#"isBirational" = true;
Phi#"isDominant" = true;
Phi#"isBirational" = true;
if # ((first L)#"inverseRationalMap")#"projectiveDegrees" > 0 then (Phi#"inverse")#"multidegree" = ((first L)#"inverseRationalMap")#"projectiveDegrees";
(Phi#"inverse")#"inverse" = Phi;
);
if (first L)#"idealImage" =!= null and numgens (first L)#"idealImage" > 0 then (
Phi#"image" = projectiveVariety(lift((first L)#"idealImage",ring ambient Y),MinimalGenerators=>true,Saturate=>false);
);
);
Phi
);
rationalMap (List,MultiprojectiveVariety) := o -> (L,Y) -> (
if o.Dominant =!= null then error "option Dominant is not allowed when you specify the target";
if all(L,l -> instance(l,RingMap) or instance(l,Matrix) or instance(l,Ideal) or (instance(l,List) and #l>0 and all(l,i -> instance(i,RingElement)))) then L = apply(L,l -> rationalMap(l,Dominant=>"notSimplify"));
return multirationalMap(L,Y);
);
rationalMap List := o -> L -> ( -- this redefines a method in Cremona.m2
if #L == 0 then error "expected a nonempty list";
if all(L,l -> instance(l,RingElement)) then return rationalMap(toMap(L,Dominant=>null),Dominant=>o.Dominant); -- this is the original definition
if all(L,l -> instance(l,RingMap) or instance(l,Matrix) or instance(l,Ideal) or (instance(l,List) and #l>0 and all(l,i -> instance(i,RingElement)))) then L = apply(L,l -> rationalMap(l,Dominant=>"notSimplify"));
Phi := multirationalMap L;
if o.Dominant === null then return Phi;
if o.Dominant === true or o.Dominant === infinity then return multirationalMap(Phi,image Phi);
if instance(o.Dominant,ZZ) and #L == 1 then return multirationalMap(Phi,projectiveVariety(image(super first factor Phi,o.Dominant),Saturate=>true));
if instance(o.Dominant,Ideal) then return check multirationalMap(Phi,projectiveVariety(o.Dominant));
if instance(o.Dominant,MultiprojectiveVariety) then return check multirationalMap(Phi,o.Dominant);
error "invalid value for option Dominant";
);
rationalMap MultirationalMap := o -> Phi -> rationalMap(factor super Phi,Dominant=>o.Dominant);
multirationalMap RationalMap := phi -> multirationalMap {phi};
multirationalMap(RationalMap,RationalMap) := (phi1,phi2) -> multirationalMap {phi1,phi2};
multirationalMap MultihomogeneousRationalMap := phi -> multirationalMap {phi};
multirationalMap(MultihomogeneousRationalMap,MultihomogeneousRationalMap) := (phi1,phi2) -> multirationalMap {phi1,phi2};
multirationalMap (MultirationalMap,MultirationalMap) := (Phi1,Phi2) -> multirationalMap((factor Phi1)|(factor Phi2));
toRationalMap = method(TypicalValue => RationalMap);
toRationalMap (MultirationalMap,Boolean) := (Phi,withInverse) -> (
if # factor Phi > 1 then error "expected a multi-rational map whose target is embedded in a single projective space";
f := rationalMap(toRingMap(Phi,ring target Phi),Dominant=>"notSimplify");
if Phi.cache#?"toRationalMapFromMultirationalMap" then f = Phi.cache#"toRationalMapFromMultirationalMap" else (
(map f).cache#"toMultirationalMapFromRationalMap" = Phi;
Phi.cache#"toRationalMapFromMultirationalMap" = f;
);
if Phi#"isDominant" =!= null then setKeyValue(f,"isDominant",Phi#"isDominant");
if Phi#"isBirational" =!= null then setKeyValue(f,"isBirational",Phi#"isBirational");
if Phi#"multidegree" =!= null then setKeyValue(f,"projectiveDegrees",Phi#"multidegree");
if (first factor Phi)#"maps" =!= null and f#"maps" === null then setKeyValue(f,"maps",apply(maps first factor Phi,m -> if source m === ring target Phi then m else map(target m,ring target Phi,toMatrix m)));
if Phi#"image" =!= null and f#"idealImage" === null then forceImage(f,sub(ideal image Phi,ring target Phi));
if withInverse and Phi#"inverse" =!= null and instance(f,RationalMap) and f#"inverseRationalMap" === null then (
g := toRationalMap(inverse Phi,false);
if g#"inverseRationalMap" === null then forceInverseMap(f,g);
);
return f;
);
toRationalMap MultirationalMap := Phi -> toRationalMap(Phi,true);
matrix MultirationalMap := o -> Phi -> (
if # factor Phi > 1 then error "expected a multi-rational map whose target is embedded in a single projective space";
matrix first factor Phi
);
multirationalMap (MultirationalMap,MultiprojectiveVariety) := (Phi,Y) -> (
if Y === target Phi then return Phi;
L := factor Phi;
if Y === ambient target Phi then L = apply(L,super);
Psi := multirationalMap(L,Y);
if ring source Psi =!= ring source Phi then error "internal error encountered";
Psi#"source" = source Phi;
Psi#"image" = Phi#"image";
if Psi#"image" === Y then Psi#"isDominant" = true;
if Phi.cache#?"compositionWithSegreEmbedding" then Psi.cache#"compositionWithSegreEmbedding" = Phi.cache#"compositionWithSegreEmbedding";
if Phi#"graph" =!= null then Psi#"graph" = (first graph Phi, multirationalMap(last graph Phi,Y));
Psi#"multidegree" = Phi#"multidegree";
Psi#"baseLocus" = Phi#"baseLocus";
return Psi;
);
rationalMap (MultirationalMap,MultiprojectiveVariety) := o -> (Phi,Y) -> multirationalMap(Phi,Y);
strongCheck = method();
strongCheck MultirationalMap := Phi -> (
if not isMultisaturated ideal source Phi then error "the ideal of the source is not multi-saturated";
if not isMultisaturated ideal target Phi then error "the ideal of the target is not multi-saturated";
check Phi
);
isWellDefined MultirationalMap := (cacheValue "isWellDefined") (Phi -> (
L := apply(factor Phi,super);
P := apply(projections target Phi,L,(p,f) -> if target p === target f then p else rationalMap(source p,target f,matrix p,Dominant=>"notSimplify"));
for i to #L -1 do if not isSubset(image P_i,image L_i) then return false;
return true;
));
check MultirationalMap := o -> Phi -> if isWellDefined Phi then return Phi else error "the target variety is not compatible with the maps";
checkRepresentatives = method();
checkRepresentatives MultirationalMap := Phi -> (
local F;
for phi in factor Phi do (
F := phi#"maps";
if F =!= null then for i from 1 to #F -1 do assert(minors(2,(toMatrix F_i)||(toMatrix F_0)) == 0);
);
);
checkAndCompare = method();
checkAndCompare (MultirationalMap,Boolean) := (Phi,recursive) -> (
try (checkRepresentatives Phi; strongCheck Phi) else error "found a wrong map";
if Phi#"image" =!= null then (if not isMultisaturated ideal image Phi then error "found a wrong ideal for an image");
if Phi#"inverse" =!= null and recursive then (
if Phi * Phi^-1 != 1 then error "found a wrong inverse map";
if Phi#"isDominant" === false or Phi#"isBirational" === false or (inverse Phi)#"isDominant" === false or (inverse Phi)#"isBirational" === false then error "found wrong value for 'isDominant' or 'isBirational'";
if Phi#"multidegree" =!= null and (inverse Phi)#"multidegree" =!= null then if multidegree inverse Phi != reverse multidegree Phi then error "found a wrong multidegree";
checkAndCompare(inverse Phi,false));
if Phi#"graph" =!= null then (
checkAndCompare(first graph Phi,true);
checkAndCompare(last graph Phi,true);
if (first graph Phi) * Phi != last graph Phi then error "found a wrong graph");
);
checkAndCompare (MultirationalMap,MultirationalMap) := (Phi,Psi) -> (
checkAndCompare(Phi,true);
checkAndCompare(Psi,true);
if Phi != Psi then return false;
if Phi#"image" =!= null and Psi#"image" =!= null then (if image Phi != image Psi then error "found wrong value for 'image'");
if Phi#"baseLocus" =!= null and Psi#"baseLocus" =!= null then (if baseLocus Phi != baseLocus Psi then error "found wrong value for 'baseLocus'");
if Phi#"multidegree" =!= null and Psi#"multidegree" =!= null then (if multidegree Phi != multidegree Psi then error "found wrong value for 'multidegree'");
if Phi#"isDominant" =!= null and Psi#"isDominant" =!= null then (if Phi#"isDominant" != Psi#"isDominant" then error "found wrong value for 'isDominant'");
if Phi#"isBirational" =!= null and Psi#"isBirational" =!= null then (if Phi#"isBirational" != Psi#"isBirational" then error "found wrong value for 'isBirational'");
if Phi#"graph" =!= null and Psi#"graph" =!= null then (if source graph Phi != source graph Psi then error "found wrong value for 'graph'");
return true;
);
MultirationalMap <==> MultirationalMap := (Phi,Psi) -> checkAndCompare(Phi,Psi);
source MultirationalMap := Phi -> Phi#"source";
target MultirationalMap := Phi -> Phi#"target";
coefficientRing MultirationalMap := Phi -> coefficientRing target Phi;
factor MultirationalMap := o -> Phi -> Phi#"maps";
toRingMap = method();
toRingMap (MultirationalMap,Ring) := (Phi,R) -> (
F := factor Phi;
if #F == 1 then if R === target first F then return map first F;
M := matrix first F;
for i from 1 to #F-1 do M = M | (matrix F_i);
map(ring source Phi,R,M)
);
segre MultirationalMap := (cacheValue "compositionWithSegreEmbedding") (Phi -> (
s := segre target Phi;
f := toRingMap(Phi,source s);
rationalMap(f * (map s),Dominant=>"notSimplify")
));
compose (MultirationalMap,MultirationalMap) := (Phi,Psi) -> (
if ring ambient target Phi === ring ambient source Psi and target Phi == source Psi then (
f := toRingMap(Phi,ring source Psi);
Eta := multirationalMap(apply(factor Psi,g -> rationalMap(compose(f,map g),Dominant=>"notSimplify")),target Psi);
if ring source Eta =!= ring source Phi then error "internal error encountered: bad source found";
Eta#"source" = source Phi;
if Phi#"isDominant" === true and Psi#"isDominant" === true then Eta#"isDominant" = true;
if Phi#"isBirational" === true and Psi#"isBirational" === true then Eta#"isBirational" = true;
return Eta;
);
try Phi' := check multirationalMap(super Phi,source Psi) else error "multi-rational maps not composable: not able to define a natural map from the target of the first one to the source of the second one";
compose(Phi',Psi)
);
MultirationalMap * MultirationalMap := (Phi,Psi) -> compose(Phi,Psi);
MultirationalMap * MultihomogeneousRationalMap := (Phi,Psi) -> compose(Phi,multirationalMap {Psi});
MultirationalMap * RationalMap := (Phi,Psi) -> compose(Phi,multirationalMap {Psi});
MultihomogeneousRationalMap * MultirationalMap := (Phi,Psi) -> compose(multirationalMap {Phi},Psi);
RationalMap * MultirationalMap := (Phi,Psi) -> compose(multirationalMap {Phi},Psi);
MultirationalMap == MultirationalMap := (Phi,Psi) -> (
if Phi === Psi then return true;
if ring ideal source Phi =!= ring ideal source Psi or source Phi != source Psi then error "expected multi-rational maps with the same source";
if ring ideal target Phi =!= ring ideal target Psi or target Phi != target Psi then error "expected multi-rational maps with the same target";
F := factor Phi;
G := factor Psi;
assert(#F == #G);
if instance(target Phi,WeightedProjectiveVariety) then error "not implemented yet: equality of (multi-)rational maps with target a weighted-projective variety";
for i to #F-1 do if minors(2,(matrix F_i)||(matrix G_i)) != 0 then return false;
return true;
);
MultirationalMap == MultihomogeneousRationalMap := (Phi,Psi) -> Phi == multirationalMap {Psi};
MultirationalMap == RationalMap := (Phi,Psi) -> Phi == multirationalMap {Psi};
MultihomogeneousRationalMap == MultirationalMap := (Phi,Psi) -> multirationalMap {Phi} == Psi;
RationalMap == MultirationalMap := (Phi,Psi) -> multirationalMap {Phi} == Psi;
multirationalMap MultiprojectiveVariety := X -> (
I := multirationalMap(projections X,X);
if ring source I =!= ring X then error "internal error encountered: bad source found";
I#"source" = X;
I#"isDominant" = true;
I#"isBirational" = true;
I#"baseLocus" = 0_X;
I#"inverse" = I;
I
);
ZZ _ MultiprojectiveVariety := (n,X) -> (
if n == 0 then (
if not (ambient X).cache#?"emptySubscheme" then (
O := projectiveVariety(ideal(1_(ring ambient X)),MinimalGenerators=>true,Saturate=>false);
O#"dimVariety" = -1;
(ambient X).cache#"emptySubscheme" = O;
);
return (ambient X).cache#"emptySubscheme";
);
if n =!= 1 then error "expected integer to be 0 or 1";
multirationalMap X
);
random MultirationalMap := o -> Phi -> (
S := ambient source Phi;
f := rationalMap(apply(entries diagonalMatrix toList(# shape S : 1),shape S,(d,i) -> apply(i+1,j -> random(d,ring S))),S);
-- assert(isIsomorphism f);
T := ambient target Phi;
g := rationalMap(apply(entries diagonalMatrix toList(# shape T : 1),shape T,(d,i) -> apply(i+1,j -> random(d,ring T))),T);
-- assert(isIsomorphism g);
(f||(source Phi)) * Phi * rationalMap(g|target Phi,Dominant=>true)
);
multirationalMap (MultiprojectiveVariety,MultiprojectiveVariety,Boolean) := (X,Y,b) -> ( --undocumented
if X === Y then return multirationalMap X;
I := multirationalMap(multirationalMap X,Y);
if b then (try return check I else error "not able to define a natural map between the two varieties") else return I;
);
multirationalMap (MultiprojectiveVariety,MultiprojectiveVariety) := (X,Y) -> multirationalMap(X,Y,true);
rationalMap (MultiprojectiveVariety,MultiprojectiveVariety) := o -> (X,Y) -> multirationalMap(X,Y);
MultirationalMap == ZZ := (Phi,n) -> (
if n =!= 1 then error "encountered integer other than 1 in comparison with a multi-rational map";
if source Phi =!= target Phi then error "source and target are different";
Phi == multirationalMap source Phi
);
ZZ == MultirationalMap := (n,Phi) -> Phi == n;
MultirationalMap ^ ZZ := (Phi,j) -> (
if j == 0 then if source Phi === target Phi then return multirationalMap(source Phi) else error "expected non-zero integer";
if j < 0 then (Psi := inverse Phi; return (Psi^(-j)));
Psi2 := Phi; for i from 1 to j-1 do Psi2 = Psi2 * Phi;
return Psi2;
);
MultirationalMap MultiprojectiveVariety := (Phi,Z) -> (
if Phi.cache#?("directImage",Z) then return Phi.cache#("directImage",Z);
if ring ambient source Phi =!= ring ambient Z then error "expected a multi-projective variety in the same ambient multi-projective space of the source of the map";
if not isSubset(Z,source Phi) then error "expected a subvariety of the source of the map";
F := apply(factor Phi,f -> lift(matrix f,ring ambient source Phi));
s := # F;
n := apply((source Phi)#"dimAmbientSpaces",i->i+1);
m := apply((target Phi)#"dimAmbientSpaces",i->i+1);
K := coefficientRing Phi;
t := local t;
R := K[t_0 .. t_(s-1), flatten gensRing(K,n|m), MonomialOrder => Eliminate (s + sum n)];
subx := map(R,ring ambient source Phi,submatrix(vars R,{s .. s + sum n - 1}));
suby := map(R,ring ambient target Phi,submatrix(vars R,{s + sum n .. s + sum n + sum m - 1}));
suby' := map(ring ambient target Phi,R,matrix{toList(s + sum n : 0)} | vars ring ambient target Phi);
yy := (target Phi)#"multigens";
I := subx(ideal Z) + sum(s,i -> ideal(suby(matrix{yy_i}) - t_i * subx(F_i)));
if instance(target Phi,WeightedProjectiveVariety) then (
d := flatten degrees ring ideal target Phi;
y := flatten entries suby(matrix{yy_0});
f := flatten entries subx(F_0);
if not(# yy == 1 and # F == 1 and # m == 1 and # d == m_0 and # y == m_0 and # f == m_0) then error "internal error encountered";
I = subx(ideal Z) + ideal(for i to #d-1 list (y#i - t#0^(d#i) * f#i));
);
Phi.cache#("directImage",Z) = projectiveVariety(suby' ideal selectInSubring(1,gens gb I),MinimalGenerators=>true,Saturate=>false)
);
image MultirationalMap := Phi -> (
if Phi#"image" =!= null then return Phi#"image";
if Phi#"isDominant" === true then return target Phi;
Phi#"image" = Phi (source Phi);
Phi#"isDominant" = Phi#"image" == target Phi;
if Phi#"isDominant" then Phi#"image" = target Phi;
return Phi#"image";
);
RationalMap MultiprojectiveVariety := (Phi,X) -> (multirationalMap Phi) X;
MultihomogeneousRationalMap MultiprojectiveVariety := (Phi,X) -> (multirationalMap Phi) X;
directImageStrongInt (MutableHashTable,MultiprojectiveVariety) := (Phi,X) -> (
assert(instance(Phi,RationalMap) or instance(Phi,MultihomogeneousRationalMap));
if ambient source Phi =!= ring ideal X then error "expected a multi-projective variety in the same ambient multi-projective space of the source of the map";
makeSubvariety directImageStrongInt(Phi,ideal X)
);
image (MultirationalMap,ZZ) := (Phi,d) -> projectiveVariety(image(toRationalMap super Phi,d),MinimalGenerators=>false,Saturate=>false);
image (ZZ,MultirationalMap) := (d,Phi) -> projectiveVariety(image(d,toRationalMap super Phi),MinimalGenerators=>false,Saturate=>false);
image (MultirationalMap,String) := (Phi,alg) -> (
if Phi#"image" =!= null then return Phi#"image";
if Phi#"isDominant" === true then return target Phi;
Y := projectiveVariety(image(toRationalMap super Phi,alg),MinimalGenerators=>false,Saturate=>false);
if Phi#"image" === null then Phi#"image" = Y;
Phi#"isDominant" = Phi#"image" == target Phi;
if Phi#"isDominant" then Phi#"image" = target Phi;
return Phi#"image";
);
forceImage (MultirationalMap,MultiprojectiveVariety) := (Phi,X) -> (
if X === target Phi then (if Phi#"isDominant" === null then Phi#"isDominant" = true; return);
if ring ideal X =!= ring ideal target Phi then error "expected a subvariety of the target of the map";
if Phi#"image" =!= null then error "not permitted to reassign image of rational map";
if # shape X > 1 then error "not implemented yet: forceImage for rational maps with target a multi-projective variety";
f := toRationalMap Phi;
assert(multirationalMap f === Phi);
forceImage(f,sub(ideal X,target f));
multirationalMap f;
assert(Phi#"image" =!= null and Phi#"image" == X);
Phi#"image" = X;
);
forceImage (MultirationalMap,ZZ) := (Phi,d) -> forceImage(Phi,image(Phi,d));
inverseImageViaMultirationalMapWeak = (Phi,Z) -> (
if Phi.cache#?("inverseImage",Z) then return Phi.cache#("inverseImage",Z);
if ring ambient target Phi =!= ring ambient Z then error "expected a multi-projective variety in the same ambient multi-projective space of the target of the map";
-- if not isSubset(Z,target Phi) then error "expected a subvariety of the target of the map";
F := apply(factor Phi,f -> ideal matrix f);
g := toRingMap(Phi,ring target Phi);
I := g sub(ideal Z,ring target Phi);
K := coefficientRing Phi;
if K === ZZ/(char K) then F = apply(F,f -> ideal sum(for i to numgens f -1 list random K, f_*, (u,v) -> u*v));
for f in F do I = saturate(I,f);
Phi.cache#("inverseImage",Z) = makeSubvariety multisaturate I
);
MultirationalMap ^* := (Phi) -> MultiprojectiveVariety := (Z) -> inverseImageViaMultirationalMapWeak(Phi,Z);
MultirationalMap ^^ MultiprojectiveVariety := (Phi,Z) -> (
-- A fast inverse image but to be used only when Phi is a linear embedding (intended for internal use only)
if Phi.cache#?("inverseImage",Z) then return Phi.cache#("inverseImage",Z);
if ring ambient target Phi =!= ring ambient Z then error "expected a projective variety in the same ambient projective space of the target of the map";
g := toRingMap(Phi,ring target Phi);
if not(# (source Phi)#"dimAmbientSpaces" == 1 and # (target Phi)#"dimAmbientSpaces" == 1 and
ambient source Phi == source Phi and first max degrees ideal toMatrix g == 1)
then error "expected a linear morphism between projective spaces";
Phi.cache#("inverseImage",Z) = projectiveVariety(g sub(ideal Z,ring target Phi),MinimalGenerators=>true,Saturate=>false)
);
MultirationalMap ^** MultiprojectiveVariety := (Phi,Z) -> (
if ring ambient target Phi =!= ring ambient Z then error "expected a multi-projective variety in the same ambient multi-projective space of the target of the map";
