File: NautyGraphs.m2

package info (click to toggle)
macaulay2 1.21%2Bds-3
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 133,096 kB
  • sloc: cpp: 110,377; ansic: 16,306; javascript: 4,193; makefile: 3,821; sh: 3,580; lisp: 764; yacc: 590; xml: 177; python: 140; perl: 114; lex: 65; awk: 3
file content (1943 lines) | stat: -rw-r--r-- 76,132 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
-------------------
-- Package Header
-------------------
-- Forked from Nauty:
-- Copyright 2010, 2011 David W. Cook II
-- You may redistribute this file under the terms of the GNU General Public
-- License as published by the Free Software Foundation, either version 2
-- of the License, or any later version.

-- Copyright 2011, 2013 David W. Cook II
-- You may redistribute this file under the terms of the GNU General Public
-- License as published by the Free Software Foundation, either version 2
-- of the License, or any later version.

newPackage select((
    "NautyGraphs",
    Version => "1.4.3.1",
    Date => "01. March 2013",
    Authors => {{Name => "David Cook II",
                 Email => "dcook8@nd.edu",
                 HomePage => "http://www.nd.edu/~dcook8"}},
    Headline => "interface to nauty (Graphs fork)",
    Keywords => {"Graph Theory", "Interfaces"},
    Configuration => {"path" => ""},
    PackageExports => {"Graphs"},
    DebuggingMode => false,
), x -> x =!= null)

-------------------
-- Configuration
-------------------

-- for backward compatibility
if not programPaths#?"nauty" and NautyGraphs#Options#Configuration#"path" != ""
    then programPaths#"nauty" = NautyGraphs#Options#Configuration#"path"

-------------------
-- Exports
-------------------

export {
    -- Methods
    "addEdges",
    "areIsomorphic",
    "buildGraphFilter",
    "countGraphs",
    "filterGraphs",
    "generateBipartiteGraphs",
    "generateGraphs",
    "generateRandomGraphs",
    "generateRandomRegularGraphs",
    "graph6ToSparse6",
    "graphComplement",
    "graphToString",
    "isPlanar",
    "neighborhoodComplements",
    "newEdges",
    "onlyPlanar",
    "relabelBipartite",
    "relabelGraph",
    "removeEdges",
    "removeIsomorphs",
    "sparse6ToGraph6",
    "stringToEdgeIdeal",
    "stringToGraph",
    -- Options
    "Class2Degree2",
    "Class2DistinctNeighborhoods",
    "Class2MaxCommonNeighbors",
    "MaxDegree",
    "MinDegree",
    "NoNew3Cycles",
    "NoNew4Cycles",
    "NoNew5Cycles",
    "NoNewOddCycles",
    "NoNewSmallCycles",
    "Only4CycleFree",
    "OnlyBiconnected",
    "OnlyBipartite",
    "OnlyConnected",
    "OnlyIfSmaller",
    "OnlyTriangleFree",
    "RandomSeed"
}

-------------------
-- Exported Code
-------------------

-- Finds all graphs of G with an extra edge added.
addEdges = method(Options => {MaxDegree => null, NoNewOddCycles => false, NoNew3Cycles => false, NoNew4Cycles => false, NoNew5Cycles => false, NoNewSmallCycles => null})
addEdges List := List => opts -> L -> (
    cmdStr := "addedgeg -q" |
        optionZZ(opts.MaxDegree, 0, "addEdges", "MaxDegree", "D") |
        optionBoolean(opts.NoNewOddCycles, "addEdges", "NoNewOddCycles", "b") | 
        optionBoolean(opts.NoNew3Cycles, "addEdges", "NoNew3Cycles", "t") | 
        optionBoolean(opts.NoNew4Cycles, "addEdges", "NoNew4Cycles", "f") | 
        optionBoolean(opts.NoNew5Cycles, "addEdges", "NoNew5Cycles", "F") | 
        optionZZ(opts.NoNewSmallCycles, 0, "addEdges", "NoNewSmallCycles", "z");
    callNauty(cmdStr, L)
)
addEdges String := List => opts -> S -> addEdges({S}, opts)
addEdges Graph := List => opts -> G -> stringToGraph \ addEdges({G}, opts)