-- if not isSubset(Z,target Phi) then error "expected a subvariety of the target of the map";
-- <<"--warning: the code for ^** must be improved, use instead the method ^*"<<endl;
makeSubvariety multisaturate ((segre Phi)^** ((segre target Phi) ideal Z))
);
inverseImageWeakInt (MutableHashTable,EmbeddedProjectiveVariety) := (Phi,X) -> (
assert(instance(Phi,RationalMap) or instance(Phi,MultihomogeneousRationalMap));
if ambient target Phi =!= ring ideal X then error "expected a variety in the same ambient space of the target of the map";
makeSubvariety inverseImageWeakInt(Phi,ideal X)
);
inverseImageStrongInt (MutableHashTable,EmbeddedProjectiveVariety) := (Phi,X) -> (
assert(instance(Phi,RationalMap) or instance(Phi,MultihomogeneousRationalMap));
if ambient target Phi =!= ring ideal X then error "expected a variety in the same ambient space of the target of the map";
makeSubvariety inverseImageStrongInt(Phi,ideal X)
);
RationalMap ^** EmbeddedProjectiveVariety := (Phi,X) -> inverseImageStrongInt(Phi,X);
MultihomogeneousRationalMap ^** EmbeddedProjectiveVariety := (Phi,X) -> inverseImageStrongInt(Phi,X);
graphViaElim = Phi -> (
n := apply((source Phi)#"dimAmbientSpaces",i->i+1);
m := apply((target Phi)#"dimAmbientSpaces",i->i+1);
s := #m;
K := coefficientRing Phi;
R' := ring first first gensRing(K,n|m);
t := local t;
R := K[t_0 .. t_(s-1), gens R', MonomialOrder => Eliminate s];
subx := map(R,ring ambient source Phi,submatrix(vars R,{s .. s + sum n - 1}));
suby := map(R,ring ambient target Phi,submatrix(vars R,{s + sum n .. s + sum n + sum m - 1}));
yy := apply((target Phi)#"multigens",y -> suby matrix{y});
F := apply(factor Phi,f -> subx lift(matrix f,ring ambient source Phi));
I := subx(ideal source Phi) + sum(s,i -> ideal(yy_i - t_i * F_i));
projectiveVariety(quotient trim sub(ideal selectInSubring(1,gens gb I),R'),MinimalGenerators=>false,Saturate=>false)
);
SymmIdeal = Phi -> (
n := apply((source Phi)#"dimAmbientSpaces",i->i+1);
r := #n;
m := apply((target Phi)#"dimAmbientSpaces",i->i+1);
s := #m;
K := coefficientRing Phi;
g := gensRing(K,n|m);
R := ring first first g;
subx := map(R,ring ambient source Phi,submatrix(vars R,{0 .. sum n - 1}));
suby := map(R,ring ambient target Phi,submatrix(vars R,{sum n .. sum n + sum m - 1}));
yy := apply((target Phi)#"multigens",y -> suby matrix{y});
F := apply(factor Phi,f -> subx lift(syz matrix f,ring ambient source Phi));
I := subx(ideal source Phi) + sum(s,i -> ideal(yy_i * F_i));
-- for i to r-1 do I = saturate(I,ideal g_i);
trim I -- this may not be multi-saturated
);
graphViaSyzygies = Phi -> (
I := SymmIdeal Phi;
n := apply((source Phi)#"dimAmbientSpaces",i->i+1);
subx := map(ring I,ring ambient source Phi,submatrix(vars ring I,{0 .. sum n - 1}));
F := apply(factor Phi,f -> subx lift(first flatten entries compress matrix f,ring ambient source Phi));
for i to #F-1 do I = saturate(I,F_i);
projectiveVariety(quotient trim I,MinimalGenerators=>false,Saturate=>false)
);
graphViaKoszul = Phi -> (
n := apply((source Phi)#"dimAmbientSpaces",i->i+1);
m := apply((target Phi)#"dimAmbientSpaces",i->i+1);
s := #m;
K := coefficientRing Phi;
R := ring first first gensRing(K,n|m);
subx := map(R,ring ambient source Phi,submatrix(vars R,{0 .. sum n - 1}));
suby := map(R,ring ambient target Phi,submatrix(vars R,{sum n .. sum n + sum m - 1}));
yy := apply((target Phi)#"multigens",y -> suby matrix{y});
F := apply(factor Phi,f -> subx lift(matrix f,ring ambient source Phi));
I := subx(ideal source Phi) + sum(s,i -> minors(2,yy_i || F_i));
for i to s-1 do I = saturate(I,ideal F_i);
projectiveVariety(quotient trim I,MinimalGenerators=>false,Saturate=>false)
);
graph MultirationalMap := o -> Phi -> (
if Phi#"graph" =!= null then return Phi#"graph";
if instance(Phi,WeightedRationalMap) then error "not implemented yet: graph of a weighted-rational map";
local G;
if o.BlowUpStrategy === "Eliminate" then G = graphViaElim(Phi) else (
if o.BlowUpStrategy === "Syzygies" or o.BlowUpStrategy === "Saturate" then G = graphViaSyzygies(Phi) else (
if o.BlowUpStrategy === "Koszul" then G = graphViaKoszul(Phi) else (
error "possible values for the option BlowUpStrategy are: \"Eliminate\", \"Syzygies\", \"Koszul\"";
);
);
);
r := # (source Phi)#"dimAmbientSpaces";
s := # (target Phi)#"dimAmbientSpaces";
pr := projections G;
psi1 := multirationalMap(take(pr,r),source Phi);
psi2 := multirationalMap(take(pr,-s),target Phi);
psi1#"isDominant" = true;
psi1#"isBirational" = true;
psi2#"isDominant" = Phi#"isDominant";
psi2#"isBirational" = Phi#"isBirational";
Phi#"graph" = (psi1,psi2)
);
reverseGraph = method();
reverseGraph (MultirationalMap,MultirationalMap) := (p1,p2) -> (
G := source(p1,p2);
n := apply((target p1)#"dimAmbientSpaces",i -> i+1);
m := apply((target p2)#"dimAmbientSpaces",i -> i+1);
R := ring first first gensRing(coefficientRing G,m|n);
s := map(R,ring ideal G,submatrix(vars R,{sum m .. sum m + sum n - 1}) | submatrix(vars R,{0 .. sum m - 1}));
G' := projectiveVariety(quotient trim s ideal G,MinimalGenerators=>false,Saturate=>false);
p1' := multirationalMap(take(projections G',# m),target p2);
p2' := multirationalMap(take(projections G',-(# n)),target p1);
p1'#"isDominant" = p2#"isDominant";
p1'#"isBirational" = p2#"isBirational";
p2'#"isDominant" = p1#"isDominant";
p2'#"isBirational" = p1#"isBirational";
(p1',p2')
);
multidegree MultirationalMap := Phi -> (
if Phi#"multidegree" =!= null then return Phi#"multidegree";
Phi#"multidegree" = multidegree graph Phi
);
multidegree (MultirationalMap,MultirationalMap) := (p1,p2) -> (
P := multidegree source(p1,p2);
n := (target p1)#"dimAmbientSpaces";
m := (target p2)#"dimAmbientSpaces";
k := (sum n) + (sum m) - first degree P;
-- assert(k == dim source(p1,p2));
N := product apply(#n,i -> n_i+1) -1;
M := product apply(#m,i -> m_i+1) -1;
T1 := take(gens ring P,#n);
T2 := take(gens ring P,-(#m));
mon := (product apply(#n,i -> T1_i^(n_i))) * (product apply(#m,i -> T2_i^(m_i)));
d := local d;
for i from 0 to max(0,k-M) -1 do d_i = 0;
for i from max(0,k-M) to min(k,N) do d_i = coefficient(mon,P * (sum T1)^i * (sum T2)^(k-i));
for i from min(k,N) + 1 to k do d_i = 0;
reverse for i to k list d_i
);
source (MultirationalMap,MultirationalMap) := (p1,p2) -> (
if source p1 =!= source p2 then error "expected the graph of a multi-rational map";
n := (target p1)#"dimAmbientSpaces";
m := (target p2)#"dimAmbientSpaces";
if n|m != (source p1)#"dimAmbientSpaces" then error "expected the graph of a multi-rational map";
source p1
);
degree MultirationalMap := Phi -> (
if Phi#"isBirational" === true then return 1;
d := lift((last multidegree Phi)/(degree image Phi),ZZ);
if (Phi#"isDominant" === true and Phi#"isBirational" === false and d == 1) then error "internal error encountered: obtained an incoherent value for the degree";
if d != 1 then Phi#"isBirational" = false;
if Phi#"isDominant" === true and d == 1 then Phi#"isBirational" = true;
d
);
multidegree (ZZ,MultirationalMap) := (i,Phi) -> (
s := # factor Phi;
d := toList(s:1);
Y := ambient target Phi;
X := source Phi;
if i < 0 or i > dim X then error("expected an integer between 0 and "|toString(dim X));
if i == dim X then return degree X;
F := Phi^* projectiveVariety(ideal apply(dim X - i,l -> random(d,ring Y)),MinimalGenerators=>true,Saturate=>false);
if dim F == i then return degree F else return 0;
);
multidegree (Nothing,MultirationalMap) := (nu,Phi) -> reverse for i to dim source Phi list multidegree(i,Phi);
degree (MultirationalMap,Option) := (Phi,opt) -> (
o := toList opt;
if not(#o == 2 and first o === Strategy) then error "Strategy is the only available option for degree(MultirationalMap)";
if last o =!= "random point" and last o =!= "0-th projective degree" then error "available strategies are: \"random point\" and \"0-th projective degree\"";
if last o == "random point" then (
F := Phi^* Phi (point source Phi);
if dim F > 0 then return 0 else return degree F;
) else (
d := multidegree(0,Phi);
if d == 0 or d == 1 then return d;
return lift(d/(degree image Phi),ZZ);
);
);
projectiveDegrees MultirationalMap := o -> Phi -> (
if o.NumDegrees < 0 then return {};
r := dim source Phi;
ll := {(r - min(r,o.NumDegrees))..r};
certificate := "Certify: output certified!"|newline;
if Phi#"multidegree" =!= null then (if o.Certify and o.Verbose then <<certificate; return (Phi#"multidegree")_ll);
if o.Certify or # shape source Phi > 1 or # shape target Phi > 1 then (
graph(Phi,BlowUpStrategy=>o.BlowUpStrategy);
d := multidegree Phi;
if o.Certify and o.Verbose then <<certificate;
return d_ll;
) else return projectiveDegrees(toRationalMap Phi,Certify=>o.Certify,NumDegrees=>o.NumDegrees,BlowUpStrategy=>o.BlowUpStrategy,Verbose=>o.Verbose);
);
degreeMap MultirationalMap := o -> Phi -> (
certificate := "Certify: output certified!"|newline;
if o.Certify or Phi#"isBirational" === true or (Phi#"multidegree" =!= null and Phi#"image" =!= null) then (
-- this ignores the option BlowUpStrategy
d := degree Phi;
if o.Certify and o.Verbose then <<certificate;
return d;
);
if # shape target Phi == 1 then return degreeMap(toRationalMap Phi,Certify=>o.Certify,BlowUpStrategy=>o.BlowUpStrategy,Verbose=>o.Verbose);
return degree(Phi,Strategy=>"random point");
);
baseLocus = method(TypicalValue => MultiprojectiveVariety);
baseLocus MultirationalMap := Phi -> (
if Phi#"baseLocus" =!= null then return Phi#"baseLocus";
I := lift(intersect apply(factor Phi,ideal),ring ambient source Phi);
B := if # (source Phi)#"dimAmbientSpaces" > 1 then projectiveVariety(I,MinimalGenerators=>true,Saturate=>false) else projectiveVariety(I,MinimalGenerators=>true,Saturate=>true);
Phi#"baseLocus" = B
);
baseLocus RationalMap := Phi -> baseLocus multirationalMap {Phi};
baseLocus MultihomogeneousRationalMap := Phi -> baseLocus multirationalMap {Phi};
isMorphism MultirationalMap := Phi -> dim baseLocus Phi == -1;
inverse (MultirationalMap,Option) := (Phi,opt) -> (
if Phi#"inverse" =!= null then return Phi#"inverse";
if Phi#"isBirational" === false or Phi#"isDominant" === false then error "expected a birational map";
if Phi#"isBirational" === null then if dim source Phi != dim target Phi then (Phi#"isBirational" = false; error "expected a birational map");
o := toList opt;
if not(#o == 2 and first o === Verify) then error "Verify is the only available option for inverse(MultirationalMap)";
b := last o;
if b === false then b = 0 else if b === true then b = 1;
if not (instance(b,ZZ) and b >= -1) then error "option Verify accepts true or false";
Gr := source graph Phi;
Sub := map(ring target Phi,ring ambient Gr,matrix{toList((numgens ring ambient source Phi):0_(ring ambient target Phi))}|(vars ring ambient target Phi));
r := # (source Phi)#"dimAmbientSpaces";
x := apply(take(Gr#"multigens",r),g -> matrix{g});
d := entries diagonalMatrix toList(r:1);
gensGr := flatten entries gens ideal Gr;
local I; local J; local F; local psi;
L := for i to r-1 list if ((source Phi)#"dimAmbientSpaces")_i != 0 then (
I = select(gensGr,g -> take(degree g,r) == d_i);
J = matrix apply(I,g -> flatten entries diff(x_i,g));
F = entries transpose mingens kernel Sub J;
if #F == 0 then (Phi#"isBirational" = false; error "the multi-rational map is not birational");
psi = rationalMap(first F,Dominant=>"notSimplify");
psi#"maps" = apply(F,f -> map(source psi,target psi,f));
psi#"map" = first psi#"maps";
psi
) else (
psi = rationalMap(matrix{{1_(ring target Phi)}},Dominant=>"notSimplify");
psi#"maps" = {psi};
psi
);
Psi := multirationalMap(L,source Phi);
if ring source Psi =!= ring target Phi then error "internal error encountered";
Psi#"source" = target Phi;
if b >= 2 then (check Psi; try checkRepresentatives Psi else error "something went wrong in calculating the inverse map: wrong representatives"; <<"-- representatives of "<<toString expression Psi<<" have been successfully checked!"<<endl);
Psi#"isBirational" = true;
Psi#"isDominant" = true;
if b >= 1 and Phi#"isBirational" === null and Phi#"isDominant" === null then (
if image Phi != target Phi then (Phi#"isDominant" = false; Phi#"isBirational" = false; error "the multi-rational map is not dominant");
Phi#"isDominant" = true;
);
if b >= 1 and Phi#"isBirational" === null then (
if degree Phi != 1 then (Phi#"isBirational" = false; error("the multi-rational map is not birational, its degree is "|toString(degree Phi)));
Phi#"isBirational" = true;
);
if b >= 3 then (if Phi * Psi != 1 then error "something went wrong in calculating the inverse map: the composition of the maps is not identity"; <<"-- composition of "<<toString expression Phi<<" with "<<toString expression Psi<<" has been successfully verified!"<<endl);
if b >= 4 then (if Psi * Phi != 1 then error "something went wrong in calculating the inverse map: the composition of the maps is not identity"; <<"-- composition of "<<toString expression Psi<<" with "<<toString expression Phi<<" has been successfully verified!"<<endl);
if Phi#"isBirational" === true or b == -1 then (
if b == -1 then (Phi#"isDominant" = true; Phi#"isBirational" = true);
(last graph Phi)#"isBirational" = true;
(last graph Phi)#"isDominant" = true;
Phi#"inverse" = Psi;
Psi#"inverse" = Phi;
Psi#"graph" = reverseGraph graph Phi;
);
return Psi;
);
inverse MultirationalMap := Phi -> inverse(Phi,Verify=>true);
inverse (MultihomogeneousRationalMap,Option) := (Phi,opt) -> inverse(multirationalMap {Phi},opt);
inverse MultihomogeneousRationalMap := Phi -> inverse(Phi,Verify=>true);
inverse2 = method(TypicalValue => MultirationalMap);
inverse2 (MultirationalMap,Option) := (Phi,opt) -> (
if Phi#"inverse" =!= null or Phi#"graph" =!= null then return inverse(Phi,opt);
G := projectiveVariety(quotient SymmIdeal Phi,MinimalGenerators=>false,Saturate=>false); -- warning: this may not be multi-saturated
(r,s) := (# (source Phi)#"dimAmbientSpaces", # (target Phi)#"dimAmbientSpaces");
Phi' := multirationalMap(factor Phi,target Phi); Phi'#"source" = source Phi;
Phi'#"graph" = (multirationalMap(take(projections G,r),source Phi'), multirationalMap(take(projections G,-s),target Phi'));
Phi'#"isBirational" = null;
Psi := inverse(Phi',Verify=>false);
err := "not able to get an inverse map by using dedicated algorithm for the multi-linear type case; try using the general function inverse";
b := last toList opt;
if b === true or b === -1 then (
if b === true then (
try checkRepresentatives Psi else error(err|"(*)");
if not(Phi * Psi == 1 and Psi * Phi == 1) then error(err|"()");
);
Phi#"isBirational" = true;
Phi#"isDominant" = true;
Psi#"isBirational" = true;
Psi#"isDominant" = true;
Phi#"inverse" = Psi;
Psi#"inverse" = Phi;
);
return Psi;
);
inverse2 MultirationalMap := Phi -> inverse2(Phi,Verify=>true);
inverse2 (MultihomogeneousRationalMap,Option) := (Phi,opt) -> inverse2(multirationalMap {Phi},opt);
inverse2 MultihomogeneousRationalMap := Phi -> inverse2(Phi,Verify=>true);
isIsomorphism MultirationalMap := Phi -> (
if dim source Phi != dim target Phi or Phi#"isBirational" === false or Phi#"isDominant" === false then return false;
if not isMorphism Phi then return false;
isMorphism inverse(Phi,Verify=>true)
);
MultirationalMap | MultiprojectiveVariety := (Phi,X) -> (
if X === source Phi then return Phi;
if ring ideal source Phi =!= ring ideal X then error "expected a subvariety in the ambient space of the source";
if not isSubset(X,source Phi) then error "expected a subvariety of the source";
I := multirationalMap(X,source Phi,false);
I * Phi
);
MultirationalMap | List := (Phi,d) -> (
if not(# d == # (source Phi)#"dimAmbientSpaces" and all(d,i->instance(i,ZZ) and i>=0)) then error("expected a list of "|toString(# (source Phi)#"dimAmbientSpaces")|" non-negative integer(s) to indicate the degree of a hypersurface in the source");
Phi|((source Phi) * projectiveVariety ideal random(d,ring ambient source Phi))
);
RationalMap | MultiprojectiveVariety := (Phi,X) -> (multirationalMap Phi)|X;
MultihomogeneousRationalMap | MultiprojectiveVariety := (Phi,X) -> (multirationalMap Phi)|X;
MultirationalMap || MultiprojectiveVariety := (Phi,Y) -> (
if Y === target Phi then return Phi;
X := Phi^* Y;
I := multirationalMap(X,source Phi,false);
multirationalMap(I * Phi,Y)
);
MultirationalMap || List := (Phi,d) -> (
if not(# d == # (target Phi)#"dimAmbientSpaces" and all(d,i->instance(i,ZZ) and i>=0)) then error("expected a list of "|toString(# (target Phi)#"dimAmbientSpaces")|" non-negative integer(s) to indicate the degree of a hypersurface in the target");
Phi||((target Phi) * projectiveVariety ideal random(d,ring ambient target Phi))
);
RationalMap || MultiprojectiveVariety := (Phi,Y) -> (multirationalMap Phi)||Y;
MultihomogeneousRationalMap || MultiprojectiveVariety := (Phi,Y) -> (multirationalMap Phi)||Y;
super MultirationalMap := Phi -> multirationalMap(Phi,ambient target Phi);
trim RationalMap := o -> Phi -> rationalMap(gens trim image matrix Phi,Dominant=>"notSimplify");
trim MultihomogeneousRationalMap := o -> Phi -> rationalMap(gens trim image matrix Phi,Dominant=>"notSimplify");
trim MultirationalMap := o -> Phi -> multirationalMap apply(factor Phi,trim);
MultirationalMap | MultirationalMap := (Phi,Psi) -> (
if source Phi =!= source Psi then error "expected multi-rational maps with the same source";
multirationalMap((factor Phi)|(factor Psi),(target Phi) ** (target Psi))
);
RationalMap | MultirationalMap := (Phi,Psi) -> (multirationalMap {Phi})|Psi;
MultirationalMap | RationalMap := (Phi,Psi) -> Phi|(multirationalMap {Psi});
MultihomogeneousRationalMap | MultirationalMap := (Phi,Psi) -> (multirationalMap {Phi})|Psi;
MultirationalMap | MultihomogeneousRationalMap := (Phi,Psi) -> Phi|(multirationalMap {Psi});
RationalMap | RationalMap := (Phi,Psi) -> (multirationalMap {Phi})|(multirationalMap {Psi});
MultihomogeneousRationalMap | RationalMap := (Phi,Psi) -> (multirationalMap {Phi})|(multirationalMap {Psi});
RationalMap | MultihomogeneousRationalMap := (Phi,Psi) -> (multirationalMap {Phi})|(multirationalMap {Psi});
MultihomogeneousRationalMap | MultihomogeneousRationalMap := (Phi,Psi) -> (multirationalMap {Phi})|(multirationalMap {Psi});
MultirationalMap || MultirationalMap := (Phi,Psi) -> (
X := source Phi; Y := source Psi;
XxY := X ** Y;
r := # X#"dimAmbientSpaces";
s := # Y#"dimAmbientSpaces";
pX := multirationalMap(take(projections XxY,r),X);
pY := multirationalMap(take(projections XxY,-s),Y);
Eta := (pX * Phi) | (pY * Psi);
if ring source Eta =!= ring XxY then error "internal error encountered";
Eta#"source" = XxY;
return Eta;
);
RationalMap || MultirationalMap := (Phi,Psi) -> (multirationalMap {Phi})||Psi;
MultirationalMap || RationalMap := (Phi,Psi) -> Phi||(multirationalMap {Psi});
MultihomogeneousRationalMap || MultirationalMap := (Phi,Psi) -> (multirationalMap {Phi})||Psi;
MultirationalMap || MultihomogeneousRationalMap := (Phi,Psi) -> Phi||(multirationalMap {Psi});
RationalMap || RationalMap := (Phi,Psi) -> (multirationalMap {Phi})||(multirationalMap {Psi});
MultihomogeneousRationalMap || RationalMap := (Phi,Psi) -> (multirationalMap {Phi})||(multirationalMap {Psi});
RationalMap || MultihomogeneousRationalMap := (Phi,Psi) -> (multirationalMap {Phi})||(multirationalMap {Psi});
MultihomogeneousRationalMap || MultihomogeneousRationalMap := (Phi,Psi) -> (multirationalMap {Phi})||(multirationalMap {Psi});
describe MultirationalMap := Phi -> (
n := # factor Phi;
descr:="multi-rational map consisting of "|(if n == 1 then "one single rational map" else (toString(n))|" rational maps")|newline;
descr=descr|"source variety: "|(? source Phi)|newline;
descr=descr|"target variety: "|(? target Phi)|newline;
descr=descr|"base locus: "|(? baseLocus Phi)|newline;
if image Phi == target Phi then descr=descr|"dominance: "|toString(Phi#"isDominant")|newline else descr=descr|"dominance: "|toString(Phi#"isDominant")|newline|"image: "|(? image Phi)|newline;
if not instance(Phi,WeightedRationalMap) then (
descr = descr|"multidegree: "|toString(multidegree Phi)|newline;
descr=descr|"degree: "|toString(degree Phi)|newline;
for i to n-1 do descr=descr|"degree sequence (map "|toString(i+1)|"/"|toString(n)|"): "|toString(degreeSequence (factor Phi)_i)|newline;
);
descr=descr|"coefficient ring: "|toString(coefficientRing Phi);
net expression descr
);
? MultirationalMap := Phi -> (
n := # factor Phi;
descr:="multi-rational map consisting of "|(if n == 1 then "one single rational map" else (toString(n))|" rational maps")|newline;
descr=descr|"source variety: "|(? source Phi)|newline;
descr=descr|"target variety: "|(? target Phi);
if Phi#"baseLocus" =!= null then descr=descr|newline|"base locus: "|(? baseLocus Phi);
if Phi#"isDominant" =!= null then descr=descr|newline|"dominance: "|toString(Phi#"isDominant");
if Phi#"isDominant" =!= true and Phi#"image" =!= null then descr=descr|newline|"image: "|(? image Phi);
if Phi#"multidegree" =!= null then descr = descr|newline|"multidegree: "|toString(multidegree Phi);
if (Phi#"multidegree" =!= null and Phi#"image" =!= null) or Phi#"isBirational" === true then descr=descr|newline|"degree: "|toString(degree Phi);
net expression descr
);
degreeSequence = method();
degreeSequence RationalMap := phi -> new Array from apply(maps phi,F -> (u := unique degrees ideal compress toMatrix F; if #u != 1 then error "internal error encountered"; unsequence toSequence first u));
degreeSequence MultihomogeneousRationalMap := phi -> new Array from apply(maps phi,F -> (u := unique degrees ideal compress toMatrix F; if #u != 1 then error "internal error encountered"; unsequence toSequence first u));
degreeSequence MultirationalMap := Phi -> apply(factor Phi,degreeSequence);
permute (MultiprojectiveVariety,List) := (X,l) -> (
if not all(l,i -> instance(i,ZZ)) then error "expected a list of integers";
d := # X#"dimAmbientSpaces";
if sort l != toList(0 .. d-1) then error("expected a permutation of the set "|toString toList(0 .. d-1));
m := X#"multigens";
m' := for i to d-1 list m_(l_i);
K := coefficientRing X;
D := entries diagonalMatrix toList(d : 1);
R := K[flatten m',Degrees=>apply(d,i -> #(m'_i) : D_i)];
X' := projectiveVariety(sub(ideal X,R),MinimalGenerators=>true,Saturate=>false);
check multirationalMap(apply(m',x -> rationalMap sub(matrix{x},ring X)),X')
);
show MultirationalMap := Phi -> (
F := factor Phi;
n := # F;
S := "-- multi-rational map --"||("source: "|nicePrint(ring source Phi))||("target: "|nicePrint(ring target Phi));
for i to n-1 do (
S = S||"-- rational map "|toString(i+1)|"/"|toString(n)|" -- ";
if (F_i)#"maps" === null
then S = S||"map "|toString(i+1)|"/"|toString(n)|", one of its representatives:"||nicePrint(entries F_i)
else if #((F_i)#"maps") == 1
then S = S||"map "|toString(i+1)|"/"|toString(n)|", unique representative:"||nicePrint(entries F_i)
else for j to #((F_i)#"maps")-1 do S = S||"map "|toString(i+1)|"/"|toString(n)|", representative "|toString(j+1)|"/"|toString(#((F_i)#"maps"))|":"||nicePrint(flatten entries toMatrix ((F_i)#"maps")_j);
);
return S;
);
show RationalMap := Phi -> show multirationalMap {Phi};
show MultihomogeneousRationalMap := Phi -> show multirationalMap {Phi};
rationalMap MultiprojectiveVariety := o -> X -> multirationalMap rationalMap(idealOfSubvariety X,Dominant=>o.Dominant);
rationalMap (MultiprojectiveVariety,List) := o -> (X,l) -> multirationalMap rationalMap(idealOfSubvariety X,l,Dominant=>o.Dominant);
rationalMap (MultiprojectiveVariety,ZZ) := o -> (X,a) -> multirationalMap rationalMap(idealOfSubvariety X,a,Dominant=>o.Dominant);
rationalMap (MultiprojectiveVariety,ZZ,ZZ) := o -> (X,a,b) -> multirationalMap rationalMap(idealOfSubvariety X,a,b,Dominant=>o.Dominant);
PairOfVarieties = new Type of List;
MultiprojectiveVariety _ MultiprojectiveVariety := (X,Y) -> (
if ring ideal X =!= ring ideal Y then error "expected varieties in the same ambient multi-projective space";
new PairOfVarieties from {X,Y}
);
ideal PairOfVarieties := Z -> trim sub(ideal Z#0,ring Z#1);
rationalMap PairOfVarieties := o -> X -> multirationalMap rationalMap(ideal X,Dominant=>o.Dominant);
rationalMap (PairOfVarieties,List) := o -> (X,l) -> multirationalMap rationalMap(ideal X,l,Dominant=>o.Dominant);
rationalMap (PairOfVarieties,ZZ) := o -> (X,a) -> multirationalMap rationalMap(ideal X,a,Dominant=>o.Dominant);
rationalMap (PairOfVarieties,ZZ,ZZ) := o -> (X,a,b) -> multirationalMap rationalMap(saturate (ideal X)^b,a,Dominant=>o.Dominant);
clean MultirationalMap := Phi -> multirationalMap(apply(factor Phi,clean),target Phi);
clean RationalMap := phi -> rationalMap(map(source phi,target phi,matrix phi),Dominant=>"notSimplify");
clean MultihomogeneousRationalMap := phi -> rationalMap(map(source phi,target phi,matrix phi),Dominant=>"notSimplify");
MultirationalMap ** Ring := (Phi,K) -> (
if not isField K then error "expected a field";
if (char coefficientRing Phi =!= char K and char coefficientRing Phi =!= 0) then error "characteristic not valid";
X := (source Phi) ** K;
Y := (target Phi) ** K;
F := apply(factor Phi,projections Y,(f,p) -> rationalMap(map(ring X,target p,sub(lift(matrix f,ring ambient source Phi),vars ring ambient X)),Dominant=>"notSimplify"));
Psi := multirationalMap(F,Y);
if ring source Psi =!= ring X then error "internal error encountered";
Psi#"source" = X;
Psi#"isDominant" = Phi#"isDominant";
Psi#"isBirational" = Phi#"isBirational";
return Psi;
);
MultirationalMap << MultiprojectiveVariety := (Phi,Y) -> (
if coefficientRing Phi =!= coefficientRing Y then error "different coefficient rings encountered";
if not (# shape target Phi == # shape Y and all(shape target Phi,shape Y,(i,j) -> i <= j)) then error "shapes not compatible";
L := apply(apply(factor Phi,matrix),shape Y,(M,d) -> M|matrix{toList(d+1-(numColumns M) : 0_(ring M))});
check rationalMap(L,Y)
);
MultiprojectiveVariety << MultiprojectiveVariety := (X,Y) -> (1_X) << Y;
rationalMap (MultiprojectiveVariety,Tally) := o -> (X,E) -> (
D := applyPairs(E,(k,v) -> if instance(k,MultiprojectiveVariety) then (idealOfSubvariety k,v) else (k,v));
f := multirationalMap rationalMap(ring X,D,Dominant=>o.Dominant);
if ring source f =!= ring X then error "internal error encountered: bad source found";
f#"source" = X;
return f;
);
rationalMap (MultiprojectiveVariety,Tally,List) := o -> (X,D,d) -> (
D = applyPairs(D,(F,m) -> if not isSubset(F,X) then (F*X,m) else (F,m));
Y := ⋃ for p in pairs D list (last p) * (first p);
V := X * random(d,Y);
W := V\Y;
rationalMap(W_X,d,Dominant=>o.Dominant)
);
rationalMap (EmbeddedProjectiveVariety,Tally,ZZ) := o -> (X,D,d) -> rationalMap(X,D,{d},Dominant=>o.Dominant);
GrassmannianVariety = new Type of EmbeddedProjectiveVariety;
globalAssignment GrassmannianVariety;
GrassmannianVariety.synonym = "Grassmannian variety";
? GrassmannianVariety := G -> (toString expression G) | (if codim G > 0 then " ⊂ PP^" else " = PP^") | toString(dim ambient G);
GG = method();
GG (ZZ,EmbeddedProjectiveVariety) := (k,P) -> (
if P.cache#?(k,GrassmannianVariety) then return P.cache#(k,GrassmannianVariety);
if codim P > 0 then error "expected a projective space";
if k < 0 then error "expected a non-negative integer";
if k > dim P then error("expected an integer not exceeding "|(toString dim P));
G := new GrassmannianVariety from projectiveVariety(Grass(k,dim P,coefficientRing P,Variable=>ring P),Saturate=>false);
(ring G)#GrassmannianVariety = G;
(ideal G).cache#GrassmannianVariety = G;
G.cache#"top" = G;
G.cache#"singularLocus" = 0_G;
G#"expression" = expression("GG("|toString(k)|","|toString(dim P)|")");
G#"ProjectiveSpace" = P;
G#"dimLinearSpaces" = k;
P.cache#(k,GrassmannianVariety) = G
);
GG (Ring,ZZ,ZZ) := (K,k,n) -> GG(k,projectiveVariety Grass(0,n,K,Variable=>"x"));
GG (ZZ,ZZ) := (k,n) -> GG(QQ,k,n);
GG EmbeddedProjectiveVariety := X -> (
if instance(X,GrassmannianVariety) then return X;
if not isGrass X then error "expected a Grassmannian variety";
Y := GG X.cache#"GrassInfo";
if ring Y =!= ring X then error "internal error encountered";
return Y;
);
GG Ring := R -> GG projectiveVariety(R,Saturate=>false);
GG (ZZ,MultirationalMap) := (k,Phi) -> (
if not(# shape source Phi == 1 and # shape target Phi == 1 and codim source Phi == 0 and codim target Phi == 0 and dim source Phi == dim target Phi and first max degrees ideal matrix Phi == 1)
then error "expected an automorphism of a projective space";
A := coefficients toRationalMap Phi;
K := coefficientRing Phi;
n := dim source Phi;
x := local x;
R := K[x_(0,0)..x_(n,k)];
M := genericMatrix(R,k+1,n+1);
N := M * transpose A;
mM := matrix{apply(subsets(n+1,k+1),m -> det submatrix(M,m))};
B := matrix apply(subsets(n+1,k+1),m -> linearCombination(det submatrix(N,m),mM));
G := GG(k,source Phi);
Psi := multirationalMap({rationalMap(ring G,ring G,(vars ring ambient G) * transpose B)},G);
if source Psi =!= G then error "internal error encountered";
return Psi;
);
GG (ZZ,RationalMap) := (k,Phi) -> GG(k,multirationalMap Phi);
linearCombination = method();
linearCombination (RingElement,Matrix) := (F,I) -> (
if not(ring F === ring I and isPolynomialRing ring I and numRows I === 1) then error "internal error encountered";
K := coefficientRing ring I;
n := numgens ring I -1;
m := numColumns I;
a := local a;
Ka := K[a_1..a_m];
x := local x;
Ra := Ka[x_0..x_n];
M := (matrix {{sub(F,vars Ra)}}) - ((vars Ka) * transpose sub(I,vars Ra));
E := trim ideal sub(last coefficients M,Ka);
H := sub(transpose last coefficients(gens E,Monomials=>((vars Ka)|matrix{{1_Ka}})),K);
flatten entries solve(submatrix'(H,{m}),-submatrix(H,{m}))
);
chowRing = method();
chowRing (ZZ,GrassmannianVariety) := (m,G) -> (
if not G.cache#?(m,"ChowRing") then (
k := G#"dimLinearSpaces";
n := dim G#"ProjectiveSpace";
L := rsort select(apply(toList (set toList(0..(n-k)))^**(k+1),l -> toList deepSplice l),l -> l == rsort l and sum l == m);
s := local s;
G.cache#(m,"ChowRing") = ZZ[apply(L,l -> s_(unsequence toSequence l))];
);
G.cache#(m,"ChowRing")
);
dimdegree = X -> if dim X == -1 then 0 else if dim X == 0 then degree X else error "expected a zero-dimensional scheme";
cycleClass = method();
cycleClass EmbeddedProjectiveVariety := X -> (
G := ambientVariety X;
if not instance(G,GrassmannianVariety) then (
if not isGrass G then error "expected a subvariety of some Grassmannian";
<<"--warning: ambient variety of "<<X<<" has been changed to be a Grassmannian"<<endl;
return cycleClass (X % GG ambientVariety X);
);
k := G#"dimLinearSpaces";
n := dim G#"ProjectiveSpace";
m := (dim G) - (dim X);
sum(gens chowRing(m,G),g -> g * dimdegree(X * schubertCycle(toList(k+1:n-k) - toList reverse last baseName g,G)))
);
schubertCycle = method(Options => {Standard => false});
schubertCycle (VisibleList,GrassmannianVariety) := o -> (a,G) -> (
k' := G#"dimLinearSpaces";
n' := dim G#"ProjectiveSpace";
a = toList a;
n := n'+1;
k := #a;
if not (all(a,j -> instance(j,ZZ)) and rsort a == a and first a <= n-k and k == k'+1) then error("expected a nonincreasing sequence of "|toString(k'+1)|" nonnegative integers bounded by "|toString(n'-k'));
a = prepend(null,a);
V := completeFlag(G,Standard=>o.Standard);
S := makeSubvariety trim sum for i from 1 to k list idealOfSubvariety tangentialChowForm(V_(n-k+i-a_i),i-1,k-1,SingularLocus=>0_(first V));
try return makeSubvariety(S,G,Verify=>true) else error "something went wrong with the ambient Grassmannian of the Schubert cycle";
);
completeFlag = method(Options => {Standard => false});
completeFlag GrassmannianVariety := o -> G -> (
P := G#"ProjectiveSpace";
L := if o.Standard then gens ring P else apply(1+dim P,i -> random(1,ring P));
V := append(reverse for i to dim P list projectiveVariety(ideal take(L,i+1),Saturate=>false),P);
if apply(V,dim) =!= toList(-1 .. dim P) then (
<<"--warning: re-running completeFlag"<<endl;
return completeFlag(G,Standard=>o.Standard);
);
return V;
);
beginDocumentation()
document {Key => {MultiprojectiveVarieties},
Headline => "Multi-projective varieties and multi-rational maps",
PARA{"This is a package for handling multi-projective varieties, that is, closed subvarieties of products of projective spaces, and rational maps between them. This extends the package ",TO Cremona,", which treats ",TO2{RationalMap,"rational maps"}," from multi-projective varieties to ",EM"standard"," projective varieties, ",TEX///$X\subseteq \mathbb{P}^{k_1}\times\mathbb{P}^{k_2}\times\cdots\times\mathbb{P}^{k_n}\dashrightarrow Y\subseteq\mathbb{P}^N$///,"."},References => {"ArXiv preprint: ",HREF{"https://arxiv.org/abs/2101.04503","Computations with rational maps between multi-projective varieties"},"."},
Subnodes => {TO MultiprojectiveVariety,TO MultirationalMap}}
document {Key => {MultiprojectiveVariety},
Headline => "the class of all multi-projective varieties",
PARA {"A ",EM"multi-projective variety"," is a closed subvariety of a product of projective spaces ",TEX///$\mathbb{P}^{k_1}\times\mathbb{P}^{k_2}\times\cdots\times\mathbb{P}^{k_n}$///,". This is actually the class of all closed subschemes of products of projective spaces."},
Subnodes => {TO "projectiveVariety",-- TO (projectiveVariety,Ideal),TO (projectiveVariety,Ring),
TO (projectiveVariety,List,Ring),
TO (projectiveVariety,List,List,Ring),
TO (projectiveVariety,MultidimensionalMatrix)}}
document {Key => {EmbeddedProjectiveVariety},
Headline => "the class of all embedded projective varieties",
PARA {"The ",EM"embedded projective varieties"," are exactly the ",TO2{MultiprojectiveVariety,"multi-projective varieties"}," embedded in a single projective space; so that ",TEX///$X$///," is an embedded projective variety if and only if ",TT"#"," ",TO2{(shape,MultiprojectiveVariety),"shape"},TT" X == 1","."},
EXAMPLE {
"X = PP_QQ^(2,2);",
"class X",
"Y = X ** X;",
"class Y"},
SeeAlso => {MultiprojectiveVariety,(ambient,MultiprojectiveVariety),(shape,MultiprojectiveVariety)}}
document {Key => {Saturate, [projectiveVariety,Saturate]},
Headline => "whether to compute the multi-saturation of the ideal (intended for internal use only)",
Usage => "projectiveVariety(I,Saturate=>false)",
PARA{"Use this option only in the case you know that the ideal ",TT"I"," is already multi-saturated, otherwise nonsensical answers may result."},
SeeAlso => {projectiveVariety,[projectiveVariety,MinimalGenerators]}}
document {Key => {[projectiveVariety,MinimalGenerators]},
Headline => "whether to trim the ideal (intended for internal use only)",
Usage => "projectiveVariety(I,MinimalGenerators=>false)",
PARA{"Use this option only in the case you know that the ideal ",TT"I"," is already trimmed."},
SeeAlso => {projectiveVariety,[projectiveVariety,Saturate]}}
document {
Key => {projectiveVariety, (projectiveVariety,Ideal), (projectiveVariety,Ring), (projectiveVariety,Matrix), (projectiveVariety,RingElement)},
Headline => "the closed multi-projective subvariety defined by a multi-homogeneous ideal",
Usage => "projectiveVariety I",
Inputs => { "I" => Ideal => {"a homogeneous ideal in a polynomial ring ",TEX///$R$///," with the ",TEX///$\mathbb{Z}^n$///,"-grading where the degree of each variable is a standard basis vector, that is, ",TEX///$R$///," is the homogeneous coordinate ring of a product of ",TEX///$n$///," projective spaces ",TEX///$\mathbb{P}^{k_1}\times\mathbb{P}^{k_2}\times\cdots\times\mathbb{P}^{k_n}$///}},
Outputs => {MultiprojectiveVariety => {"the projective subvariety of ",TEX///$\mathbb{P}^{k_1}\times\mathbb{P}^{k_2}\times\cdots\times\mathbb{P}^{k_n}$///," defined by ",TEX///$I$///}},
PARA{"Equivalently, one can give as input the coordinate ring of the projective variety, that is, the quotient of ",TEX///$R$///," by (the multisaturation of) ",TEX///$I$///,"."},
PARA{"In the example, we take a complete intersection ",TEX///$X\subset\mathbb{P}^{2}\times\mathbb{P}^{3}\times\mathbb{P}^{1}$///," of two hypersurfaces of multidegrees ",TEX///$(2,1,0)$///," and ",TEX///$(1,0,1)$///,"."},
EXAMPLE {
"K = ZZ/333331;",
"R = K[x_0..x_2,y_0..y_3,z_0,z_1,Degrees=>{3:{1,0,0},4:{0,1,0},2:{0,0,1}}];",
"I = ideal(random({2,1,0},R),random({1,0,1},R))",
"X = projectiveVariety I",
"? X -- short description",
"describe X -- long description"},
PARA{"Below, we calculate the image of ",TEX///$X$///," via the Segre embedding of ",TEX///$\mathbb{P}^{2}\times\mathbb{P}^{3}\times\mathbb{P}^{1}$///," in ",TEX///$\mathbb{P}^{23}$///,"; thus we get a projective variety isomorphic to ",TEX///$X$///," and embedded in a single projective space ",TEX///$\mathbb{P}^{19}=<X>\subset\mathbb{P}^{23}$///,"."},
EXAMPLE {
"s = segreEmbedding X;",
"X' = image s",
"(dim X', codim X', degree X')",
"? X'"},
SeeAlso => {(segreEmbedding,MultiprojectiveVariety),(dim,MultiprojectiveVariety),(codim,MultiprojectiveVariety),(degree,MultiprojectiveVariety),(singularLocus,MultiprojectiveVariety),(point,MultiprojectiveVariety)}}
document {Key => {(projectiveVariety,List,Ring),(projectiveVariety,ZZ,Ring),symbol PP},
Headline => "product of projective spaces",
Usage => "projectiveVariety(n,K)
PP_K^n",
Inputs => {"n" => List => {"a list of non-negative integers ",TEX///$n=\{n_1,n_2,\ldots,n_r\}$///},"K" => Ring => {"a field"}},
Outputs => {MultiprojectiveVariety => {"the product of projective spaces ", TEX///$\mathbb{P}^{n_1}\times\mathbb{P}^{n_2}\times\cdots\times\mathbb{P}^{n_r}$///," over ",TEX///$K$///}},
EXAMPLE {"projectiveVariety({2,1,3},ZZ/33331);","PP_(ZZ/33331)^{2,1,3};","PP_QQ^{1,1,1,1};","PP_QQ^{};"},
SeeAlso => {((projectiveVariety,List,List,Ring))}}
document {Key => {(projectiveVariety,List,List,Ring),(projectiveVariety,ZZ,ZZ,Ring)},
Headline => "the Segre-Veronese variety",
Usage => "projectiveVariety(n,d,K)
PP_K^(n,d)",
Inputs => {
"n" => List => {"a list of ",TEX///$r$///," non-negative integers ",TEX///$n=\{n_1,n_2,\ldots,n_r\}$///},
"d" => List => {"a list of ",TEX///$r$///," degrees ",TEX///$d=\{d_1,d_2,\ldots,d_r\}$///},
"K" => Ring => {"a field"}},
Outputs => {MultiprojectiveVariety => {"the Segre-Veronese variety ", TEX///$\nu_{d_1}(\mathbb{P}^{n_1})\times\nu_{d_2}(\mathbb{P}^{n_2})\times\cdots\times\nu_{d_r}(\mathbb{P}^{n_r})$///," over ",TEX///$K$///}},