-- Determines if two graphs are isomorphic. 
areIsomorphic = method()
areIsomorphic (String, String) := Boolean => (G, H) -> (#callNauty("shortg -q", {G, H})) == 1
areIsomorphic (Graph, Graph) := Boolean => (G, H) -> areIsomorphic(graphToString G, graphToString H)
areIsomorphic (String, Graph) := Boolean => (G, H) -> areIsomorphic(G, graphToString H)
areIsomorphic (Graph, String) := Boolean => (G, H) -> areIsomorphic(graphToString G, H)
Graph == Graph := areIsomorphic
Graph == String := areIsomorphic
String == Graph := areIsomorphic

-- Builds a filter string for countGraphs and filterGraphs.
buildGraphFilter = method()
buildGraphFilter HashTable := String => h -> (
    validType := (str, type) -> h#?str and instance(h#str, type);
    propStart := str -> if validType(str, Boolean) and h#str then "-~" else "-";
    propBuildBoolean := (str, flag) -> if validType(str, Boolean) then ((if h#str then "-" else "-~") | flag | " ") else "";
    propBuildZZSeq := (str, flag) -> (
        if validType(str, ZZ) and h#str >= 0 then (
            propStart("Negate" | str) | flag | toString h#str | " "
        ) else if validType(str, Sequence) and #h#str == 2 then (
            if instance(h#str#0, Nothing) and instance(h#str#1, ZZ) and h#str#1 >= 0 then (
                propStart("Negate" | str) | flag | ":" | toString h#str#1 | " "
            ) else if instance(h#str#0, ZZ) and instance(h#str#1, Nothing) and h#str#0 >= 0 then (
                propStart("Negate" | str) | flag | toString h#str#0 | ":" | " "
            ) else if instance(h#str#0, ZZ) and instance(h#str#1, ZZ) and h#str#0 >=0 and h#str#1 >= h#str#0 then (
                propStart("Negate" | str) | flag | toString h#str#0 | ":" | toString h#str#1 | " "
            ) else ""
        ) else ""
    );

    concatenate {propBuildZZSeq("NumVertices", "n"),         propBuildZZSeq("NumEdges", "e"),
                 propBuildZZSeq("MinDegree", "d"),           propBuildZZSeq("MaxDegree", "D"),
                 propBuildBoolean("Regular", "r"),           propBuildBoolean("Bipartite", "b"),
                 propBuildZZSeq("Radius", "z"),              propBuildZZSeq("Diameter", "Z"),
                 propBuildZZSeq("Girth", "g"),               propBuildZZSeq("NumCycles", "Y"),
                 propBuildZZSeq("NumTriangles", "T"),        propBuildBoolean("Eulerian", "E"),
                 propBuildZZSeq("GroupSize", "a"),           propBuildZZSeq("Orbits", "o"),
                 propBuildZZSeq("FixedPoints", "F"),         propBuildBoolean("VertexTransitive", "t"),
                 propBuildZZSeq("Connectivity", "c"),
                 propBuildZZSeq("MinCommonNbrsAdj", "i"),    propBuildZZSeq("MaxCommonNbrsAdj", "I"),
                 propBuildZZSeq("MinCommonNbrsNonAdj", "j"), propBuildZZSeq("MaxCommonNbrsNonAdj", "J")
                }
)
buildGraphFilter List := String => L -> buildGraphFilter hashTable L

-- Count the graphs with certain properties.
countGraphs = method()
countGraphs (List, String) := ZZ => (L, filter) -> (
    if #L == 0 or #filter == 0 then return #L;
    r := callNauty("countg -q " | filter, L);
    if not instance(r, List) or #r == 0 then return;
    p := regex("g", first r);
    if not instance(p, Nothing) then value substring((0, first first regex("g", first r)), first r) 
    else error("countGraphs: One or more of the input graphs was formatted incorrectly.")
)
countGraphs (List, HashTable) := ZZ => (L, fh) -> countGraphs(L, buildGraphFilter fh)
countGraphs (List, List) := ZZ => (L, fl) -> countGraphs(L, buildGraphFilter hashTable fl)