EXAMPLE {"X = projectiveVariety({2,1,3},{3,4,2},ZZ/33331);","X = PP_(ZZ/33331)^({2,1,3},{3,4,2});","parametrize X;"},
SeeAlso => {((projectiveVariety,List,Ring))}}
document {Key => {(dim,MultiprojectiveVariety)},
Headline => "the dimension of the variety",
Usage => "dim X",
Inputs => {"X" => MultiprojectiveVariety},
Outputs => {ZZ => {"the dimension of ", TEX///$X$///}},
EXAMPLE {"X = PP_QQ^({2,1},{1,3});","dim X"},
SeeAlso => {(codim,MultiprojectiveVariety)}}
document {Key => {(codim,MultiprojectiveVariety)},
Headline => "the codimension of the variety",
Usage => "codim X",
Inputs => {"X" => MultiprojectiveVariety},
Outputs => { ZZ => {"the codimension of ", TEX///$X$///}},
EXAMPLE {"X = PP_QQ^({2,1},{1,3});","codim X"},
SeeAlso => {(dim,MultiprojectiveVariety)}}
document {Key => {(ideal,MultiprojectiveVariety)},
Headline => "the defining ideal of the variety",
Usage => "ideal X",
Inputs => {"X" => MultiprojectiveVariety},
Outputs => {Ideal => {"the defining ideal of ", TEX///$X$///}},
EXAMPLE {"X = PP_QQ^({2,1},{1,3});","ideal X"},
SeeAlso => {(ring,MultiprojectiveVariety)}}
document {Key => {(ring,MultiprojectiveVariety)},
Headline => "the coordinate ring of the variety",
Usage => "ring X",
Inputs => {"X" => MultiprojectiveVariety},
Outputs => {Ring => {"the coordinate ring of ", TEX///$X$///}},
EXAMPLE {"X = PP_QQ^({2,1},{1,3});","ring X"},
SeeAlso => {(ideal,MultiprojectiveVariety),(coefficientRing,MultiprojectiveVariety)}}
document {Key => {(coefficientRing,MultiprojectiveVariety)},
Headline => "the coefficient ring of the variety",
Usage => "coefficientRing X",
Inputs => {"X" => MultiprojectiveVariety},
Outputs => {Ring => {"the coefficient ring of ", TEX///$X$///}},
EXAMPLE {"X = PP_QQ^({2,1},{1,3});","coefficientRing X"},
SeeAlso => {(ring,MultiprojectiveVariety),(symbol **,MultiprojectiveVariety,Ring)}}
document {Key => {(degree,MultiprojectiveVariety)},
Headline => "the degree of the variety",
Usage => "degree X",
Inputs => {"X" => MultiprojectiveVariety},
Outputs => { ZZ => {"the degree of the image of ", TEX///$X$///," via the Segre embedding of the ",TO2{(ambient,MultiprojectiveVariety),"ambient"}," of ",TEX///$X$///}},
EXAMPLE {"X = PP_QQ^({2,1},{1,3});","degree X"},
SeeAlso => {(multidegree,MultiprojectiveVariety),(segreEmbedding,MultiprojectiveVariety)}}
document {Key => {(hilbertPolynomial,EmbeddedProjectiveVariety)},
Headline => "the Hilbert polynomial of the variety",
Usage => "hilbertPolynomial X",
Inputs => {"X" => EmbeddedProjectiveVariety},
Outputs => {ProjectiveHilbertPolynomial => {"the Hilbert polynomial of ",TT"X"," (calculated as ",TO2{(hilbertPolynomial,Ideal),"hilbertPolynomial ideal"}," ",TT"X",")"}},
EXAMPLE {"X = PP_QQ^(2,3);","hilbertPolynomial X", "hilbertPolynomial(X,Projective=>false)"},
SeeAlso => {(hilbertPolynomial,Ideal)}}
document {Key => {projections,(projections,MultiprojectiveVariety)},
Headline => "projections of a multi-projective variety",
Usage => "projections X",
Inputs => {"X" => MultiprojectiveVariety => {"a subvariety of ",TEX///$\mathbb{P}^{k_1}\times\mathbb{P}^{k_2}\times\cdots\times\mathbb{P}^{k_n}$///}},
Outputs => {{"the list of the projections ", TEX///$X\to \mathbb{P}^{k_i}$///,", for ",TEX///$i=1,\ldots,n$///}},
EXAMPLE {"X = projectiveVariety(ZZ/101[x_0..x_3]) ** projectiveVariety(ZZ/101[y_0..y_2]);","projections X"}}
document {Key => {(ambient,MultiprojectiveVariety)},
Headline => "the ambient multi-projective space of the variety",
Usage => "ambient X",
Inputs => {"X" => MultiprojectiveVariety},
Outputs => { MultiprojectiveVariety => {"the product of the projective spaces where ", TEX///$X$///," is embedded"}},
EXAMPLE {"X = PP_QQ^({1,1,1},{2,1,3});","ambient X;"}}
document {Key => {(multidegree,MultiprojectiveVariety)},
Headline => "the multidegree of the variety",
Usage => "multidegree X",
Inputs => {"X" => MultiprojectiveVariety},
Outputs => {{"the multi-degree of the defining ideal of ", TEX///$X$///}},
EXAMPLE {"X = random({{1,1},{2,1}},point PP_(ZZ/33331)^{2,2});","multidegree X"},
SeeAlso => {(degree,MultiprojectiveVariety),(multidegree,Ideal)}}
document {Key => {(segre,MultiprojectiveVariety)},
Headline => "the Segre embedding of the variety",
Usage => "segre X",
Inputs => {"X" => MultiprojectiveVariety},
Outputs => {{"the map returned by ",TO segre," ",TO2{(ring,MultiprojectiveVariety),"ring"}," ", TEX///$X$///}},
PARA {"This function is intended for internal use. Use the ",TO segreEmbedding," function instead."},
EXAMPLE {"X = PP_(ZZ/3331)^({2,1,1},{2,1,3});","segre X"},
SeeAlso => {(segreEmbedding,MultiprojectiveVariety),segre}}
document {Key => {segreEmbedding,(segreEmbedding,MultiprojectiveVariety)},
Headline => "the Segre embedding of the variety",
Usage => "segreEmbedding X",
Inputs => {"X" => MultiprojectiveVariety},
Outputs => {MultirationalMap => {"the Segre embedding of ",TT "X"," (calculated through ",TO segre," ",TO2{(ring,MultiprojectiveVariety),"ring"}," ", TEX///$X$///,")"}},
EXAMPLE {"X = PP_(ZZ/3331)^({2,1,1},{2,1,3});","segreEmbedding X"},
SeeAlso => {segre,(segre,MultirationalMap)}}
document {Key => {(point,MultiprojectiveVariety),(symbol |-, MultiprojectiveVariety)},
Headline => "pick a random rational point on a multi-projective variety",
Usage => "point X",
Inputs => {"X" => MultiprojectiveVariety => {"defined over a finite field"}},
Outputs => {MultiprojectiveVariety => {"a random rational point on ", TEX///$X$///}},
EXAMPLE {"K = ZZ/1000003;","X = PP_K^({1,1,2},{3,2,3});","time p := point X","Y = random({2,1,2},X);","time q = point Y", "assert(isSubset(p,X) and isSubset(q,Y))"},
PARA {"The list of homogeneous coordinates can be obtained with the operator ",TT"|-","."},
EXAMPLE {"|- p", "|- q"},
SeeAlso => {point,randomKRationalPoint}}
document {Key => {(singularLocus,MultiprojectiveVariety)},
Headline => "the singular locus of the variety",
Usage => "singularLocus X",
Inputs => {"X" => MultiprojectiveVariety => {"which is assumed to be equidimensional"}},
Outputs => { MultiprojectiveVariety => {"the singular locus of ", TEX///$X$///}},
EXAMPLE {"X = random({2,1},point PP_(ZZ/101)^{2,1});","singularLocus X","Y = X + random({1,1},0_X);","singularLocus Y"}}
document {Key => {(symbol ==,MultiprojectiveVariety,MultiprojectiveVariety)},
Headline => "equality of multi-projective varieties",
Usage => "X == Y",
Inputs => {
MultiprojectiveVariety => "X",
MultiprojectiveVariety => "Y"},
Outputs => {
Boolean => {"whether ",TT"X"," and ",TT"Y", " are the same variety"}},
EXAMPLE {
"R = ZZ/101[x_0,x_1,x_2,y_0,y_1,Degrees=>{3:{1,0},2:{0,1}}];",
"(I,J) = (ideal(y_0-26*y_1,x_0*y_1+36*x_1*y_1-40*x_2*y_1),ideal(x_0*y_1+36*x_1*y_1-40*x_2*y_1,x_2*y_0-26*x_2*y_1,x_1*y_0-26*x_1*y_1,x_0*y_0+27*x_1*y_1-30*x_2*y_1));",
"I == J",
"X = projectiveVariety I",
"Y = projectiveVariety J",
"X == Y"}}
document {Key => {(isSubset,MultiprojectiveVariety,MultiprojectiveVariety)},
Headline => "whether one variety is a subvariety of another",
Usage => "isSubset(X,Y)",
Inputs => {
MultiprojectiveVariety => "X",
MultiprojectiveVariety => "Y"},
Outputs => {
Boolean => {"whether ",TT"X"," is contained in ",TT"Y"}},
EXAMPLE lines ///Y = PP_(ZZ/33331)^(2,2);
X = point Y;
isSubset(X,Y)
isSubset(Y,X)///}
document {Key => {(symbol **,MultiprojectiveVariety,MultiprojectiveVariety)},
Headline => "product of two multi-projective varieties",
Usage => "X ** Y",
Inputs => {
MultiprojectiveVariety => "X",
MultiprojectiveVariety => "Y"},
Outputs => {
MultiprojectiveVariety => {"the product of ",TT"X"," and ",TT"Y"}},
EXAMPLE {"X = projectiveVariety ideal(random({2,1},ring PP_(ZZ/101)^{2,1}),random({1,1},ring PP^{2,1}));",
"Y = projectiveVariety ideal random({1,1,1},ring PP^{1,2,1});",
"X ** Y"},
SeeAlso => {fiberProduct,(symbol ^,MultiprojectiveVariety,ZZ),(∏,List)}}
document {Key => {∏,(∏,List)},
Headline => "product of multi-projective varieties",
Usage => "∏ {X,Y,Z,...}",
Inputs => {{ofClass List," ",TT"{X,Y,Z,...}"," of ",TO2{MultiprojectiveVariety,"multi-projective varieties"}}},
Outputs => {MultiprojectiveVariety => {"the product ",TEX///$X\times Y \times Z\times \cdots$///}},
EXAMPLE {"K = ZZ/33331;",
"X = PP_K^(2,2);",
"Y = PP_K^({1,1,1},{2,3,1});",
"Z = PP_K^(1,4);",
"∏ {X,Y,Z};",
"assert(oo == ∏ {X ** Y,Z} and ∏ {X ** Y,Z} == ∏ {X, Y ** Z})"},
SeeAlso => {(symbol **,MultiprojectiveVariety,MultiprojectiveVariety)}}
document {Key => {(symbol ^,MultiprojectiveVariety,ZZ)},
Headline => "power of a multi-projective variety",
Usage => "X^n",
Inputs => {"X" => MultiprojectiveVariety,"n" => ZZ},
Outputs => {MultiprojectiveVariety => {"the product of ",TEX///$n$///," copies of ", TEX///$X$///}},
EXAMPLE {"X = PP_(ZZ/33331)^(1,3);",
"X^2;",
"X^3;",
"X^5;",
"assert(X^3 == X^2 ** X)",
"assert(X^5 == X^3 ** X^2)"},
SeeAlso => {(symbol **,MultiprojectiveVariety,MultiprojectiveVariety)}}
document {Key => {(symbol *,MultiprojectiveVariety,MultiprojectiveVariety)},
Headline => "intersection of two multi-projective varieties",
Usage => "X * Y",
Inputs => {
MultiprojectiveVariety => "X",
MultiprojectiveVariety => "Y"},
Outputs => {
MultiprojectiveVariety => {"the intersection of ",TT"X"," and ",TT"Y",", that is, the projective variety defined by the sum of the corresponding ideals"}},
EXAMPLE {"O = 0_(PP_(ZZ/101)^{2,1});",
"X = random({2,1},O);",
"Y = random({1,1},O);",
"X * Y"},
SeeAlso => {(symbol +,MultiprojectiveVariety,MultiprojectiveVariety),(symbol +,Ideal,Ideal),(⋂,List)}}
document {Key => {⋂,(⋂,List)},
Headline => "intersection of multi-projective varieties",
Usage => "⋂ {X,Y,Z,...}",
Inputs => {{ofClass List," ",TT"{X,Y,Z,...}"," of ",TO2{MultiprojectiveVariety,"multi-projective varieties"}}},
Outputs => {MultiprojectiveVariety => {"the intersection ",TEX///$X\cap Y \cap Z\cap \cdots$///}},
EXAMPLE {"K = ZZ/33331;",
"p = point PP_K^({1,2},{1,1});",
"X = random({1,1},p);",
"Y = random({2,1},p);",
"Z = random({2,2},p);",
"⋂ {X,Y,Z}"},
SeeAlso => {(symbol *,MultiprojectiveVariety,MultiprojectiveVariety)}}
document {Key => {(symbol +,MultiprojectiveVariety,MultiprojectiveVariety)},
Headline => "union of two multi-projective varieties",
Usage => "X + Y",
Inputs => {
MultiprojectiveVariety => "X",
MultiprojectiveVariety => "Y"},
Outputs => {
MultiprojectiveVariety => {"the union of ",TT"X"," and ",TT"Y",", that is, the projective variety defined by the intersection of the corresponding ideals"}},
EXAMPLE {"O = 0_(PP_(ZZ/101)^{2,1});",
"X = random({2,1},O);",
"Y = random({1,1},O);",
"Z = X + Y;",
///assert(Z \ X == Y and Z \ Y == X)///},
SeeAlso => {(symbol \,MultiprojectiveVariety,MultiprojectiveVariety),(symbol *,MultiprojectiveVariety,MultiprojectiveVariety),(intersect,List),(⋃,List)}}
document {Key => {⋃,(⋃,List)},
Headline => "union of multi-projective varieties",
Usage => "⋃ {X,Y,Z,...}",
Inputs => {{ofClass List," ",TT"{X,Y,Z,...}"," of ",TO2{MultiprojectiveVariety,"multi-projective varieties"}}},
Outputs => {MultiprojectiveVariety => {"the union ",TEX///$X\cup Y \cup Z\cup \cdots$///}},
EXAMPLE {"K = ZZ/33331;",
"L = for i to 9 list point PP_K^({1,2,2},{1,1,3});",
"⋃ L",
"degree oo"},
SeeAlso => {(symbol +,MultiprojectiveVariety,MultiprojectiveVariety)}}
document {Key => {(symbol \,MultiprojectiveVariety,MultiprojectiveVariety)},
Headline => "difference of multi-projective varieties",
Usage => ///X \ Y///,
Inputs => {
MultiprojectiveVariety => "X",
MultiprojectiveVariety => "Y"},
Outputs => {
MultiprojectiveVariety => {"the variety defined by the colon ideal ",TT"ideal X : ideal Y"}},
EXAMPLE {"R = ZZ/101[x_0,x_1,x_2,y_0,y_1,Degrees=>{3:{1,0},2:{0,1}}];",
"X = projectiveVariety ideal(x_0^3*y_0+2*x_0^2*x_1*y_0+2*x_0*x_1^2*y_0+x_1^3*y_0+2*x_0^2*x_2*y_0+3*x_0*x_1*x_2*y_0+2*x_1^2*x_2*y_0+2*x_0*x_2^2*y_0+2*x_1*x_2^2*y_0+x_2^3*y_0+x_0^3*y_1+2*x_0^2*x_1*y_1+2*x_0*x_1^2*y_1+x_1^3*y_1+2*x_0^2*x_2*y_1+3*x_0*x_1*x_2*y_1+2*x_1^2*x_2*y_1+2*x_0*x_2^2*y_1+2*x_1*x_2^2*y_1+x_2^3*y_1);",
"Y = projectiveVariety ideal(x_0*y_0+x_1*y_0+x_2*y_0+x_0*y_1+x_1*y_1+x_2*y_1);",
///Z = X \ Y;///,
///assert(Z + Y == X and X \ Z == Y)///},
SeeAlso => {(symbol \\,MultiprojectiveVariety,MultiprojectiveVariety),(symbol +,MultiprojectiveVariety,MultiprojectiveVariety),(quotient,Ideal,Ideal)}}
document {Key => {(symbol \\,MultiprojectiveVariety,MultiprojectiveVariety)},
Headline => "difference of multi-projective varieties",
Usage => ///X \\ Y///,
Inputs => {
MultiprojectiveVariety => "X",
MultiprojectiveVariety => "Y"},
Outputs => {
MultiprojectiveVariety => {"the variety defined by the saturation ideal ",TT"saturate(ideal X,ideal Y)"}},
EXAMPLE {"R = ZZ/101[x_0,x_1,x_2,y_0,y_1,Degrees=>{3:{1,0},2:{0,1}}];",
"X = projectiveVariety ideal(x_0^3*y_0^2+2*x_0^2*x_1*y_0^2+2*x_0*x_1^2*y_0^2+x_1^3*y_0^2+2*x_0^2*x_2*y_0^2+3*x_0*x_1*x_2*y_0^2+2*x_1^2*x_2*y_0^2+2*x_0*x_2^2*y_0^2+2*x_1*x_2^2*y_0^2+x_2^3*y_0^2+2*x_0^3*y_0*y_1+4*x_0^2*x_1*y_0*y_1+4*x_0*x_1^2*y_0*y_1+2*x_1^3*y_0*y_1+4*x_0^2*x_2*y_0*y_1+6*x_0*x_1*x_2*y_0*y_1+4*x_1^2*x_2*y_0*y_1+4*x_0*x_2^2*y_0*y_1+4*x_1*x_2^2*y_0*y_1+2*x_2^3*y_0*y_1+x_0^3*y_1^2+2*x_0^2*x_1*y_1^2+2*x_0*x_1^2*y_1^2+x_1^3*y_1^2+2*x_0^2*x_2*y_1^2+3*x_0*x_1*x_2*y_1^2+2*x_1^2*x_2*y_1^2+2*x_0*x_2^2*y_1^2+2*x_1*x_2^2*y_1^2+x_2^3*y_1^2);",
"Y = projectiveVariety ideal(x_0*y_0+x_1*y_0+x_2*y_0+x_0*y_1+x_1*y_1+x_2*y_1);",
///Z = X \\ Y;///,
///assert(Z == (X \ Y) \ Y)///},
SeeAlso => {(symbol \,MultiprojectiveVariety,MultiprojectiveVariety),(symbol +,MultiprojectiveVariety,MultiprojectiveVariety),(quotient,Ideal,Ideal)}}
document {Key => {(support,MultiprojectiveVariety)},
Headline => "support of a multi-projective variety",
Usage => "support X",
Inputs => {MultiprojectiveVariety => "X"},
Outputs => {MultiprojectiveVariety => {"the support of ",TT"X",", that is, the projective variety defined by the ",TO2{(radical,Ideal),"radical"}," of the defining ",TO2{(ideal,MultiprojectiveVariety),"ideal"}," of ",TT"X"}},
EXAMPLE {"K = ZZ/65521;",
"X = 2 * PP_K^(1,3);",
"degree X, sectionalGenus X",
"X' = support X;",
"degree X', sectionalGenus X'",
///assert(X \ X' == X')///},
SeeAlso => {(decompose,MultiprojectiveVariety),(radical,Ideal)}}
document {Key => {(top,MultiprojectiveVariety)},
Headline => "union of the top dimensional components of a multi-projective variety",
Usage => "top X",
Inputs => {MultiprojectiveVariety => "X"},
Outputs => {MultiprojectiveVariety => {"the union of the top dimensional components of ",TT"X"}},
EXAMPLE {"K = ZZ/65521;",
"X = (linearSpan {point PP_K^4,point PP_K^4}) + (point PP_K^4);",
"top X",
///assert(top top X === top X)///},
SeeAlso => {(decompose,MultiprojectiveVariety),(top,Ideal)}}
document {Key => {fiberProduct,(fiberProduct,RationalMap,RationalMap)},
Headline => "fiber product of multi-projective varieties",
Usage => "fiberProduct(phi,psi)",
Inputs => {
"phi" => {"a ",TO2{RationalMap,"morphism"}," ",TEX///$X\to Z$///," (that is, ",ofClass RationalMap," that is everywhere defined)"},
"psi" => {"another ",TO2{RationalMap,"morphism"}," ",TEX///$Y\to Z$///,", with the same target ",TEX///$Z$///}},
Outputs => {
MultiprojectiveVariety => {"the fiber product ",TEX///$X\times_{Z} Y$///}},
PARA {"The natural morphisms ",TEX///$X\times_{Z} Y\to X$///," and ",TEX///$X\times_{Z} Y\to Y$///," can be easily obtained using ",TO projections," and ",TO multirationalMap,"."},
PARA {"As an example, we calculate the fiber product of the blowing up ",TEX///$\phi:Bl_{C}(\mathbb{P}^3)\to\mathbb{P}^3$///," of ",TEX///$\mathbb{P}^3$///," along a twisted cubic curve ",TEX///$C\subset\mathbb{P}^3$///," and the inclusion ",TEX///$\psi:L\to \PP^3$///," of a secant line ",TEX///$L\subset\mathbb{P}^3$///," to ",TEX///$C$///,"."},
EXAMPLE {
"ringP3 = ZZ/33331[a..d]; C = ideal(c^2-b*d,b*c-a*d,b^2-a*c), L = ideal(b+c+d,a-d)",
"phi = first graph rationalMap C;",
"psi = parametrize L;",
"F = fiberProduct(phi,psi);",
"describe F",
"p = projections F;",
"-- first natural morphism
phi' = check rationalMap({p_0,p_1},projectiveVariety source phi);",
"-- second natural morphism
psi' = check rationalMap({p_2},projectiveVariety source psi);",
"assert(phi' * phi == psi' * psi)"},
SeeAlso => {(symbol **,MultiprojectiveVariety,MultiprojectiveVariety),(symbol ^**,MultirationalMap,MultiprojectiveVariety)}}
document {
Key => {(euler,MultiprojectiveVariety)},
Headline => "topological Euler characteristic of a (smooth) multi-projective variety",
Usage => "euler X
euler(X,Verify=>b)",
Inputs => {
MultiprojectiveVariety => "X" => {"which is assumed to be smooth, and ",TT"b"," is a ",TO2{Boolean,"boolean value"},", that is, ",TT"true"," or ",TT"false"," (the default value is ",TT"true",")"}},
Outputs => {
ZZ => {"the topological Euler characteristics of the variety ",TT"X",", generally calculated as ",TO EulerCharacteristic,TT"(ideal X,Certify=>b)"}},
EXAMPLE {
"X = PP_QQ^(2,2); -- Veronese surface",
"euler X",
"X4 = X^4;",
"euler X4"},
SeeAlso => {EulerCharacteristic,(euler,ProjectiveVariety)}}
document {Key => {MultirationalMap},
Headline => "the class of all multi-rational maps",
PARA {"A ",EM"multi-rational map"," is a rational map between ",TO2{MultiprojectiveVariety,"multi-projective varieties"},", ",TEX///$$\Phi:X\subseteq \mathbb{P}^{r_1}\times\mathbb{P}^{r_2}\times\cdots\times\mathbb{P}^{r_n}\dashrightarrow Y \subseteq \mathbb{P}^{s_1}\times\mathbb{P}^{s_2}\times\cdots\times\mathbb{P}^{s_m} .$$///,"Thus, it can be represented by an ",TO2{List,"ordered list"}," of ",TO2{RationalMap,"rational maps"},TEX///$$\Phi_i = (\Phi:X\dashrightarrow Y)\circ(pr_i:Y\to Y_i\subseteq\mathbb{P}^{s_i}) ,$$///,"for ",TEX///$i=1,\ldots,m$///,". The maps ",TEX///$\Phi_i:X\dashrightarrow Y_i\subseteq\mathbb{P}^{s_i}$///,", since the target ",TEX///$Y_i$///," is a standard projective variety, are implemented with the class ",TO RationalMap," (more properly, when ",TEX///$n>1$///," the class of such maps is called ",TT "MultihomogeneousRationalMap","). Recall that the main constructor for the class ",TO RationalMap," (as well as for the class ", TT"MultihomogeneousRationalMap",") is the method ",TO rationalMap,"."},
PARA {"The constructor for the class of multi-rational maps is ",TO multirationalMap,", which can often be abbreviated to ",TO2{(rationalMap,List,MultiprojectiveVariety),"rationalMap"}," (see also ",TO "shortcuts","). It takes as input the list of maps ",TEX///$\{\Phi_1:X\dashrightarrow Y_1,\ldots,\Phi_m:X\dashrightarrow Y_m\}$///,", together with the variety ",TEX///$Y$///,", and returns the map ",TEX///$\Phi:X\dashrightarrow Y$///,"."},
Subnodes => {TO multirationalMap,TO (rationalMap,List,MultiprojectiveVariety)}}
document {
Key => {multirationalMap, (multirationalMap,List,MultiprojectiveVariety), (multirationalMap,List)},
Headline => "the multi-rational map defined by a list of rational maps",
Usage => "multirationalMap Phi
multirationalMap(Phi,Y)",
Inputs => { "Phi" => {ofClass List," of ",TO2{RationalMap,"rational maps"},", ",TEX///$\{\Phi_1:X\dashrightarrow Y_1\subseteq\mathbb{P}^{s_1},\ldots,\Phi_m:X\dashrightarrow Y_m\subseteq\mathbb{P}^{s_m}\}$///,", all having the same ",TO2{(source,RationalMap),"source"}," ",TEX///$X\subseteq \mathbb{P}^{r_1}\times\mathbb{P}^{r_2}\times\cdots\times\mathbb{P}^{r_n}$///},
"Y" => {ofClass MultiprojectiveVariety," ",TEX///$Y \subseteq \mathbb{P}^{s_1}\times\mathbb{P}^{s_2}\times\cdots\times\mathbb{P}^{s_m}$///," (if omitted, then the ",TO2{(symbol **,MultiprojectiveVariety,MultiprojectiveVariety),"product"}," ",TEX///$Y_1\times\cdots \times Y_m$///," is taken)"}},
Outputs => {MultirationalMap => {"the unique rational map ",TEX///$\Phi:X\subseteq \mathbb{P}^{r_1}\times\mathbb{P}^{r_2}\times\cdots\times\mathbb{P}^{r_n}\dashrightarrow Y \subseteq \mathbb{P}^{s_1}\times\mathbb{P}^{s_2}\times\cdots\times\mathbb{P}^{s_m}$///," such that ",TEX///$pr_i\circ\Phi = \Phi_i$///,", where ",TEX///$pr_i:Y\subseteq \mathbb{P}^{s_1}\times\mathbb{P}^{s_2}\times\cdots\times\mathbb{P}^{s_m} \to Y_i\subseteq \mathbb{P}^{s_i}$///," denotes the i-th projection"}},
EXAMPLE {
"R = ring PP_(ZZ/65521)^{2,1};",
"f = rationalMap for i to 3 list random({1,1},R);",
"g = rationalMap(for i to 4 list random({0,1},R),Dominant=>true);",
"h = rationalMap for i to 2 list random({1,0},R);",
"Phi = multirationalMap {f,g,h}",
"describe Phi -- long description",
"? Phi -- short description",
"X = projectiveVariety R;",
"Phi;",
"Y = target Phi;",
"Phi;",
"Z = (image multirationalMap {f,g}) ** target h;",
"Psi = multirationalMap({f,g,h},Z)",
"assert(image Psi == image Phi)"},
SeeAlso => {(rationalMap,List,MultiprojectiveVariety),(graph,MultirationalMap),(image,MultirationalMap),(baseLocus,MultirationalMap),(inverse,MultirationalMap),"shortcuts",rationalMap},
Caveat => {"Be careful when you pass the target ",TT"Y"," as input, because it must be compatible with the maps but for efficiency reasons a full check is not done automatically. See ",TO (check,MultirationalMap),"."}}
document {
Key => {(rationalMap,List,MultiprojectiveVariety),(rationalMap,MultirationalMap)},
Headline => "the multi-rational map defined by a list of rational maps",
Usage => "rationalMap Phi
rationalMap(Phi,Y)",
Inputs => { "Phi" => {"whose elements are either ",TO2{RationalMap,"rational maps"}," or representatives of them (e.g., ",TO2{Matrix,"row matrices"}," or ",TO2{RingMap,"ring maps"},")"},
"Y" => MultiprojectiveVariety => {"optional"}},
Outputs => {MultirationalMap => {"the same as ",TO "multirationalMap",TT"(Phi,Y)",", or ",TO "multirationalMap",TT" Phi"," (if ",TT"Y"," is not specified)"}},
SeeAlso => {multirationalMap,rationalMap}}
document {
Key => {(check,MultirationalMap)},
Headline => "check that a multi-rational map is well-defined",
Usage => "check Phi",
Inputs => {MultirationalMap},
Outputs => {MultirationalMap => {"the same object passed as input, but an error is thrown if the target of the map is not compatible."}},
EXAMPLE {
"f = rationalMap ideal PP_(ZZ/65521)^(1,4);",
"Phi = rationalMap {f}",
"check Phi",
"Y = image Phi",
"Psi = rationalMap({f},Y)",
"check Psi",
"p = point Y;",
"Eta = rationalMap({f},p);",
"stopIfError = false;",
"check Eta"},
SeeAlso => (isWellDefined,MultirationalMap)}
document {
Key => {(isWellDefined,MultirationalMap)},
Headline => "whether a multi-rational map is well-defined",
Usage => "isWellDefined Phi",
Inputs => {MultirationalMap},
Outputs => {Boolean => {"whether ",TT"Phi"," is a well-defined map"}},
EXAMPLE {
"f = rationalMap ideal PP_(ZZ/65521)^(1,4);",
"Phi = rationalMap {f}",
"isWellDefined Phi",
"Y = image Phi",
"Psi = rationalMap({f},Y)",
"isWellDefined Psi",
"p = point Y;",
"Eta = rationalMap({f},p);",
"isWellDefined Eta"},
SeeAlso => (check,MultirationalMap)}
document {
Key => {(target,MultirationalMap)},
Headline => "the target for a multi-rational map",
Usage => "target Phi",
Inputs => {
MultirationalMap => "Phi"},
Outputs => {
MultiprojectiveVariety => {"the target of ",TT"Phi"}},
PARA{"Note that, instead, the ",TO2{(target,RationalMap),"target"}," of a standard ",TO2{RationalMap,"rational map"}," is the coordinate ring of the target variety (this is done mainly for efficiency reasons)."},
SeeAlso => {(source,MultirationalMap),(factor,MultirationalMap)}}
document {
Key => {(source,MultirationalMap)},
Headline => "the source for a multi-rational map",
Usage => "source Phi",
Inputs => {
MultirationalMap => "Phi"},
Outputs => {
MultiprojectiveVariety => {"the source of ",TT"Phi"}},
PARA{"Note that, instead, the ",TO2{(source,RationalMap),"source"}," of a standard ",TO2{RationalMap,"rational map"}," is the coordinate ring of the source variety (this is done mainly for efficiency reasons)."},
SeeAlso => {(target,MultirationalMap),(factor,MultirationalMap)}}
document {
Key => {(factor,MultirationalMap)},
Headline => "the list of rational maps defining a multi-rational map",
Usage => "factor Phi",
Inputs => {MultirationalMap => "Phi"},
Outputs => {{"the ",TO2{List,"list"}," of ",TO2{RationalMap,"rational maps"}," defining ",TT"Phi"}},
EXAMPLE lines ///ZZ/33331[t_0..t_2,u_0..u_1,Degrees=>{3:{1,0},2:{0,1}}];
f0 = rationalMap {t_0,t_1,t_2}
f1 = rationalMap {u_0,u_1}
f2 = rationalMap {t_0*u_1,t_1*u_0}
Phi = rationalMap {f0,f1,f2};
assert(factor Phi === {f0,f1,f2})///,
SeeAlso => {(target,MultirationalMap),(source,MultirationalMap)}}
document {
Key => {(coefficientRing,MultirationalMap)},
Headline => "the coefficient ring of a multi-rational map",
Usage => "coefficientRing Phi",
Inputs => {MultirationalMap => "Phi"},
Outputs => {Ring => {"the coefficient ring of ",TT"Phi"}},
SeeAlso => {(coefficientRing,MultiprojectiveVariety),(symbol **,MultirationalMap,Ring)}}
document {
Key => {(image,MultirationalMap)},
Headline => "image of a multi-rational map",
Usage => "image Phi",
Inputs => {MultirationalMap => "Phi"},
Outputs => {MultiprojectiveVariety => {"the (closure of the) image of ",TT"Phi"}},
PARA{"Note that, instead, the ",TO2{(image,RationalMap),"image"}," of a standard ",TO2{RationalMap,"rational map"}," is the defining ideal of the image (this is done mainly for efficiency reasons)."},
EXAMPLE {
"ZZ/65521[x_0..x_4];",
"f = rationalMap {x_2^2-x_1*x_3, x_1*x_2-x_0*x_3, x_1^2-x_0*x_2, x_0*x_4, x_1*x_4, x_2*x_4, x_3*x_4, x_4^2};",
"g = rationalMap {-x_3^2+x_2*x_4, 2*x_2*x_3-2*x_1*x_4, -3*x_2^2+2*x_1*x_3+x_0*x_4, 2*x_1*x_2-2*x_0*x_3, -x_1^2+x_0*x_2};",
"Phi = rationalMap {f,g};",
"time Z = image Phi;",
"dim Z, degree Z, degrees Z"},
PARA {"Alternatively, the calculation can be performed using the Segre embedding as follows:"},
EXAMPLE {
"time Z' = projectiveVariety (map segre target Phi) image(segre Phi,\"F4\");",
"assert(Z == Z')"},
SeeAlso => {(symbol SPACE,MultirationalMap,MultiprojectiveVariety),(image,RationalMap),(segre,MultirationalMap)}}
document {
Key => {(symbol SPACE,MultirationalMap,MultiprojectiveVariety),(symbol SPACE,RationalMap,MultiprojectiveVariety)},
Headline => "direct image via a multi-rational map",
Usage => "Phi X",
Inputs => {MultirationalMap => "Phi", MultiprojectiveVariety => "X" => {"a subvariety of the ",TO2{(source,MultirationalMap),"source"}," of ",TT "Phi"}},
Outputs => {MultiprojectiveVariety => {"the (closure of the) direct image of ", TT"X", " via ",TT"Phi"}},
EXAMPLE {
"ZZ/65521[x_0..x_4];",
"f = last graph rationalMap {x_2^2-x_1*x_3, x_1*x_2-x_0*x_3, x_1^2-x_0*x_2, x_0*x_4, x_1*x_4, x_2*x_4, x_3*x_4, x_4^2};",
"Phi = rationalMap {f,f};",
"Z = source Phi;",
"time Phi Z;",
"dim oo, degree oo, degrees oo",
"time Phi (point Z + point Z + point Z)",
"dim oo, degree oo, degrees oo"},
SeeAlso => {(image,MultirationalMap), (symbol ^*, MultirationalMap), (symbol SPACE,RationalMap,Ideal)}}
document {
Key => {(symbol ^**,MultirationalMap,MultiprojectiveVariety), (symbol ^**,RationalMap,EmbeddedProjectiveVariety), (symbol ^*,MultirationalMap)},
Headline => "inverse image via a multi-rational map",
Usage => "Phi^** Y
Phi^* Y",
Inputs => {
MultirationalMap => "Phi",
MultiprojectiveVariety => "Y" => {"a subvariety of the ambient multi-projective space of the ",TO2{(target,MultirationalMap),"target"}," of ",TT "Phi"}},
Outputs => {
MultiprojectiveVariety => {"the (closure of the) inverse image of ", TT"Y", " via ",TT"Phi"}},
EXAMPLE {
"ZZ/300007[x_0..x_3], f = rationalMap {x_2^2-x_1*x_3, x_1*x_2-x_0*x_3, x_1^2-x_0*x_2}, g = rationalMap {x_1^2-x_0*x_2, x_0*x_3, x_1*x_3, x_2*x_3, x_3^2};",
"Phi = last graph rationalMap {f,g};",
"Y = projectiveVariety ideal(random({1,1},ring target Phi), random({1,1},ring target Phi));",
"time X = Phi^* Y;",
"dim X, degree X, degrees X"},
SeeAlso => {(symbol SPACE,MultirationalMap,MultiprojectiveVariety),(symbol ^*,RationalMap),(symbol ||,MultirationalMap,MultiprojectiveVariety)}}
document {Key => {(segre,MultirationalMap)},
Headline => "the composition of a multi-rational map with the Segre embedding of the target",
Usage => "segre Phi",
Inputs => {"Phi" => MultirationalMap},
Outputs => {RationalMap => {"the composition of the multi-rational map ",TT"Phi"," with the ",TO2{(segreEmbedding,MultiprojectiveVariety),"Segre embedding"}," of the ",TO2{(target,MultirationalMap),"target"}," of ",TT"Phi"}},
EXAMPLE {"ZZ/65521[x_0..x_4];",
"f = rationalMap({x_3^2-x_2*x_4,x_2*x_3-x_1*x_4,x_1*x_3-x_0*x_4,x_2^2-x_0*x_4,x_1*x_2-x_0*x_3,x_1^2-x_0*x_2},Dominant=>true);",
"g = rationalMap {x_3^2-x_2*x_4,x_2*x_3-x_1*x_4,x_1*x_3-x_0*x_4,x_2^2-x_0*x_4,x_1*x_2-x_0*x_3};",
"h = rationalMap {-x_3^2+x_2*x_4,2*x_2*x_3-2*x_1*x_4,-3*x_2^2+2*x_1*x_3+x_0*x_4, 2*x_1*x_2-2*x_0*x_3,-x_1^2+x_0*x_2};",
"Phi = rationalMap {f,g,h};",
"time segre Phi;",
"describe segre Phi"},
SeeAlso => {(segreEmbedding,MultiprojectiveVariety)}}
document {Key => {(parametrize,MultiprojectiveVariety)},
Headline => "try to get a parametrization of a multi-projective variety",
Usage => "parametrize X",
Inputs => {"X" => MultiprojectiveVariety => {"a rational ",TEX///$k$///,"-dimensional subvariety of ",TEX///$\mathbb{P}^{r_1}\times\cdots\times\mathbb{P}^{r_n}$///}},
Outputs => {MultirationalMap => {"a birational map from ",TEX///$\mathbb{P}^k$///," to ",TEX///$X$///," (or an error if it fails)"}},
PARA{"Currently, this function works in particular for linear varieties, quadrics, varieties of minimal degree, Grassmannians, Severi varieties, del Pezzo fivefolds, and some types of Fano fourfolds."},
EXAMPLE {"K = ZZ/65521;",
"X = PP_K^{2,4,1,3};",
"f = parametrize X;",
"Y = random({{1,0,0,0},{0,1,0,0},{0,1,0,0},{0,0,0,1}},0_X);",
"g = parametrize Y;",
"Z = random({{1,1,0,0},{0,1,0,0},{0,0,1,0},{0,0,0,1},{0,0,0,1}},0_X);",
"h = parametrize Z;",
"describe h",
"describe inverse h",
"A = matrix pack(5,for i to 24 list random(1,ring PP_K^8)), A = A - transpose A;",
"W = projectiveVariety pfaffians(4,A);",
"parametrize W",
"parametrize (W ** (point W))"},
SeeAlso => {(inverse,MultirationalMap),(symbol ===>,EmbeddedProjectiveVariety,EmbeddedProjectiveVariety)}}
document {
Key => {(graph,MultirationalMap)},
Headline => "the graph of a multi-rational map",
Usage => "graph Phi",
Inputs => {
MultirationalMap => "Phi"},
Outputs => {
MultirationalMap => {"the first projection from the graph of ",TT"Phi"},
MultirationalMap => {"the second projection from the graph of ",TT"Phi"}},
PARA{"The equalities ",TT"(first graph Phi) * Phi == last graph Phi"," and ",TT"(first graph Phi)^-1 * (last graph Phi) == Phi"," are always satisfied."},
EXAMPLE {
"Phi = rationalMap(PP_(ZZ/333331)^(1,4),Dominant=>true)",
"time (Phi1,Phi2) = graph Phi",
"Phi1;",
"Phi2;",
"time (Phi21,Phi22) = graph Phi2",
"Phi21;",
"Phi22;",
"time (Phi211,Phi212) = graph Phi21",
"Phi211;",
"Phi212;",
"assert(
source Phi1 == source Phi2 and target Phi1 == source Phi and target Phi2 == target Phi and
source Phi21 == source Phi22 and target Phi21 == source Phi2 and target Phi22 == target Phi2 and
source Phi211 == source Phi212 and target Phi211 == source Phi21 and target Phi212 == target Phi21)",
"assert(Phi1 * Phi == Phi2 and Phi21 * Phi2 == Phi22 and Phi211 * Phi21 == Phi212)"},
SeeAlso => {(graph,RationalMap),(symbol *,MultirationalMap,MultirationalMap),(symbol ==,MultirationalMap,MultirationalMap),(inverse,MultirationalMap)}}
document {
Key => {(symbol *,MultirationalMap,MultirationalMap),(compose,MultirationalMap,MultirationalMap),(symbol *,RationalMap,MultirationalMap),(symbol *,MultirationalMap,RationalMap),(symbol ^,MultirationalMap,ZZ)},
Headline => "composition of multi-rational maps",
Usage => "Phi * Psi
compose(Phi,Psi)",
Inputs => {
MultirationalMap => "Phi" => { TEX///$X \dashrightarrow Y$///},
MultirationalMap => "Psi" => { TEX///$Y \dashrightarrow Z$///}},
Outputs => {
MultirationalMap => { TEX///$X \dashrightarrow Z$///, ", the composition of ",TT"Phi"," and ",TT"Psi"}},
EXAMPLE {
"ZZ/65521[x_0..x_4];",
"Psi = last graph rationalMap(projectiveVariety ideal(x_4,x_2^2-x_1*x_3,x_1*x_2-x_0*x_3,x_1^2-x_0*x_2),Dominant=>true);",
"Phi = first graph Psi;",
"Eta = Phi * Psi;",
"assert(Eta == last graph Psi);"},
SeeAlso => {(symbol *,RationalMap,RationalMap)}}
document {
Key => {(symbol ==,MultirationalMap,MultirationalMap),(symbol ==,RationalMap,MultirationalMap),(symbol ==,MultirationalMap,RationalMap),(symbol ==,MultirationalMap,ZZ),(symbol ==,ZZ,MultirationalMap)},
Headline => "equality of multi-rational maps",
Usage => "Phi == Psi",
Inputs => {
MultirationalMap => "Phi",
MultirationalMap => "Psi"},
Outputs => {
Boolean => {"whether ",TT"Phi"," and ",TT"Psi", " are the same multi-rational map"}},
SeeAlso => {(symbol ==,RationalMap,RationalMap),(symbol <==>,MultirationalMap,MultirationalMap)}}
document {
Key => {(symbol <==>,MultirationalMap,MultirationalMap)},
Headline => "equality of multi-rational maps with checks on internal data",
Usage => "Phi <==> Psi",
Inputs => {
MultirationalMap => "Phi",
MultirationalMap => "Psi"},
Outputs => {
Boolean => {"whether ",TT"Phi"," and ",TT"Psi", " are the same multi-rational map, by throwing an error if an inconsistency of the internal data is detected."}},
PARA{"For example, if you have calculated the degree of the two maps before, it will be checked that it is the same for both."},
SeeAlso => {(symbol ==,MultirationalMap,MultirationalMap)}}
document {
Key => {(multidegree,ZZ,MultirationalMap)},
Headline => "i-th projective degree of a multi-rational map using a probabilistic approach",
Usage => "multidegree(i,Phi)",
Inputs => {ZZ => "i", MultirationalMap => "Phi"},
Outputs => {
ZZ => {"the ",TEX///$i$///,"-th projective degree of ",TT"Phi"}},
PARA{"This is calculated by means of the inverse image of an appropriate random subvariety of the target."},
EXAMPLE {
"Phi = last graph rationalMap PP_(ZZ/300007)^(1,4);",
"for i in {4,3,2,1,0} list time multidegree(i,Phi)",
"time assert(oo == multidegree Phi)"},
SeeAlso => {(multidegree,MultirationalMap),(projectiveDegrees,RationalMap),(degree,MultirationalMap,Option),(symbol ^*,MultirationalMap)},
References => {"ArXiv preprint: ",HREF{"https://arxiv.org/abs/2101.04503","Computations with rational maps between multi-projective varieties"},"."}}
document {
Key => {(multidegree,MultirationalMap),(projectiveDegrees,MultirationalMap)},
Headline => "projective degrees of a multi-rational map",
Usage => "multidegree Phi",
Inputs => {
MultirationalMap => "Phi"},
Outputs => {
List => {"the list of projective degrees of ",TT"Phi"}},
PARA{"This calculates the ",TO2{(multidegree,MultiprojectiveVariety),"multidegree"}," of the ",TO2{(graph,MultirationalMap),"graph"}," and converts it to the list of projective degrees."},
EXAMPLE {
"ZZ/300007[x_0..x_3], f = rationalMap {x_2^2-x_1*x_3, x_1*x_2-x_0*x_3, x_1^2-x_0*x_2}, g = rationalMap {x_1^2-x_0*x_2, x_0*x_3, x_1*x_3, x_2*x_3, x_3^2};",
"Phi = last graph rationalMap {f,g};",
"time multidegree Phi",
"(degree source Phi,degree image Phi)"},
SeeAlso => {(multidegree,ZZ,MultirationalMap),(multidegree,RationalMap),(degree,MultirationalMap),(projectiveDegrees,RationalMap)},
References => {"ArXiv preprint: ",HREF{"https://arxiv.org/abs/2101.04503","Computations with rational maps between multi-projective varieties"},"."}}
document {
Key => {(degree,MultirationalMap,Option)},
Headline => "degree of a multi-rational map using a probabilistic approach",
Usage => "degree(Phi,Strategy=>\"random point\")
degree(Phi,Strategy=>\"0-th projective degree\")",
Inputs => {MultirationalMap => "Phi", Option => "Strategy"},
Outputs => {
ZZ => {"the degree of ",TT"Phi",". So this value is 1 if and only if (with high probability) the map is birational onto its image."}},
EXAMPLE {
"R = ZZ/33331[x_0..x_4];",
"Phi = (last graph multirationalMap rationalMap transpose jacobian(-x_2^3+2*x_1*x_2*x_3-x_0*x_3^2-x_1^2*x_4+x_0*x_2*x_4))||projectiveVariety ideal(random(2,R));",
"? Phi",
"time degree(Phi,Strategy=>\"random point\")",
"time degree(Phi,Strategy=>\"0-th projective degree\")",
"time degree Phi"},
PARA{"Note, as in the example above, that calculation times may vary depending on the strategy used."},
SeeAlso => {(degree,MultirationalMap),(degreeMap,RationalMap),(multidegree,ZZ,MultirationalMap),(point,MultiprojectiveVariety),(symbol ^*,MultirationalMap)}}
document {
Key => {(degree,MultirationalMap),(degreeMap,MultirationalMap)},
Headline => "degree of a multi-rational map",
Usage => "degree Phi",
Inputs => {
MultirationalMap => "Phi"},
Outputs => {
ZZ => {"the degree of ",TT"Phi",". So this value is 1 if and only if the map is birational onto its image."}},
PARA{"This is just a shortcut for ",TT"(last multidegree Phi)/(degree image Phi)","."},
EXAMPLE {
"ZZ/300007[x_0..x_3], f = rationalMap {x_2^2-x_1*x_3, x_1*x_2-x_0*x_3, x_1^2-x_0*x_2}, g = rationalMap {x_1^2-x_0*x_2, x_0*x_3, x_1*x_3, x_2*x_3, x_3^2};",
"Phi = last graph rationalMap {f,g};",
"time degree Phi"},
SeeAlso => {(degree,MultirationalMap,Option),(degree,RationalMap),(multidegree,MultirationalMap),(degreeMap,RationalMap)}}
document {
Key => {(isMorphism,MultirationalMap)},
Headline => "whether a multi-rational map is a morphism",
Usage => "isMorphism Phi",
Inputs => {
"Phi" => MultirationalMap},
Outputs => {
Boolean => {"whether ",TT"Phi"," is a morphism (i.e., everywhere defined)"}},
EXAMPLE {
"ZZ/300007[a..e], f = first graph rationalMap ideal(c^2-b*d,b*c-a*d,b^2-a*c,e), g = rationalMap submatrix(matrix f,{0..2});",
"Phi = rationalMap {f,g};",
"time isMorphism Phi",
"time Psi = first graph Phi;",
"time isMorphism Psi",
"assert((not o3) and o5)"},
SeeAlso => {(isIsomorphism,MultirationalMap),(isMorphism,RationalMap)}}
document {
Key => {(multirationalMap,MultiprojectiveVariety),(symbol _,ZZ,MultiprojectiveVariety)},
Headline => "identity map",
Usage => "1_X
multirationalMap X",
Inputs => {MultiprojectiveVariety => "X"},
Outputs => {MultirationalMap => {"the identity map on ",TT"X"}},
EXAMPLE {"X = PP_QQ^{2,3,1};", "1_X;"},
PARA {"The command ",TT "0_X"," returns instead the empty subscheme of ",TT "X","."},
EXAMPLE {"0_X;"},
SeeAlso => {(multirationalMap,MultiprojectiveVariety,MultiprojectiveVariety)}}
document {
Key => {(multirationalMap,MultiprojectiveVariety,MultiprojectiveVariety),(rationalMap,MultiprojectiveVariety,MultiprojectiveVariety)},
Headline => "get the natural inclusion",
Usage => "rationalMap(X,Y)
multirationalMap(X,Y)",
Inputs => {MultiprojectiveVariety => "X",MultiprojectiveVariety => "Y" => {"with ",TEX///$X\subseteq Y$///," (after identifying the ambient spaces)"}},
Outputs => {MultirationalMap => {"the natural inclusion of ",TEX///$X$///," into ",TEX///$Y$///}},
EXAMPLE {
"R = ZZ/101[a_0,a_1,b_0..b_2,Degrees=>{2:{1,0},3:{0,1}}], S = ZZ/101[c_0,c_1,d_0..d_2,Degrees=>{2:{1,0},3:{0,1}}]",
"I = ideal (random({0,1},R),random({1,1},R)), J = sub(I,vars S)",
"X = projectiveVariety I, Y = projectiveVariety J",
"rationalMap(X,ambient X);",
"rationalMap(X,Y);",
"stopIfError = false;",
"rationalMap(ambient X,X)"},
SeeAlso => {(symbol _,ZZ,MultiprojectiveVariety)}}
document {
Key => {(multirationalMap,MultirationalMap,MultiprojectiveVariety),(rationalMap,MultirationalMap,MultiprojectiveVariety)},
Headline => "change the target of a multi-rational map",
Usage => "rationalMap(Phi,Y)
multirationalMap(Phi,Y)
check rationalMap(Phi,Y)",
Inputs => {MultirationalMap => "Phi",MultiprojectiveVariety => "Y" => {"which must be compatible with ",TT"Phi"}},
Outputs => {MultirationalMap => {"defined in the same way as ",TT"Phi"," but with ",TT"Y"," as target"}},
EXAMPLE {
"Phi = rationalMap {super specialQuadraticTransformation 1}",
"Y = image Phi",
"Psi = rationalMap(Phi,Y)"},
SeeAlso => {(check,MultirationalMap),(symbol <<,MultirationalMap,MultiprojectiveVariety)}}
document {
Key => {(inverse,MultirationalMap)},
Headline => "inverse of a birational map",
Usage => "inverse Phi
Phi^-1
inverse(Phi,Verify=>true)
inverse(Phi,Verify=>false)",
Inputs => {MultirationalMap => "Phi" => {"a birational map"}},
Outputs => {MultirationalMap => {"the inverse map of ",TT"Phi"}},
PARA{"This function applies a general algorithm to calculate the inverse map passing through the computation of the ",TO2{(graph,MultirationalMap),"graph"},". Note that by default the option ",TT"Verify"," is set to ",TT"true",", which means that the birationality of the map is verified using ",TO2{(degree,MultirationalMap),"degree"},TT" Phi == 1"," and ",TO2{(image,MultirationalMap),"image"},TT" Phi == ",TO2{(target,MultirationalMap),"target"},TT" Phi","."},
EXAMPLE {
"-- map defined by the quadrics through a rational normal quartic curve
Phi = rationalMap PP_(ZZ/65521)^(1,4);",
"-- we see Phi as a dominant map
Phi = rationalMap(Phi,image Phi);",
"time inverse Phi;",
"Psi = last graph Phi;",
"time inverse Psi;",
"Eta = first graph Psi;",
"time inverse Eta;",
"assert(Phi * Phi^-1 == 1 and Phi^-1 * Phi == 1)",
"assert(Psi * Psi^-1 == 1 and Psi^-1 * Psi == 1)",
"assert(Eta * Eta^-1 == 1 and Eta^-1 * Eta == 1)"},
SeeAlso => {(graph,MultirationalMap),(symbol *,MultirationalMap,MultirationalMap),(symbol ==,MultirationalMap,MultirationalMap),(degree,MultirationalMap),(image,MultirationalMap),(inverse,RationalMap),inverse2},
Caveat => {"If the option ",TT"Verify"," is set to ",TT"false"," (which is preferable for efficiency), then no test is done to check that the map is birational, and if not then often the error is not thrown at all and a nonsense answer is returned."},
References => {"ArXiv preprint: ",HREF{"https://arxiv.org/abs/2101.04503","Computations with rational maps between multi-projective varieties"},"."}}
document {
Key => {inverse2,(inverse2,MultirationalMap)},
Headline => "inverse of a birational map using a faster algorithm for a special class of maps",
Usage => "inverse2 Phi
inverse2(Phi,Verify=>true)
inverse2(Phi,Verify=>false)",
Inputs => {MultirationalMap => "Phi" => {"a birational map of so-called ",EM"multi-linear type"}},
Outputs => {MultirationalMap => {"the inverse map of ",TT"Phi"}},
PARA{"This assumes that the ",TO2{(graph,MultirationalMap),"graph"}," of the input map ",TT"Phi"," is defined by a ",EM "simplified"," system of equations, which may not be true. If the option ",TT"Verify"," is set to ",TT"true",", which is the default choice, then it is verified that the left and right composition of ",TT"Phi"," with the returned map is the identity, throwing an error if this is not the case."},
EXAMPLE {
"K = ZZ/10000019;",
"-- map defined by the cubics through the secant variety to the rational normal curve of degree 6
Phi = multirationalMap rationalMap(ring PP_K^6,ring GG_K(2,4),gens ideal PP_K([6],2));",
"time Psi = inverse2 Phi;",
"assert(Phi * Psi == 1)",
"Phi' = Phi || Phi;",
"time Psi' = inverse2 Phi';",
"assert(Phi' * Psi' == 1)"},
SeeAlso => {(inverse,MultirationalMap),(symbol <==>,MultirationalMap,MultirationalMap)}}
document {
Key => {(isIsomorphism,MultirationalMap)},
Headline => "whether a birational map is an isomorphism",
Usage => "isIsomorphism Phi",
Inputs => {"Phi" => MultirationalMap},
Outputs => {Boolean => {"whether ",TT"Phi"," is an isomorphism"}},
EXAMPLE {
"-- map defined by the quadrics through a twisted cubic curve
ZZ/33331[a..d]; f = rationalMap {c^2-b*d,b*c-a*d,b^2-a*c};",
"Phi = rationalMap {f,f};",
"time isIsomorphism Phi",
"Psi = first graph Phi;",
"time isIsomorphism Psi",
"Eta = first graph Psi;",
"time isIsomorphism Eta",
"assert(o8 and (not o6) and (not o4))"},
SeeAlso => {(inverse,MultirationalMap),(isMorphism,MultirationalMap)}}
document {
Key => {baseLocus,(baseLocus,MultirationalMap),(baseLocus,RationalMap)},
Headline => "the base locus of a multi-rational map",
Usage => "baseLocus Phi",
Inputs => {MultirationalMap => "Phi"},
Outputs => {MultiprojectiveVariety => {"the base locus of ",TT"Phi",", that is, the locus where it is not defined"}},
EXAMPLE lines ///t = gens ring PP_(ZZ/33331)^5;
Phi = rationalMap {rationalMap {t_0,t_1,t_2},rationalMap {t_3,t_4,t_5}};
X = baseLocus Phi;
describe X
Psi = inverse(Phi|random(3,baseLocus Phi));
Y = baseLocus Psi;
describe Y///,
SeeAlso => {(isMorphism,MultirationalMap),(ideal,RationalMap)}}
document {
Key => {(projectiveVariety,MultidimensionalMatrix)},
Headline => "the multi-projective variety defined by a multi-dimensional matrix",
Usage => "projectiveVariety A",
Inputs => {MultidimensionalMatrix => "A" => {"an ",TEX///$n$///,"-dimensional matrix of shape ",TEX///$(k_1+1)\times\cdots\times (k_n+1)$///}},
Outputs => {MultiprojectiveVariety => {"the corresponding hypersurface of multi-degree ",TEX///$(1,\ldots,1)$///," on the product of projective spaces ",TEX///$\mathbb{P}^{k_1}\times\cdots\times\mathbb{P}^{k_n}$///}},
PARA {"In particular, we have ",TO2{(determinant,MultidimensionalMatrix),"det"},TT" A != 0"," if and only if ",TO2{(dim,MultiprojectiveVariety),"dim"}," ",TO2{(singularLocus,MultiprojectiveVariety),"singularLocus"},TT"(projectiveVariety A) == -1","."},
EXAMPLE {
"K = ZZ/33331;",
"A = randomMultidimensionalMatrix({2,2,3},CoefficientRing=>K)",
"det A",
"X = projectiveVariety A;",
"dim singularLocus X",
"B = multidimensionalMatrix {{{9492_K, 13628, -9292}, {9311, -5201, -16439}}, {{11828, -16301, 8162}, {15287, 8345, -2094}}}",
"det B",
"Y = projectiveVariety B;",
"dim singularLocus Y"},
SeeAlso => {(det,MultidimensionalMatrix),(singularLocus,MultiprojectiveVariety)}}
document {
Key => {(symbol |,MultirationalMap,MultiprojectiveVariety),(symbol |,RationalMap,MultiprojectiveVariety),(symbol |,MultirationalMap,List)},
Headline => "restriction of a multi-rational map",
Usage => "Phi | Z",
Inputs => {MultirationalMap => "Phi" => { TEX///$\Phi:X \dashrightarrow Y$///},
MultiprojectiveVariety => "Z" => {"a subvariety of ",TEX///$X$///}},
Outputs => {MultirationalMap => {"the restriction of ",TEX///$\Phi$///," to ",TEX///$Z$///,", ",TEX///$\phi|_{Z}: Z \dashrightarrow Y$///}},
EXAMPLE {
"ZZ/33331[x_0..x_3], f = rationalMap {x_2^2-x_1*x_3,x_1*x_2-x_0*x_3,x_1^2-x_0*x_2}, g = rationalMap {x_2^2-x_1*x_3,x_1*x_2-x_0*x_3};",
"Phi = last graph rationalMap {f,g};",
"Z = (source Phi) * projectiveVariety ideal random({1,1,2},ring ambient source Phi);",
"Phi' = Phi|Z;",
"source Phi'",
"assert(image Phi' == Phi Z)"},
PARA{"The following is a shortcut to take restrictions on random hypersurfaces as above."},
EXAMPLE {"Phi|{1,1,2};"},
SeeAlso => {(symbol ||,MultirationalMap,MultiprojectiveVariety),(symbol |,RationalMap,Ideal),(symbol *,MultiprojectiveVariety,MultiprojectiveVariety)}}
document {
Key => {(symbol ||,MultirationalMap,MultiprojectiveVariety),(symbol ||,RationalMap,MultiprojectiveVariety),(symbol ||,MultirationalMap,List)},
Headline => "restriction of a multi-rational map",
Usage => "Phi || Z",
Inputs => {MultirationalMap => "Phi" => { TEX///$\Phi:X \dashrightarrow Y$///},
MultiprojectiveVariety => "Z" => {"a subvariety of ",TEX///$Y$///}},
Outputs => {
MultirationalMap => {"the restriction of ",TEX///$\Phi$///," to ",TEX///${\Phi}^{(-1)} Z$///,", ",TEX///${{\Phi}|}_{{\Phi}^{(-1)} Z}: {\Phi}^{(-1)} Z \dashrightarrow Z$///}},
EXAMPLE {
"ZZ/33331[x_0..x_3], f = rationalMap {x_2^2-x_1*x_3,x_1*x_2-x_0*x_3,x_1^2-x_0*x_2}, g = rationalMap {x_2^2-x_1*x_3,x_1*x_2-x_0*x_3};",
"Phi = last graph rationalMap {f,g};",
"Z = projectiveVariety ideal random({1,2},ring target Phi);",
"Phi' = Phi||Z;",
"target Phi'",
"assert(source Phi' == Phi^* Z)"},
PARA{"The following is a shortcut to take restrictions on random hypersurfaces as above."},
EXAMPLE {"Phi||{1,2};"},
SeeAlso => {(symbol |,MultirationalMap,MultiprojectiveVariety),(symbol ||,RationalMap,Ideal),(symbol ^*,MultirationalMap)}}
document {
Key => {(symbol |,MultirationalMap,MultirationalMap),(symbol |,RationalMap,MultirationalMap),(symbol |,MultirationalMap,RationalMap),(symbol |,RationalMap,RationalMap)},
Headline => "product of multi-rational maps",
Usage => "Phi | Psi",
Inputs => {MultirationalMap => "Phi" => { TEX///$\Phi:X \dashrightarrow Y$///},
MultirationalMap => "Psi" => { TEX///$\Psi:X \dashrightarrow Z$///}},
Outputs => {MultirationalMap => {"the rational map ",TEX///$X \dashrightarrow Y\times Z$///," defined by ",TEX///$p\mapsto (\Phi(p),\Psi(p))$///,"; in other words, it is the map defined by the ",TO2{(symbol |,List,List),"join"}," of ",TO2{(factor,MultirationalMap),"factor"},TT" Phi"," with ",TO2{(factor,MultirationalMap),"factor"},TT" Psi"}},
EXAMPLE {
"Phi = rationalMap({veronese(1,2,ZZ/33331)},Dominant=>true);",
"Psi = rationalMap {veronese(1,3,ZZ/33331)};",
"(X,Y,Z) = (source Phi,target Phi,target Psi);",
"Eta = Phi | Psi;",
"Eta | Phi;",
"Phi | Psi | Eta;",
"super oo;",
"rationalMap(oo,image oo);"},
SeeAlso => {(symbol ||,MultirationalMap,MultirationalMap),(symbol |,List,List),(factor,MultirationalMap),(symbol *,MultiprojectiveVariety,MultiprojectiveVariety),(super,MultirationalMap)}}
document {
Key => {(symbol ||,MultirationalMap,MultirationalMap),(symbol ||,MultirationalMap,RationalMap),(symbol ||,RationalMap,MultirationalMap),(symbol ||,RationalMap,RationalMap)},
Headline => "product of multi-rational maps",
Usage => "Phi || Psi",
Inputs => {MultirationalMap => "Phi" => { TEX///$\Phi:X \dashrightarrow Y$///},
MultirationalMap => "Psi" => { TEX///$\Psi:Z \dashrightarrow W$///}},
Outputs => {MultirationalMap => {"the rational map ",TEX///$\Phi\times\Psi:X\times Z \dashrightarrow Y\times W$///," defined by ",TEX///$\Phi\times\Psi(p,q) = (\Phi(p),\Psi(q))$///}},
EXAMPLE {
"Phi = rationalMap({veronese(1,4,ZZ/33331)},Dominant=>true);",
"Psi = last graph rationalMap PP_(ZZ/33331)^(1,3);",
"(X,Y,Z,W) = (source Phi,target Phi,source Psi,target Psi);",
"Eta = Phi || Psi;",
"Psi || Eta;",
"Psi || Eta || Phi;",
"assert(oo == (Psi || Eta) || Phi and (Psi || Eta) || Phi == Psi || (Eta || Phi))"},
SeeAlso => {(symbol |,MultirationalMap,MultirationalMap)}}
document {
Key => {(super,MultirationalMap)},
Headline => "get the multi-rational map whose target is a product of projective spaces",
Usage => "super Phi",
Inputs => {MultirationalMap => "Phi" => {"whose target is a subvariety ",TEX///$Y\subseteq\mathbb{P}^{k_1}\times\cdots\times\mathbb{P}^{k_n}$///}},
Outputs => {MultirationalMap => {"the composition of ",TT"Phi"," with the inclusion of ",TEX///$Y$///," into ",TEX///$\mathbb{P}^{k_1}\times\cdots\times\mathbb{P}^{k_n}$///}},
EXAMPLE {
"Phi = rationalMap{rationalMap(veronese(1,2,ZZ/33331),Dominant=>true),rationalMap(veronese(1,3,ZZ/33331),Dominant=>true)};",
"super Phi;",
"Psi = rationalMap(Phi,image Phi);",
"super Psi == super Phi"},
SeeAlso => {(target,MultirationalMap),(ambient,MultiprojectiveVariety),(super,RationalMap)}}
document {
Key => {(trim,MultirationalMap),(trim,RationalMap)},
Headline => "trim the target of a multi-rational map",
Usage => "trim Phi",
Inputs => {MultirationalMap => "Phi" => {"from ",ofClass MultiprojectiveVariety," ",TEX///$X$///," to ",TEX///$\mathbb{P}^{k_1}\times\cdots\times\mathbb{P}^{k_n}$///}},
Outputs => {MultirationalMap => {"from ",TEX///$X$///," to ",TEX///$\mathbb{P}^{s_1}\times\cdots\times\mathbb{P}^{s_n}$///,", with ",TEX///$s_i\leq k_i$///,", which is isomorphic to the original map, but whose image is not contained in any hypersurface of multidegree ",TEX///$(d_1,\ldots,d_n)$///," with ",TEX///$\sum_{i=1}^n d_i = 1$///}},
EXAMPLE {
"K = ZZ/33331; C = PP_K^(1,4); -- rational normal quartic curve",
"Phi = rationalMap C; -- map defined by the quadrics through C",
"Q = random(2,C); -- random quadric hypersurface through C",
"Phi = Phi|Q;",
"image Phi",
"Psi = trim Phi;",
"image Psi",
"Phi || Phi || Psi;",
"image oo",
"trim (Phi || Phi || Psi);",
"image oo"}}
document {
Key => {(random,List,MultiprojectiveVariety),(random,ZZ,MultiprojectiveVariety)},
Headline => "get a random hypersurface of given multi-degree containing a multi-projective variety",
Usage => "random(d,X)",
Inputs => {List => "d" => {"a list of ",TEX///$n$///," nonnegative integers"},
MultiprojectiveVariety => "X" => {"a subvariety of ",TEX///$\mathbb{P}^{k_1}\times\cdots\times\mathbb{P}^{k_n}$///}},
Outputs => {MultiprojectiveVariety => {"a random hypersurface in ",TEX///$\mathbb{P}^{k_1}\times\cdots\times\mathbb{P}^{k_n}$///," of multi-degree ",TEX///$d$///," containing ",TEX///$X$///}},
PARA{"More generally, if ",TT"d"," is a list of multi-degrees, then the output is the intersection of the hypersurfaces ",TT "random(d_i,X)","."},
EXAMPLE {
"X = PP_(ZZ/65521)^(1,3); -- twisted cubic curve",
"random({2},X);",
"ideal oo",
"random({{2},{2}},X);",
"ideal oo",
"X = X^2;",
"random({1,2},X);",
"ideal oo",
"random({{1,2},{1,2},{2,0}},X);",
"degrees oo"},
SeeAlso => {(random,MultiprojectiveVariety)}}
document {
Key => {(random,MultiprojectiveVariety)},
Headline => "apply a random automorphism of the ambient multi-projective space",
Usage => "random X",
Inputs => {MultiprojectiveVariety => "X" => {"a subvariety of ",TEX///$\mathbb{P}^{k_1}\times\cdots\times\mathbb{P}^{k_n}$///}},
Outputs => {MultiprojectiveVariety => {"the image of ",TEX///$X$///," under the action of a random element of ",TEX///$\mathrm{Aut}(\mathbb{P}^{k_1})\times\cdots\times\mathrm{Aut}(\mathbb{P}^{k_n})$///}},
EXAMPLE {
"K = ZZ/65521;",
"X = PP_K^({1,1},{2,3});",
"ideal X",
"Y = random X;",
"ideal Y"},
SeeAlso => {(random,List,MultiprojectiveVariety),(permute,MultiprojectiveVariety,List),(symbol ===>,EmbeddedProjectiveVariety,EmbeddedProjectiveVariety)}}
document {
Key => {(permute,MultiprojectiveVariety,List)},
Headline => "permute the factors of the ambient multi-projective space",
Usage => "permute(X,s)",
Inputs => {"X" => MultiprojectiveVariety => {"a subvariety of ",TEX///$\mathbb{P}^{k_0}\times\mathbb{P}^{k_1}\times\cdots\times\mathbb{P}^{k_{n}}$///},
"s" => List => {"a permutation of the set ",TEX///$\{0,1,\ldots,n\}$///}},
Outputs => {MultirationalMap => {"an isomorphism from ",TEX///$X$///," to a subvariety of ",TEX///$\mathbb{P}^{k_{s(0)}}\times\mathbb{P}^{k_{s(1)}}\times\cdots\times\mathbb{P}^{k_{s(n)}}$///}},
EXAMPLE {
"X = PP_(ZZ/33331)^{2,3,1};",
"f = permute(X,{1,0,2});",
"assert isIsomorphism f",
"Y = random({0,1,1},0_X);",
"g = permute(Y,{2,0,1});",
"assert isIsomorphism g"},
SeeAlso => {(permute,MultidimensionalMatrix,List)}}
document {
Key => {(shape,MultiprojectiveVariety)},
Headline => "shape of the ambient multi-projective space of a multi-projective variety",
Usage => "shape X",
Inputs => {"M" => MultiprojectiveVariety => {"a subvariety of ",TEX///$\mathbb{P}^{k_1}\times\cdots\times\mathbb{P}^{k_{n}}$///}},
Outputs => {List => {"the list of integers ",TEX///$\{k_1, \ldots, k_n\}$///}},
EXAMPLE {
"X = PP_(ZZ/65521)^{2,3,1};",
"shape X",
"p = point X;",
"shape p"},
SeeAlso => {(shape,MultidimensionalMatrix)}}
document {
Key => {(show,MultirationalMap),(show,RationalMap)},
Headline => "display a multi-rational map",
Usage => "show Phi",
Inputs => {"Phi" => MultirationalMap},
Outputs => {Net => {"a net of ",TT"Phi"}},
EXAMPLE {
"Phi = inverse first graph last graph rationalMap PP_(ZZ/33331)^(1,3)",
"time describe Phi",
"show Phi"},
SeeAlso => {(describe,MultirationalMap)}}
document {
Key => {degreeSequence,(degreeSequence,MultirationalMap),(degreeSequence,RationalMap)},
Headline => "the (multi)-degree sequence of a (multi)-rational map",
Usage => "degreeSequence Phi",
Inputs => {"Phi" => MultirationalMap},
Outputs => {List => {"the list of the degree sequences for the rational maps returned by ",TO2{(factor,MultirationalMap),"factor"},TT" Phi","."}},
EXAMPLE {
"Phi = inverse first graph last graph rationalMap PP_(ZZ/33331)^(1,3);",
"degreeSequence Phi"},
SeeAlso => {(factor,MultirationalMap)},
References => {HREF{"https://www.sciencedirect.com/science/article/pii/S0021869304001930","Cremona transformations and some related algebras"},", by A. Simis."}}
document {
Key => {(describe,MultirationalMap),(symbol ?,MultirationalMap)},
Headline => "describe a multi-rational map",
Usage => "describe Phi
? Phi",
Inputs => {"Phi" => MultirationalMap},
Outputs => {{"a description of ",TT"Phi"}},
PARA{TT"? Phi"," is a lite version of ",TT"describe Phi",". The latter has a different behavior than ",TO (describe,RationalMap),", since it performs computations."},
EXAMPLE {
"Phi = multirationalMap graph rationalMap PP_(ZZ/65521)^(1,4);",
"time ? Phi",
"image Phi;",
"time ? Phi",
"time describe Phi",
"time ? Phi"},
SeeAlso => {(describe,MultiprojectiveVariety),(show,MultirationalMap)}}
document {
Key => {(describe,MultiprojectiveVariety),(symbol ?,MultiprojectiveVariety)},
Headline => "describe a multi-projective variety",
Usage => "describe X
? X",
Inputs => {"X" => MultiprojectiveVariety},
Outputs => {{"a description of ",TT"X"}},
PARA{TT"? X"," is a lite version of ",TT"describe X","."},
EXAMPLE {
"X = source graph rationalMap PP_(ZZ/65521)^(1,3);",
"? X",
"describe X",
"? image segre X"},
SeeAlso => {(describe,MultirationalMap)}}
document {
Key => {(symbol !,EmbeddedProjectiveVariety)},
Headline => "print a more detailed description of an embedded projective variety",
Usage => "X!",
Inputs => {"X" => EmbeddedProjectiveVariety},
EXAMPLE lines ///
K = ZZ/333331; K[t_0..t_5];
X = projectiveVariety ideal(t_4^2-t_3*t_5,t_2*t_4-t_1*t_5,t_2*t_3-t_1*t_4,t_2^2-t_0*t_5,t_1*t_2-t_0*t_4,t_1^2-t_0*t_3);
X!
K[x_0..x_7];
X = projectiveVariety ideal(x_5*x_6-x_4*x_7,x_4*x_6-x_3*x_7,x_2*x_6-x_1*x_7,x_1*x_6-x_0*x_7,x_4^2-x_3*x_5,x_2*x_4-x_1*x_5,x_1*x_4-x_0*x_5,x_2*x_3-x_0*x_5,x_1*x_3-x_0*x_4,x_1^2-x_0*x_2);
X!
(random({2},X))!
(random({{2},{2}},X))!///,
SeeAlso => {(describe,MultiprojectiveVariety),(symbol ?,MultiprojectiveVariety)}}
document {
Key => {(clean,MultirationalMap),(clean,RationalMap)},
Headline => "clean the internal information of a multi-rational map",
Usage => "clean Phi",
Inputs => {"Phi" => MultirationalMap},
Outputs => {MultirationalMap => {"which is identical to ",TT"Phi",", but new to the system"}},
PARA{"This is only useful for comparing computation times for various algorithms."},
EXAMPLE {"Phi = 1_(PP_QQ^2);", "Psi = clean Phi;", "Phi == Psi", "Phi === Psi"}}
document {
Key => {(symbol **,MultirationalMap,Ring)},
Headline => "change the coefficient ring of a multi-rational map",
Usage => "Phi ** K",
Inputs => {MultirationalMap => "Phi" => {"defined over a coefficient ring ",TT"F"},
Ring => "K" => {"the new coefficient ring (which must be a field)"}},
Outputs => {MultirationalMap => {"a multi-rational map defined over ",TT"K",", obtained by coercing the coefficients of the multi-forms defining ",TT"Phi", " into ",TT"K"}},
PARA {"It is necessary that all multi-forms in the old coefficient ring ",TT"F"," can be automatically coerced into the new coefficient ring ",TT"K","."},
EXAMPLE {
"Phi = inverse first graph rationalMap PP_QQ^(2,2);",
"describe Phi",
"K = ZZ/65521;",
"Phi' = Phi ** K;",
"describe Phi'",
"Phi'' = Phi ** frac(K[t]);",
"describe Phi''"},
SeeAlso => {(coefficientRing,MultirationalMap),(symbol **,RationalMap,Ring),(symbol **,MultiprojectiveVariety,Ring)}}
document {
Key => {(symbol **,MultiprojectiveVariety,Ring)},
Headline => "change the coefficient ring of a multi-projective variety",
Usage => "X ** K",
Inputs => {MultiprojectiveVariety => "X" => {"defined over a coefficient ring ",TT"F"},
Ring => "K" => {"the new coefficient ring (which must be a field)"}},
Outputs => {MultiprojectiveVariety => {"a multi-projective variety defined over ",TT"K",", obtained by coercing the coefficients of the multi-forms defining ",TT"X", " into ",TT"K"}},
PARA {"It is necessary that all multi-forms in the old coefficient ring ",TT"F"," can be automatically coerced into the new coefficient ring ",TT"K","."},
EXAMPLE {
"use ring PP_QQ^{2,3};",
"X = projectiveVariety ideal(x1_2^2-x1_1*x1_3,x1_1*x1_2-x1_0*x1_3,x1_1^2-x1_0*x1_2,x0_1^2-x0_0*x0_2);",
"ideal X",
"K = ZZ/65521;",
"X' = X ** K;",
"ideal X'"},
SeeAlso => {(coefficientRing,MultiprojectiveVariety),(symbol **,MultirationalMap,Ring)}}
document {
Key => {"shortcuts",(rationalMap,MultiprojectiveVariety),(rationalMap,MultiprojectiveVariety,List),(rationalMap,MultiprojectiveVariety,ZZ),(rationalMap,MultiprojectiveVariety,ZZ,ZZ),(multirationalMap,RationalMap)},
Headline => "Some convenient shortcuts for multi-rational maps consisting of a single rational map",
Usage => "rationalMap X <==> multirationalMap {rationalMap ideal X}
rationalMap(X,a) <==> multirationalMap {rationalMap(ideal X,a)}
rationalMap(X,a,b) <==> multirationalMap {rationalMap(ideal X,a,b)}
multirationalMap f <==> multirationalMap {f}",
Inputs => {
"X" => MultiprojectiveVariety,
"a" => ZZ => {"or ",ofClass List," of integers"},
"b" => ZZ,
"f" => RationalMap},
EXAMPLE {
"X = PP_QQ^(1,3);",
"a = 4, b = 2;",
"phi = rationalMap X;",
"assert(phi <==> multirationalMap {rationalMap ideal X})",
"phi = rationalMap(X,a);",
"assert(phi <==> multirationalMap {rationalMap(ideal X,a)})",
"phi = rationalMap(X,a,b);",
"assert(phi <==> multirationalMap {rationalMap(ideal X,a,b)})"},
PARA{"If you want to consider ",TEX///$X$///," as a subvariety of another multi-projective variety ",TEX///$Y$///,", you may use the command ",TT///X_Y///,". For instance, ",TT///rationalMap(X_Y,a)///," returns the rational map from ",TEX///$Y$///," defined by a basis of the linear system ",TEX///$|H^0(Y,\mathcal{I}_{X\subseteq Y}(a))|$///," (basically, this is equivalent to ",TT"trim((rationalMap(X,a))|Y)",")."},
EXAMPLE {
"Y = random(3,X);",
"rationalMap(X_Y,a);",
"rationalMap X_Y;"},
SeeAlso => {(rationalMap,Ideal),(rationalMap,Ideal,ZZ),(rationalMap,Ideal,ZZ,ZZ),(symbol <==>,MultirationalMap,MultirationalMap),toRationalMap}}
document {
Key => {toRationalMap,(toRationalMap,MultirationalMap)},
Headline => "convert a multi-rational map consisting of a single rational map to a standard rational map",
Usage => "toRationalMap Phi",
Inputs => {"Phi" => MultirationalMap => {"whose target is ",ofClass EmbeddedProjectiveVariety}},
Outputs => {RationalMap => {"which is mathematically equal to ",TT"Phi"," but represented as an object of the class ",TO RationalMap}},
PARA{"This is useful when you need to use tools from the package ",TO Cremona,"."},
EXAMPLE {
"Phi = rationalMap(PP_QQ^(1,4),Dominant=>true);",
"class Phi",
"f = toRationalMap Phi;",
"class f",
"assert(Phi == f and Phi =!= f)"},
SeeAlso => {(multirationalMap,RationalMap)}}
document {
Key => {(variety,EmbeddedProjectiveVariety)},
Headline => "convert an embedded projective variety into a built-in projective variety",
Usage => "variety X",
Inputs => {"X" => EmbeddedProjectiveVariety},
Outputs => {ProjectiveVariety => {"which is mathematically equal to ",TT"X"}},
EXAMPLE {
"X = PP_QQ^(2,2);",
"class X",
"X' = variety X;",
"class X'",
"assert(ring X === ring X')"}}
document {
Key => {(dual,EmbeddedProjectiveVariety)},
Headline => "the variety projectively dual to an embedded projective variety",
Usage => "dual X",
Inputs => {"X" => EmbeddedProjectiveVariety},
Outputs => {EmbeddedProjectiveVariety => {"which is projectively dual to ",TEX///$X$///}},
EXAMPLE {"X = PP_QQ^(2,2);","X' = dual X;", "describe X'","assert(dual X' == X)"},
SeeAlso => {(conormalVariety,EmbeddedProjectiveVariety),dualVariety,tangentSpace}}
document {
Key => {linearlyNormalEmbedding,(linearlyNormalEmbedding,EmbeddedProjectiveVariety)},
Headline => "get the linearly normal embedding",
Usage => "linearlyNormalEmbedding X",
Inputs => {"X" => EmbeddedProjectiveVariety},
Outputs => {{"an ",TO2{MultirationalMap,"isomorphism"}," from ",TT"X"," to a linearly normal variety, whose inverse is a linear projection"}},
EXAMPLE {"K = ZZ/333331;",
"X = PP_K^(1,7); -- rational normal curve of degree 7",
"time f = linearlyNormalEmbedding X;",
"Y = (rationalMap {for i to 3 list random(1,ring ambient X)}) X; -- an isomorphic projection of X in PP^3",
"time g = linearlyNormalEmbedding Y;",
"assert(isIsomorphism g)",
"describe g"},
Caveat => {"This is an experimental function."}}
document {
Key => {linearSpan,(linearSpan,EmbeddedProjectiveVariety),(linearSpan,List)},
Headline => "the linear span of an embedded projective variety",
Usage => "linearSpan X",
Inputs => {"X" => EmbeddedProjectiveVariety => {" (resp., a list of ",TO2{EmbeddedProjectiveVariety,"embedded projective varieties"},")"}},
Outputs => {EmbeddedProjectiveVariety => {"the linear span of ",TT"X"," (resp., of the ",TO2{(⋃,List),"union"}," of the members of ",TT"X",")"}},
EXAMPLE {"P = PP_(ZZ/333331)^7;",
"S = apply(3,i -> point P)",
"L = linearSpan ⋃ S;",
"assert(L == linearSpan S)",
"assert(dim L == 2 and degree L == 1)"}}
document {
Key => {tangentSpace,(tangentSpace,EmbeddedProjectiveVariety,EmbeddedProjectiveVariety)},
Headline => "tangent space to a projective variety at a point",
Usage => "tangentSpace(X,p)
tangentSpace(p,X)",
Inputs => {"X" => EmbeddedProjectiveVariety,"p" => EmbeddedProjectiveVariety => {"a point on ",TEX///$X$///}},
Outputs => {EmbeddedProjectiveVariety => {"the embedded tangent space ",TEX///$T_p(X)$///," to ",TEX///$X$///," at the point ",TEX///$p$///}},
EXAMPLE {"X = PP_(ZZ/333331)^(3,2);",
"p := point X",
"tangentSpace(X,p)"},
SeeAlso => {(tangentCone,EmbeddedProjectiveVariety,EmbeddedProjectiveVariety),(singularLocus,MultiprojectiveVariety),(dual,EmbeddedProjectiveVariety),(point,MultiprojectiveVariety)}}
typValTanCone := typicalValues#tangentCone;
typicalValues#tangentCone = EmbeddedProjectiveVariety;
document {
Key => {(tangentCone,EmbeddedProjectiveVariety,EmbeddedProjectiveVariety)},
Headline => "tangent cone to a projective variety at a point",
Usage => "tangentCone(X,p)
tangentCone(p,X)",
Inputs => {"X" => EmbeddedProjectiveVariety,"p" => EmbeddedProjectiveVariety => {"a point on ",TEX///$X$///}},
Outputs => {EmbeddedProjectiveVariety => {"the embedded tangent cone ",TEX///$C_p(X)$///," to ",TEX///$X$///," at the point ",TEX///$p$///}},
EXAMPLE {"Y = random(3,0_(PP_(ZZ/333331)^6)), q = point Y, j = parametrize tangentSpace(Y,q);",
"(X, p) = (j^* Y, j^* q);",
"C = tangentCone(X,p);",
"describe C",
"assert(isSubset(C,tangentSpace(X,p)) and coneOfLines(C,p) == C)"},
SeeAlso => {(tangentSpace,EmbeddedProjectiveVariety,EmbeddedProjectiveVariety),(tangentCone,Ideal),coneOfLines}}
typicalValues#tangentCone = typValTanCone;
document {Key => {coneOfLines,(coneOfLines,EmbeddedProjectiveVariety,EmbeddedProjectiveVariety)},
Headline => "cone of lines on a subvariety passing through a point",
Usage => "coneOfLines(X,p)
coneOfLines(p,X)",
Inputs => {"X" => EmbeddedProjectiveVariety => {"a subvariety of ", TEX///$\mathbb{P}^n$///}, "p" => EmbeddedProjectiveVariety => {"a point on ", TEX///$X$///}},
Outputs => {EmbeddedProjectiveVariety => {"the subscheme of ",TEX///$\mathbb{P}^n$///, " consisting of the union of all lines contained in ",TEX///$X$///, " and passing through ",TEX///$p$///}},
PARA{"In the example below we compute the cone of lines passing through the generic point of a smooth del Pezzo fourfold in ",TEX///$\mathbb{P}^7$///, "."},
EXAMPLE {"K := frac(QQ[a,b,c,d,e]); t = gens ring PP_K^4; phi = rationalMap {minors(2,matrix{{t_0,t_1,t_2},{t_1,t_2,t_3}}) + t_4};", "X = image phi;", "ideal X", "p := projectiveVariety minors(2,(vars K)||(vars ring PP_K^4))", "coneOfLines(X,phi p)", "ideal oo"},
SeeAlso => (tangentCone,EmbeddedProjectiveVariety,EmbeddedProjectiveVariety)}
document {Key => {sectionalGenus,(sectionalGenus,EmbeddedProjectiveVariety)},
Headline => "the sectional genus of an embedded projective variety",
Usage => "sectionalGenus X",
Inputs => {"X" => EmbeddedProjectiveVariety => {"a positive dimensional variety"}},
Outputs => {ZZ => {"the sectional arithmetic genus of ",TT"X"}},
EXAMPLE {"X = PP_QQ^(3,2);",
"sectionalGenus X"},
SeeAlso => (genera,ProjectiveVariety)}
document {Key => {(decompose,MultiprojectiveVariety)},
Headline => "irreducible components of a variety",
Usage => "decompose X",
Inputs => {"X" => MultiprojectiveVariety},
Outputs => {List => {"the list of ",TO2{MultiprojectiveVariety,"multi-projective varieties"}," defined by the minimal associated primes of the ",TO2{(ideal,MultiprojectiveVariety),"ideal"}," of ",TT"X"}},
PARA {"This calculation is performed using the function ",TO (decompose,Ideal),"."},
EXAMPLE {"C = PP_(ZZ/100003)^(1,4);",
"L = linearSpan sum{point C,point C}, L' = linearSpan sum{point C,point ambient C};",
"X = ⋃ {C,L,L'};",
"D = decompose X",
"assert(X == ⋃ D)"},
SeeAlso => {(support,MultiprojectiveVariety),(top,MultiprojectiveVariety),(decompose,Ideal)}}
document {Key => {(degrees,MultiprojectiveVariety)},
Headline => "degrees for the minimal generators",
Usage => "degrees X",
Inputs => {"X" => MultiprojectiveVariety},
Outputs => {{"the list of multi-degrees for the minimal generators of the ",TO2{(ideal,MultiprojectiveVariety),"ideal"}," of ",TT"X"}},
EXAMPLE {"X = ⋃ for i to 10 list point PP_(ZZ/33331)^{2,3};", "? X", "degrees X"}}
document {
Key => {(symbol ===>,EmbeddedProjectiveVariety,EmbeddedProjectiveVariety), (symbol <===,EmbeddedProjectiveVariety,EmbeddedProjectiveVariety)},
Headline => "try to find an isomorphism between two projective varieties",
Usage => "X ===> Y
Y <=== X",
Inputs => {"X" => EmbeddedProjectiveVariety,"Y" => EmbeddedProjectiveVariety => {"projectively equivalent to ",TT "X"}},
Outputs => {MultirationalMap => {"an isomorphism of the ambient spaces that sends ",TT"X"," to ",TT"Y"," (or an error if it fails)"}},
PARA{"This recursively tries to find an isomorphism between the base loci of the ",TO2{(parametrize,MultiprojectiveVariety),"parameterizations"},"."},
PARA{"In the following example, ",TEX///$X$///," and ",TEX///$Y$///," are two random rational normal curves of degree 6 in ",TEX///$\mathbb{P}^6\subset\mathbb{P}^8$///,", and ",TEX///$V$///," (resp., ",TEX///$W$///,") is a random complete intersection of type (2,1) containing ",TEX///$X$///," (resp., ",TEX///$Y$///,")."},
EXAMPLE lines ///K = ZZ/10000019;
(M,N) = (apply(9,i -> random(1,ring PP_K^8)), apply(9,i -> random(1,ring PP_K^8)));
X = projectiveVariety(minors(2,matrix{take(M,6),take(M,{1,6})}) + ideal take(M,-2));
Y = projectiveVariety(minors(2,matrix{take(N,6),take(N,{1,6})}) + ideal take(N,-2));
? X
time f = X ===> Y;
f X
f^* Y
V = random({{2},{1}},X);
W = random({{2},{1}},Y);
time g = V ===> W;
g||W///,
PARA{"In the next example, ",TEX///$Z\subset\mathbb{P}^9$///," is a random (smooth) del Pezzo sixfold, hence projectively equivalent to ",TEX///$\mathbb{G}(1,4)$///,"."},
EXAMPLE lines ///A = matrix pack(5,for i to 24 list random(1,ring PP_K^9)); A = A - transpose A
Z = projectiveVariety pfaffians(4,A);
? Z
time h = Z ===> GG_K(1,4)
h || GG_K(1,4)
show oo///,
SeeAlso => {(parametrize,MultiprojectiveVariety)}}
document {
Key => {(symbol <<,MultirationalMap,MultiprojectiveVariety),(symbol <<,MultiprojectiveVariety,MultiprojectiveVariety)},
Headline => "force the change of the target in a multi-rational map",
Usage => "Phi << Y",
Inputs => {MultirationalMap => "Phi" => {"whose image is a subvariety ",TEX///$X\subseteq\mathbb{P}^{k_1}\times\cdots\times\mathbb{P}^{k_n}$///},MultiprojectiveVariety => "Y" => {"a subvariety of ",TEX///$\mathbb{P}^{l_1}\times\cdots\times\mathbb{P}^{l_n}$///," with ",TEX///$k_i\leq l_i$///," for ",TEX///$i=1,\ldots,n$///}},
Outputs => {MultirationalMap => {"the composition of ",TT"Phi"," with an inclusion of ",TEX///$X$///," into ",TEX///$Y$///," (if this is possible and easy, otherwise an error is generated)"}},
EXAMPLE {
"Phi = parametrize PP_(ZZ/65521)^({1,3},{2,1});",
"X = image Phi;",
"describe X",
"Y = PP^{3,5};",
"Psi = Phi << Y;",
"describe image Psi"},
PARA{"The inclusion ",TEX///$j:X\to Y$///," such that ",TT"Phi * j == Psi"," can be obtained as follows:"},
EXAMPLE {
"j = X << Y;",
"assert(Phi * j == Psi and j == (1_X << Y))"},
SeeAlso => {(multirationalMap,MultirationalMap,MultiprojectiveVariety)}}
document {
Key => {(symbol ++,EmbeddedProjectiveVariety,EmbeddedProjectiveVariety)},
Headline => "join of projective varieties",
Usage => "X ++ Y",
Inputs => {"X" => EmbeddedProjectiveVariety,"Y" => EmbeddedProjectiveVariety => {"in the same ambient projective space of ",TEX///$X$///}},
Outputs => {EmbeddedProjectiveVariety => {"the join of ",TEX///$X$///," and ",TEX///$Y$///,", that is, the closure of the union of lines of the form ",TEX///$\langle p,q\rangle$///,", with ",TEX///$p\in X$///,", ",TEX///$q\in Y$///,", and ",TEX///$p\neq q$///}},
EXAMPLE {"K = ZZ/333331;",
"C = PP_K^(1,5); -- rational normal quintic curve",
"L = linearSpan {point ambient C,point ambient C}; -- random line",
"C ++ L","C ++ C","(point C) ++ (point C) ++ (point C)"}}
typValTanForm := typicalValues#tangentialChowForm;
typicalValues#tangentialChowForm = EmbeddedProjectiveVariety;
document {
Key => {(tangentialChowForm,EmbeddedProjectiveVariety,ZZ)},
Headline => "higher Chow forms of a projective variety",
Usage => "tangentialChowForm(X,s)",
Inputs => {"X" => EmbeddedProjectiveVariety, "s" => ZZ},
Outputs => {EmbeddedProjectiveVariety => {"the subvariety of the appropriate ",TO2{GrassmannianVariety,"Grassmannian"}," defined by ",TO tangentialChowForm,TT"(",TO2{(ideal,MultiprojectiveVariety),"ideal"}," ",TT"X,s)"}},
EXAMPLE {"X = PP_(ZZ/65521)[2,1];", "tangentialChowForm(X,1)", "ambientVariety oo"},
SeeAlso => {(chowForm,EmbeddedProjectiveVariety)}}
typicalValues#tangentialChowForm = typValTanForm;
typValChowForm := typicalValues#chowForm;
typicalValues#chowForm = EmbeddedProjectiveVariety;
document {
Key => {(chowForm,EmbeddedProjectiveVariety)},
Headline => "chow forms of a projective variety",
Usage => "chowForm X",
Inputs => {"X" => EmbeddedProjectiveVariety},
Outputs => {EmbeddedProjectiveVariety => {"the subvariety of the appropriate ",TO2{GrassmannianVariety,"Grassmannian"}," defined by ",TO chowForm,TT" ",TO2{(ideal,MultiprojectiveVariety),"ideal"}," ",TT"X"}},
EXAMPLE {"X = PP_(ZZ/65521)[2,1];", "chowForm X", "ambientVariety oo"},
SeeAlso => {(tangentialChowForm,EmbeddedProjectiveVariety,ZZ)}}
typicalValues#chowForm = typValChowForm;
typValConVar := typicalValues#conormalVariety;
typicalValues#conormalVariety = MultiprojectiveVariety;
document {
Key => {(conormalVariety,EmbeddedProjectiveVariety)},
Headline => "the conormal variety of a projective variety",
Usage => "conormalVariety X",
Inputs => {"X" => EmbeddedProjectiveVariety},
Outputs => {MultiprojectiveVariety => {"the conormal variety of ",TEX///$X$///}},
EXAMPLE {"X = PP_QQ^(2,2);", "C = conormalVariety X;", "p2 = multirationalMap last projections C;", "image p2 == dual X"},
SeeAlso => {(dual,EmbeddedProjectiveVariety)}}
typicalValues#conormalVariety = typValConVar;
document {
Key => {(symbol %,MultiprojectiveVariety,MultiprojectiveVariety)},
Headline => "subvariety of a projective variety",
Usage => "X % Y",
Inputs => {"X" => MultiprojectiveVariety,"Y" => MultiprojectiveVariety => {"which contains ",TEX///$X$///}},
Outputs => {MultiprojectiveVariety => {"the same variety ",TEX///$X$///," thought of as a subvariety of ",TEX///$Y$///}},
EXAMPLE {"Y = GG(ZZ/33331,1,4);","p = point Y","p % Y", "Fano p"},
SeeAlso => {ambientVariety,(Fano,EmbeddedProjectiveVariety)}}
document {
Key => {(Fano,ZZ,EmbeddedProjectiveVariety),(Fano,EmbeddedProjectiveVariety)},
Headline => "Fano scheme of a projective variety",
Usage => "Fano(k,X)
Fano(k,X,AffineChartGrass=>...)
Fano X
Fano(X,AffineChartGrass=>...)",
Inputs => {"k" => ZZ => {"optional with default value equal to ",TEX///$\mathrm{dim}(X)$///}, "X" => EmbeddedProjectiveVariety},
Outputs => {EmbeddedProjectiveVariety => {"the subvariety of the ",TO2{GrassmannianVariety,"Grassmannian"}," ",TEX///$\mathbb{G}(k,\mathrm{ambient}(X))$///," that parametrizes the ",TEX///$k$///,"-planes lying on ",TEX///$X$///}},
PARA{"This function is based internally on the function ",TO plucker,", provided by the package ",TO Resultants,". In particular, note that by default the computation is done on a randomly chosen affine chart on the Grassmannian. To change this behavior, you can use the ",TO AffineChartGrass," option."},
EXAMPLE {"K = ZZ/33331;","L = linearSpan {point PP_K^4,point PP_K^4}; -- a line in P^4","p := Fano L","Fano p","assert(Fano p == L)"},
PARA{"If the input is a ",TO2{(symbol %,MultiprojectiveVariety,MultiprojectiveVariety),"subvariety"}," ",TEX///$Y\subset\mathbb{G}(k,\mathbb{P}^n)$///,", then the output is the variety ",TEX///$W\subset\mathbb{P}^n$///," swept out by the linear spaces corresponding to points of ",TEX///$Y$///,". As an example, we now compute a surface scroll ",TEX///$W\subset\mathbb{P}^4$///," over an elliptic curve ",TEX///$Y\subset\mathbb{G}(1,\mathbb{P}^4)$///,"."},
EXAMPLE {"G = GG_K(1,4);","Y := (G * random({{1},{1},{1},{1},{1}},0_G)) % G -- an elliptic curve","W = Fano Y; -- surface swept out by the lines of Y"},
PARA{"We can recover the subvariety ",TEX///$Y\subset\mathbb{G}(k,\mathbb{P}^n)$///," by computing the Fano variety of ",TEX///$k$///,"-planes contained in ",TEX///$W$///,"."},
EXAMPLE {"Fano(1,W) -- variety of lines contained in W","assert(oo == Y)"},
SeeAlso => {(plucker,Ideal),(Fano,ZZ,Ideal),(symbol %,MultiprojectiveVariety,MultiprojectiveVariety)}}
document {
Key => {ambientVariety,(ambientVariety,MultiprojectiveVariety)},
Headline => "the ambient variety of a projective subvariety",
Usage => "ambientVariety X",
Inputs => {"X" => MultiprojectiveVariety => {"a ",TO2{(symbol %,MultiprojectiveVariety,MultiprojectiveVariety),"subvariety"}," of another ",TO2{MultiprojectiveVariety,"variety"}," ",TT "Y"}},
Outputs => {MultiprojectiveVariety => {"the ambient variety ",TT "Y"}},
EXAMPLE {"X = point PP_(ZZ/65521)^3;", "Y = random({1},X);", "X % Y", "ambientVariety X", "ambient X"},
SeeAlso => {(symbol %,MultiprojectiveVariety,MultiprojectiveVariety),(ambient,MultiprojectiveVariety)}}
document {Key => {GrassmannianVariety},
Headline => "the class of all Grassmannians of linear subspaces of projective spaces",
PARA{"Objects of this type are created by ",TO GG,"."},
SeeAlso => {GG,(GG,ZZ,MultirationalMap),schubertCycle,cycleClass,(Fano,ZZ,EmbeddedProjectiveVariety),(tangentialChowForm,EmbeddedProjectiveVariety,ZZ)}}
document {
Key => {GG,(GG,ZZ,EmbeddedProjectiveVariety),(GG,ZZ,ZZ),(GG,Ring,ZZ,ZZ),(GG,Ring),(GG,EmbeddedProjectiveVariety)},
Headline => "the Grassmannian of k-dimensional linear subspaces of an n-dimensional projective space",
Usage => "GG(k,PP_K^n)
GG_K(k,n)
GG Grass(k,n,K,Variable=>\"x\")",
Inputs => {"k" => ZZ, "P" => EmbeddedProjectiveVariety => {"a projective space of dimension ",TEX///$n$///}},
Outputs => {GrassmannianVariety => {"which parametrizes the ", TEX///$k$///, "-dimensional subspaces of ", TEX///$\mathbb{P}^n$///}},
EXAMPLE {"GG(2,PP_QQ^5)","describe oo"},
SeeAlso => {(GG,ZZ,MultirationalMap)}}
document {Key => {(GG,ZZ,MultirationalMap),(GG,ZZ,RationalMap)},
Headline => "induced automorphism of the Grassmannian",
Usage => "GG(k,f)",
Inputs => {"k" => ZZ => {"to indicate the Grassmannian ", TO GG, TEX///$(k,n)$///, " of ", TEX///$k$///, "-dimensional subspaces of ", TEX///$\mathbb{P}^n$///},
"f" => MultirationalMap => {"an automorphism of ", TEX///$\mathbb{P}^n$///}},
Outputs => {MultirationalMap => {"the induced automorphism of ", TO GG, TEX///$(k,n)$///}},
EXAMPLE {"K = ZZ/33331;", "f = random 1_(PP_K^4);", "show f", "F = GG(1,f);", "show F", "assert(F^-1 == GG(1,f^-1))"},
SeeAlso => {GG}}
document {Key => {cycleClass,(cycleClass,EmbeddedProjectiveVariety)},
Headline => "determine the expression of the class of a cycle as a linear combination of Schubert classes",
Usage => "cycleClass C",
Inputs => {"C" => EmbeddedProjectiveVariety => {"a ",TO2{(symbol %,MultiprojectiveVariety,MultiprojectiveVariety),"subvariety"}," of ", TO GG, TEX///$(k, n)$///, " representing a cycle of pure codimension ", TEX///$m$///, " in the Grassmannian of ", TEX///$k$///, "-dimensional subspaces of ", TEX///$\mathbb{P}^n$///}},
Outputs => {RingElement => {"the expression of the class of the cycle as a linear combination of Schubert classes"}},
PARA{"For the general theory on Chow rings of Grassmannians, see e.g. the book ", HREF{"https://scholar.harvard.edu/files/joeharris/files/000-final-3264.pdf", "3264 & All That - Intersection Theory in Algebraic Geometry"}, ", by D. Eisenbud and J. Harris."},
EXAMPLE {"G = GG(ZZ/33331,2,5);", "C = schubertCycle({3,2,1},G);", "cycleClass C", "C' = C + schubertCycle({2,2,2},G);", "cycleClass C'"},
SeeAlso => {schubertCycle}}
document {Key => {schubertCycle,(schubertCycle,VisibleList,GrassmannianVariety),[schubertCycle,Standard]},
Headline => "take a random Schubert cycle",
Usage => "schubertCycle(a,G)",
Inputs => {"a" => VisibleList => {"a list of integers ", TEX///$a = (a_0,\ldots,a_k)$///, " with ", TEX///$n-k\geq a_0 \geq \cdots \geq a_k \geq 0$///}, "G" => GrassmannianVariety => {"which parametrizes the ", TEX///$k$///, "-dimensional subspaces of ", TEX///$\mathbb{P}^n$///}},
Outputs => {EmbeddedProjectiveVariety => {"the Schubert cycle ", TEX///$\Sigma_a(\mathcal P)\subset\mathbb{G}(k,n)$///, " associated to a random complete flag ", TEX///$\mathcal P$///, " of nested projective subspace ", TEX///$\emptyset\subset P_0\subset \cdots \subset P_{n-1} \subset P_{n} = \mathbb{P}^n$///, " with ", TEX///$dim(P_i)=i$///}},
PARA{"For the general theory, see e.g. the book ", HREF{"https://scholar.harvard.edu/files/joeharris/files/000-final-3264.pdf", "3264 & All That - Intersection Theory in Algebraic Geometry"}, ", by D. Eisenbud and J. Harris."},
EXAMPLE {"G = GG(ZZ/33331,1,5);", "S = schubertCycle({2,1},G)", "cycleClass S"},
SeeAlso => {cycleClass}}
document {Key => {(rationalMap,MultiprojectiveVariety,Tally), (rationalMap,MultiprojectiveVariety,Tally,List), (rationalMap,EmbeddedProjectiveVariety,Tally,ZZ)},
Headline => "rational map defined by an effective divisor",
Usage => "rationalMap(X,D)",
Inputs => {"X" => MultiprojectiveVariety, "D" => Tally => {"a multiset of pure codimension 1 ",TO2{(symbol %,MultiprojectiveVariety,MultiprojectiveVariety),"subschemes"}," of ",TEX///$X$///," with no embedded components; so that ",TT"D"," is interpreted as an effective divisor on ",TEX///$X$///}},
Outputs => {MultirationalMap => {"the rational map defined by the complete linear system ",TEX///$|D|$///}},
PARA{"In the example below, we take a smooth complete intersection ",TEX///$X\subset\mathbb{P}^5$///," of three quadrics containing a conic ",TEX///$C\subset\mathbb{P}^5$///,". Then we calculate the map defined by the linear system ",TEX///$|2H+C|$///,", where ",TEX///$H$///," is the hyperplane section class of ",TEX///$X$///,"."},
EXAMPLE {"P5 = PP_(ZZ/65521)^5;", "C = random({{2},3:{1}},0_P5);", "X = random({3:{2}},C);", "H = random(1,0_X); -- it's interpreted as X * H", "D = tally {H, H, C}", "phi = rationalMap(X,D)", "assert(phi == rationalMap(X,tally {X*H, X*H, C}))"},
PARA{"This function is based internally on the function ",TO (rationalMap,Ring,Tally),", provided by the package ",TO Cremona,"."},
SeeAlso => {(rationalMap,Ring,Tally)}}
document {Key => {(forceImage,MultirationalMap,MultiprojectiveVariety),(forceImage,MultirationalMap,ZZ)},
Headline => "declare which is the image of a multi-rational map",
Usage => "forceImage(Phi,Y)",
Inputs => {"Phi" => MultirationalMap, "Y" => MultiprojectiveVariety},
Outputs => {Nothing => {TO null}},
PARA{"This method allows to inform the system about the image of a given multi-rational map without performing any computation. In particular, this can be used to declare that a rational map is dominant."},
EXAMPLE {///Phi = rationalMap {minors(3,(PP_(ZZ/65521)([6],2)).matrix)};///, "Y = image(Phi,2)", "forceImage(Phi,Y)", "image Phi", ///Psi = rationalMap({minors(3,(PP_(ZZ/65521)([6],2)).matrix)},Dominant=>2);///, "forceImage(Psi,target Psi)", "Psi;"},
Caveat => {"If the declaration is false, nonsensical answers may result."},
SeeAlso => {(image,MultirationalMap),(forceImage,RationalMap,Ideal)}}
undocumented {
(expression,MultiprojectiveVariety),
(net,MultiprojectiveVariety),
(texMath,MultiprojectiveVariety),
(toString,MultiprojectiveVariety),
(point,MultiprojectiveVariety,Boolean), -- Intended for internal use only
(point,MultiprojectiveVariety,VisibleList),
(euler,MultiprojectiveVariety,Option),
(singularLocus,EmbeddedProjectiveVariety,Option),
(symbol *,ZZ,MultiprojectiveVariety), -- hidden to the user, since it returns non-reduced varieties
(symbol _,MultiprojectiveVariety,MultiprojectiveVariety), -- this returns a new type which is too rudimentary yet
(tangentialChowForm,EmbeddedProjectiveVariety,ZZ,ZZ),
(expression,MultirationalMap),
(net,MultirationalMap),
(texMath,MultirationalMap),
(toString,MultirationalMap),
(multirationalMap,RationalMap,RationalMap), -- Intended for internal use only
(multirationalMap,MultirationalMap,MultirationalMap), -- Intended for internal use only
(multidegree,MultirationalMap,MultirationalMap), -- Intended for internal use only
(multidegree,Nothing,MultirationalMap),
(toRationalMap,MultirationalMap,Boolean), -- Intended for internal use only
(source,MultirationalMap,MultirationalMap), -- Intended for internal use only
(symbol ^^,MultirationalMap,MultiprojectiveVariety), -- Intended for internal use only
(inverse,MultirationalMap,Option),
(inverse2,MultirationalMap,Option),
(multirationalMap,MultiprojectiveVariety,MultiprojectiveVariety,Boolean), -- Intended for internal use only
(symbol ?,MultiprojectiveVariety,MultiprojectiveVariety),
(symbol ?,GrassmannianVariety),
(Fano,EmbeddedProjectiveVariety,Option),
(Fano,ZZ,EmbeddedProjectiveVariety,Option),
(image,MultirationalMap,ZZ),(image,ZZ,MultirationalMap), -- This is dangerous because the defining ideal may not be saturated
(image,MultirationalMap,String),
(matrix,MultirationalMap),
(random,MultirationalMap)
}
---------------
---- Tests ----
---------------
TEST ///
K = ZZ/333331, R = K[x_0..x_5];
f = rationalMap for i to 2 list random(1,R);
g = rationalMap for i to 2 list random(1,R);
Phi = multirationalMap {f,g};
assert(degree Phi == 0 and multidegree Phi == {1, 2, 4, 6, 6, 0});
assert (apply(decompose baseLocus Phi,o -> ?ideal o) == {"plane in PP^5","plane in PP^5"});
X = random(3,baseLocus Phi);
assert(? X == "hypersurface in PP^5 defined by a form of degree 3" and ? ideal X == "smooth cubic hypersurface in PP^5" and isSubset(baseLocus Phi,X));
Phi = Phi|X;
assert(image Phi == target Phi and degree Phi == 1 and multidegree Phi == {3, 6, 10, 12, 6});
inverse(Phi,Verify=>true);
assert(Phi * (inverse Phi) == 1 and (inverse Phi) * Phi == 1);
B = baseLocus inverse Phi;
assert(dim B == 2 and degree B == 14 and dim singularLocus B == -1 and degrees B == {({1,2},1),({2,1},1)});
(p1,p2) = graph Phi;
assert((multidegree p1, multidegree p2) == ({141, 63, 25, 9, 3}, {141, 78, 40, 18, 6}));
inverse(p1,Verify=>true);
assert(p1 * (inverse p1) == 1 and (inverse p1) * p1 == 1);
inverse(p2,Verify=>true);
assert(p2 * (inverse p2) == 1 and (inverse p2) * p2 == 1);
assert((multidegree inverse p1, multidegree inverse p2) == (reverse {141, 63, 25, 9, 3}, reverse {141, 78, 40, 18, 6}));
assert((inverse p2) * p1 == inverse Phi and isMorphism p2 and (not isIsomorphism p2));
assert(baseLocus Phi == baseLocus inverse p1);
E = p1^* (baseLocus Phi);
assert((dim E, degree E) == (3,48));
h = first graph p2
assert((degree source h, degree target h) == (771, 141));
///
TEST ///
strForTest := "multi-rational map consisting of 2 rational maps
source variety: threefold in PP^3 x PP^2 x PP^4 cut out by 12 hypersurfaces of multi-degrees (0,0,2)^1 (0,1,1)^2 (1,0,1)^7 (1,1,0)^2
target variety: threefold in PP^2 x PP^4 cut out by 3 hypersurfaces of multi-degrees (0,2)^1 (1,1)^2
base locus: empty subscheme of PP^3 x PP^2 x PP^4
dominance: true
multidegree: {66, 46, 31, 20}
degree: 1
degree sequence (map 1/2): [(0,1,0), (0,0,2), (1,0,1), (2,0,0)]
degree sequence (map 2/2): [(0,0,1), (2,0,0)]
coefficient ring: ZZ/300007";
R = ZZ/300007[x_0..x_3];
C3 = ideal(x_2^2-x_1*x_3,x_1*x_2-x_0*x_3,x_1^2-x_0*x_2);
C2 = ideal(x_1^2-x_0*x_2,x_3);
Phi = last graph multirationalMap(rationalMap C3,rationalMap C2);
Phi = multirationalMap(Phi,image Phi);
-- assert(multidegree(,Phi) == {66, 46, 31, 20}) -- too long time
assert(multidegree(3,Phi) == 66 and multidegree(2,Phi) == 46);
assert(multidegree Phi == {66, 46, 31, 20})
assert(degree(Phi,Strategy=>"random point") == 1 and degree Phi == 1)
assert(Phi * inverse Phi == 1 and Phi^-1 * Phi == 1)
assert(toString describe Phi == toString strForTest);
///
TEST ///
R = ZZ/300007[x_0..x_3];
C3 = ideal(x_2^2-x_1*x_3,x_1*x_2-x_0*x_3,x_1^2-x_0*x_2);
C2 = ideal(x_1^2-x_0*x_2,x_3);
Phi = last graph rationalMap({C3,C2},Dominant=>true);
Y = target Phi;
Z = {target Phi, random({1,1},0_Y), random({{1,1},{1,1}},0_Y), random({{1,1},{1,1},{1,1}},0_Y),
point Y,(point target Phi) + (point target Phi) + (point target Phi)}
W = apply(Z,z -> Phi^* z);
assert(apply(W,w -> (dim w,degree w)) == {(3, 66), (2, 46), (1, 31), (0, 20), (0,1), (0,3)})
assert(W_5 == Phi^** (last Z))
Psi = check multirationalMap({rationalMap matrix(2,first factor Phi),rationalMap matrix(1,last factor Phi)},target Phi);
assert(apply(factor Phi,f -> first degrees ideal matrix f) == {{0, 1, 0}, {0, 0, 1}})
assert(apply(factor Psi,f -> first degrees ideal matrix f) == {{1, 0, 1}, {2, 0, 0}})
assert(Phi == Psi and inverse Phi == inverse Psi and source graph Phi == source graph Psi)
W' = apply(Z,z -> Psi^* z);
assert(W == W')
assert(apply(factor Psi,f -> first degrees ideal matrix f) == {{1, 0, 1}, {2, 0, 0}})
///
TEST ///
-- no-check-flag #2162
ringP4 := ZZ/300007[a..e];
f = rationalMap minors(2,matrix {{a,b,c,d},{b,c,d,e}});
g = rationalMap(minors(2,matrix{{a,b,c},{b,c,d}}) + ideal e);
Phi = multirationalMap {f,g};
Phi = multirationalMap(Phi,image Phi);
Psi = inverse(Phi,Verify=>true);
assert(Phi * Psi == 1 and Psi * Phi == 1)
(F,G) = graph Phi;
F' = inverse(F,Verify=>true);
assert(F * F' == 1 and F' * F == 1 and F * Phi == G and G * Phi^-1 == F and F' * G == Phi)
G' = inverse(G,Verify=>true);
assert(G * G' == 1 and G' * G == 1 and G' * F == Phi^-1)
///
TEST /// -- inverses of constant maps
PP (ZZ/3333331)
Phi = parametrize point PP^(1,4);
inverse(Phi,Verify=>4)
Psi = Phi||Phi
inverse(Psi,Verify=>4)
Psi' = Phi||(inverse Phi)
inverse(Psi',Verify=>4)
Eta = rationalMap(PP^(1,4),Dominant=>true)
Eta' = Eta||(parametrize point PP^3)
inverse(Eta',Verify=>4)
Eta'' = Eta||(Eta||(point target Eta));
inverse(Eta'',Verify=>4)
///
TEST///
-- no-check-flag #2162
Phi = last graph rationalMap projectiveVariety({1},{4},ZZ/300007);
assert(multidegree(,Phi) == multidegree Phi)
assert(projectiveDegrees Phi == multidegree Phi)
degree(Phi,Strategy=>"random point")
R = ZZ/33331[x_0..x_4];
Phi = (last graph multirationalMap rationalMap transpose jacobian(-x_2^3+2*x_1*x_2*x_3-x_0*x_3^2-x_1^2*x_4+x_0*x_2*x_4))||projectiveVariety ideal(random(2,R));
assert(? source Phi == "threefold in PP^4 x PP^4 cut out by 13 hypersurfaces of multi-degrees (0,2)^1 (1,1)^3 (2,1)^8 (4,0)^1 ")
assert(? target Phi == "hypersurface in PP^4 defined by a form of degree 2")
assert(degree(Phi,Strategy=>"random point") == 2)
assert(degree(Phi,Strategy=>"0-th projective degree") == 2)
assert(degree Phi == 2)
assert(degreeMap Phi == 2)
///
TEST ///
z = gens ring projectiveVariety({3},ZZ/41)
phi = multirationalMap rationalMap toMap minors(3,matrix{{-z_1,z_0,-z_1^2+z_0*z_3},{z_0,z_1,z_0^2-z_1*z_2},{0,z_2,z_0*z_1-z_1*z_3},{0,z_3,-z_0*z_1+z_0*z_2}})
time G := source graph phi;
time Gs := source graph(clean phi,BlowUpStrategy=>"Syzygies");
time Gk := source graph(clean phi,BlowUpStrategy=>"Koszul");
assert(G == Gs and Gs == Gk);
psi = inverse phi;
assert(phi * psi == 1 and psi * phi == 1);
phi' = phi|multirationalMap(source phi);
phi' = multirationalMap(phi',image phi');
time G' := source graph phi';
time Gs' := source graph(clean phi',BlowUpStrategy=>"Syzygies");
time Gk' := source graph(clean phi',BlowUpStrategy=>"Koszul");
assert(G' == Gs' and Gs' == Gk');
psi' = inverse phi';
assert(phi' * psi' == 1 and psi' * phi' == 1);
phi'' = last graph phi;
time G'' := source graph phi'';
time Gs'' := source graph(clean phi'',BlowUpStrategy=>"Syzygies");
time Gk'' := source graph(clean phi'',BlowUpStrategy=>"Koszul");
assert(G'' == Gs'' and Gs'' == Gk'');
psi'' = inverse phi'';
assert(phi'' * psi'' == 1 and psi'' * phi'' == 1);
///
TEST /// -- product must be strict associative
K = ZZ/333331;
X = projectiveVariety({1,1},{2,3},K);
Y = random({3},projectiveVariety(2,2,K));
Z = ⋃ {point X,point X,point X};
W = projectiveVariety(1,3,K);
assert((X ** Y) ** Z === X ** (Y ** Z))
assert((∏ {X,Y,Z}) ** W === X ** ∏ {Y,Z,W} and X ** ∏ {Y,Z,W} === (X ** Y) ** (Z ** W))
///
TEST /// -- some cache tests
K = ZZ/333331;
I = trim kernel veronese(1,4,K)
X = projectiveVariety I
assert(X === projectiveVariety I)
assert(I.cache#"multiprojectiveVariety" === X)
assert(I.cache#"isMultisaturated" === true)
R = (ring I)/I;
assert(X === projectiveVariety R)
R = quotient trim kernel veronese(2,2,K)
X = projectiveVariety R
assert(X === projectiveVariety ideal R)
assert(R#"multiprojectiveVariety" === X)
assert((ideal X).cache#"isMultisaturated" === true)
I' = trim ideal image basis(3,I);
X' = projectiveVariety(I',Saturate=>false);
assert(ideal X' === I')
assert(not I'.cache#?"isMultisaturated")
R' = (ring I)/I';
assert(try projectiveVariety R' then false else true)
assert(try projectiveVariety(R',Saturate=>false) then false else true)
R'' = (ring I)/trim ideal image basis(3,I);
assert(try projectiveVariety(R'',Saturate=>false) then true else false)
assert(try projectiveVariety R'' then true else false)
I = trim kernel veronese(1,5,K);
J = trim kernel veronese(1,5,K);
assert(I === J);
R = quotient I; S = quotient J;
assert(R =!= S);
X = projectiveVariety I;
assert(X === projectiveVariety R)
Y = projectiveVariety J;
assert(Y === projectiveVariety S)
assert(X == Y and ideal X === ideal Y and ring X === R and ring Y === S and X =!= Y)
assert(X^2 === X ** Y and X ** Y === Y^2)
I = trim kernel veronese(1,5,K);
J = trim kernel veronese(1,5,K);
R = quotient I; S = quotient J;
assert(R =!= S);
X = projectiveVariety I;
X#"ringVariety" = S;
assert(try projectiveVariety R then false else true)
///
TEST /// -- random points in char 0 and sorts
p = for i to 5 list point projectiveVariety({2,3},QQ);
P = reverse for i from 1 to 5 list sum take(p,i);
assert(apply(P,degree) == {5,4,3,2,1} and apply(sort P,degree) == {1,2,3,4,5})
p = for i to 6 list point projectiveVariety({2},{3},QQ);
P = reverse for i from 1 to 6 list sum take(p,i);
assert(apply(P,degree) == {6,5,4,3,2,1} and apply(sort P,degree) == {1,2,3,4,5,6})
T = tangentSpace(projectiveVariety({3},{2},QQ),point projectiveVariety({3},{2},QQ));
p = for i to 7 list point T;
P = reverse for i from 1 to 7 list sum take(p,i);
assert(apply(P,degree) == {7,6,5,4,3,2,1} and apply(sort P,degree) == {1,2,3,4,5,6,7})
///
TEST /// -- projective join
X = PP_(ZZ/333331)^(2,2);
Y = X ++ X;
assert(codim Y == 1 and degree Y == 3 and singularLocus Y == X)
U = for i to 3 list point PP^7;
assert(linearSpan U == fold(U,(x,y)->x++y))
///
TEST /// -- inverse2
Phi = last graph multirationalMap quadroQuadricCremonaTransformation(11,1,ZZ/65521);
Psi = inverse2 Phi;
Phi' = clean Phi;
Psi' = inverse Phi';
assert(Psi == Psi' and Phi * Psi == 1)
///
TEST ///
checkIso = (X,Y) -> (
time phi := X ===> Y;
assert(source phi === ambient X and target phi === ambient Y and degree phi == 1 and image phi === target phi and phi X == Y and phi^* Y == X);
assert isSubset(phi point X,Y)
);
K = ZZ/3333331;
X = random({{1},{1},{1},{1}},0_(PP_K^7));
Y = random({{1},{1},{1},{1}},0_(PP_K^7));
checkIso(X,Y)
setRandomSeed 10
X = random(2,0_(PP_K^3));
Y = random(2,0_(PP_K^3));
checkIso(X,Y)
X = random({{2},{1},{1},{1},{1},{1}},0_(PP_K^9));
Y = random({{2},{1},{1},{1},{1},{1}},0_(PP_K^9));
checkIso(X,Y)
setRandomSeed 123
X = random({{2},{1},{1},{1},{1},{1}},0_(PP_K^10));
Y = random({{2},{1},{1},{1},{1},{1}},0_(PP_K^10));
checkIso(X,Y)
///
TEST /// -- parametrizations 1
K = ZZ/65521;
X = projectiveVariety({2,4,1,3},K);
time f = parametrize X;
assert(f * f^-1 == 1 and f^-1 * f == 1)
R = ring X;
Y = projectiveVariety ideal(random({1,0,0,0},R),random({0,1,0,0},R),random({0,1,0,0},R),random({0,0,0,1},R));
time g = parametrize Y;
assert(g * g^-1 == 1 and g^-1 * g == 1)
Z = projectiveVariety ideal(random({1,1,0,0},R),random({0,1,0,0},R),random({0,0,1,0},R),random({0,0,0,1},R),random({0,0,0,1},R));
time h = parametrize Z
assert(h * h^-1 == 1 and h^-1 * h == 1)
///
TEST /// -- parametrizations 2
checkInverseParametrization = X -> (
f := parametrize X;
<<f<<endl;
assert(instance(source f,EmbeddedProjectiveVariety) and source f === ambient source f and dim source f == dim X and target f === X);
assert(f === parametrize X);
assert(f#"inverse" =!= null);
p := point source f;
assert((f#"inverse") f p == p);
);
checkDegreeParametrization = X -> (
f := parametrize X;
<<f<<endl;
assert(instance(source f,EmbeddedProjectiveVariety) and source f === ambient source f and dim source f == dim X and target f === X);
assert(f === parametrize X);
p := point source f;
assert(f^* f p == p);
);
K = ZZ/333331;
for n from 3 to 5 do for k to n-1 do checkInverseParametrization GG_K(k,n);
checkInverseParametrization GG(QQ,2,4);
GG(QQ,2,4) ===> GG(QQ,1,4)
-- for i in {5,8,14} do checkInverseParametrization baseLocus quadroQuadricCremonaTransformation(i,1,K);
X = random projectiveVariety Grass(1,4,K);
-- checkInverseParametrization X
-- checkDegreeParametrization (X * random(1,0_X))
-- checkDegreeParametrization ((X * random(1,0_X) ** (point PP_K^2)))
-- checkDegreeParametrization (X * random({{1},{1}},0_X))
checkDegreeParametrization ((X * random(1,0_X))**(point PP_K^{2,1}))
Y = random (PP_QQ[2,1])
X = (PP_QQ[2,1])
checkDegreeParametrization X
checkDegreeParametrization Y
X ===> Y
Y = random (PP_QQ[1,1,1])
X = projectiveVariety image segre PP_QQ^{2,1}
checkDegreeParametrization X
checkDegreeParametrization Y
X ===> Y
X = random({{1},{1},{2},{2}},0_(PP_K^9))
checkDegreeParametrization X
X = ⋃ for i to 4 list point PP_K^({2,3,1},{1,2,2})
assert((parametrize X)*(inverse parametrize X) == 1 and (inverse parametrize X)*(parametrize X) == 1)
///
TEST /// -- parametrizations 3
-- no-check-flag #1539
needsPackage "SpecialFanoFourfolds";
debug SpecialFanoFourfolds;
checkInverseParametrization = X -> (
f := parametrize X;
<<f<<endl;
assert(instance(source f,EmbeddedProjectiveVariety) and source f === ambient source f and dim source f == dim X and target f === X);
assert(f === parametrize X);
assert(f#"inverse" =!= null);
p := point source f;
assert((f#"inverse") f p == p);
);
X = fanoFourfold (12,7);
X#InverseMethod = inverse3;
checkInverseParametrization X
-- X = fanoFourfold (14,8);
-- X#InverseMethod = inverse3;
-- time checkInverseParametrization X
setRandomSeed 0;
X = fanoFourfold (16,9);
X#InverseMethod = inverse3;
time checkInverseParametrization X
-- setRandomSeed 11111;
-- X = fanoFourfold (18,10);
-- X#InverseMethod = inverse3;
-- time checkInverseParametrization X
///
TEST /// -- conormalVariety
K = ZZ/333331;
V = PP_K^(2,2);
W = conormalVariety V;
V' = dual V;
W' = conormalVariety V';
assert(V == image multirationalMap first projections W);
assert(V' == image multirationalMap last projections W);
assert(V' == image multirationalMap first projections W');
assert(V == image multirationalMap last projections W');
j := check multirationalMap(permute(W,{1,0}),W');
assert(isIsomorphism j);
///
TEST /// -- conversion between RationalMap and MultirationalMap
X = random(2,0_(PP_(ZZ/65521)^4));
f = parametrize X;
assert(instance(f,MultirationalMap) and f#"inverse" =!= null)
assert(inverse f === multirationalMap inverse toRationalMap f)
assert(multirationalMap toRationalMap f === f)
-- assert(inverse toRationalMap f === toRationalMap inverse f) -- this fails (28/08/2022)
assert(inverse toRationalMap f == toRationalMap inverse f)
assert(multirationalMap inverse toRationalMap f === multirationalMap toRationalMap inverse f)
I = ideal random(2,0_(PP_(ZZ/333331)^4));
g = rationalMap(parametrize I,Dominant=>true);
assert(instance(g,RationalMap) and g#"inverseRationalMap" === null)
assert(inverse inverse g === g)
assert(toRationalMap multirationalMap g === g)
-- assert(inverse multirationalMap g === multirationalMap inverse g) -- this fails (28/08/2022)
assert(inverse multirationalMap g == multirationalMap inverse g)
assert(toRationalMap inverse multirationalMap g === toRationalMap multirationalMap inverse g)
-- assert(inverse g === toRationalMap inverse multirationalMap g) -- this fails (28/08/2022)
assert(inverse g == toRationalMap inverse multirationalMap g)
-- assert(inverse inverse (inverse multirationalMap g) === inverse multirationalMap g) -- this fails (28/08/2022)
assert(inverse inverse (inverse multirationalMap g) == inverse multirationalMap g)
assert(inverse inverse multirationalMap g === multirationalMap g)
-- assert(toRationalMap multirationalMap g === g) -- this fails (28/08/2022)
assert(toRationalMap multirationalMap g == g)
///
TEST /// -- weighted-projective varieties
K = ZZ/333331;
X = PP_K(2,3,4);
assert(dim X == 2 and degree X == 6)
p = point X;
assert(dim p == 0 and degree p == 1 and instance(|- p,Array))
Y = random(4,0_X);
assert(dim Y == 1 and degree Y == 2)
assert(? Y == "curve in PP(2,3,4) defined by a form of degree 4")
assert(? image segreEmbedding Y == "curve in PP^2 defined by a form of degree 2")
psi = rationalMap((gens ideal (2 * point X))|(gens ideal point X));
Psi = multirationalMap psi;
debug Cremona
debug MultiprojectiveVarieties
assert(instance(psi,WeightedHomogeneousRationalMap) and instance(Psi,WeightedRationalMap));
assert(ideal image Psi == image psi and projectiveVariety image psi == image Psi)
p = point source Psi;
assert(p == Psi^* Psi p)
I = ideal point source Psi;
assert(I == psi^* psi I)
Z = random(3,0_(PP_K(3,2,1)))
assert(dim Z == 1 and degree Z == 3);
p = point Z;
assert(isSubset(p,Z) and isPoint (segreEmbedding ambient Z) p and p == (segre ambient Z)^* (segreEmbedding ambient Z) p)
P := PP_K(1,1,2,3)
l = {10,-4,3,7};
p = point_P l;
assert(p == point_(random(3,p)) l)
///
|