-- Filter a list of graphs for certain properties.
filterGraphs = method()
filterGraphs (List, String) := List => (L, filter) -> (
    if #L == 0 or #filter == 0 then return L;
    -- nauty outputs useful information to the stderr and (to us) junk on stdout
    r := callNauty("pickg -qV " | filter, L, ReadError => true);
    -- In nauty 2.4r2, the index is the first number.
    for l in r list ( s := select("[[:digit:]]+", l); if #s == 0 then continue else L_(-1 + value first s) )
)
filterGraphs (List, HashTable) := List => (L, fh) -> filterGraphs(L, buildGraphFilter fh)
filterGraphs (List, List) := List => (L, fl) -> filterGraphs(L, buildGraphFilter hashTable fl)

-- Generates all bipartite graphs of a given type.
generateBipartiteGraphs = method(Options => {OnlyConnected => false, Class2DistinctNeighborhoods => false, Class2Degree2 => false, Class2MaxCommonNeighbors => null, MaxDegree => null, MinDegree => null})
generateBipartiteGraphs (ZZ, ZZ, ZZ, ZZ) := List => opts -> (n, m, le, ue) -> (
    if n < 1 then error("generateBipartiteGraphs: nauty does not like graphs with non-positive numbers of vertices.");
    if m < 0 then error("generateBipartiteGraphs: The first class cannot have a negative number of vertices.");
    if m > n then error("generateBipartiteGraphs: The first class has too many vertices.");
    if m == 0 then (
        if n == 1 then return {"@"};
        if opts.OnlyConnected then return {};
        m = n;
        );
    if le > ue or le > m*(n-m) or ue < 0 then return {};

    cmdStr := "genbg -q" | 
        optionBoolean(opts.OnlyConnected, "generateBipartiteGraphs", "OnlyConnected", "c") | 
        optionBoolean(opts.Class2DistinctNeighborhoods, "generateBipartiteGraphs", "Class2DistinctNeighborhoods", "z") | 
        optionBoolean(opts.Class2Degree2, "generateBipartiteGraphs", "Class2Degree2", "F") | 
        optionZZ(opts.Class2MaxCommonNeighbors, 0, "generateBipartiteGraphs", "Class2MaxCommonNeighbors", "Z") | 
        optionZZ(opts.MinDegree, 0, "generateBipartiteGraphs", "MinDegree", "d") | 
        optionZZ(opts.MaxDegree, 0, "generateBipartiteGraphs", "MaxDegree", "D") | 
        (" " | toString m | " " | toString(n-m) | " " | toString le | ":" | toString ue);

    callNauty(cmdStr, {})
)
generateBipartiteGraphs (ZZ, ZZ, ZZ) := List => opts -> (n, m, e) -> generateBipartiteGraphs(n, m, e, e, opts)
generateBipartiteGraphs (ZZ, ZZ) := List => opts -> (n, m) -> generateBipartiteGraphs(n, m, 0, m * (n-m), opts)
generateBipartiteGraphs ZZ := List => opts -> n -> unique flatten apply(n, i -> generateBipartiteGraphs(n, i, opts))

-- Generates all graphs of a given type.
generateGraphs = method(Options => {OnlyConnected => false, OnlyBiconnected => false, OnlyTriangleFree => false, Only4CycleFree => false, OnlyBipartite => false, MinDegree => null, MaxDegree => null})
generateGraphs (ZZ, ZZ, ZZ) := List => opts -> (n, le, ue) -> (
    if n < 1 then error("generateGraphs: nauty does not like graphs with non-positive numbers of vertices.");
    if le > ue or le > binomial(n,2) or ue < 0 then return {};
    le = max(le, 0);

    cmdStr := "geng -q" |
        optionBoolean(opts.OnlyConnected, "generateGraphs", "OnlyConnected", "c") |
        optionBoolean(opts.OnlyBiconnected, "generateGraphs", "OnlyBiconnected", "C") |
        optionBoolean(opts.OnlyTriangleFree, "generateGraphs", "OnlyTriangleFree", "t") |
        optionBoolean(opts.Only4CycleFree, "generateGraphs", "Only4CycleFree", "f") |
        optionBoolean(opts.OnlyBipartite, "generateGraphs", "OnlyBipartite", "b") |
        optionZZ(opts.MinDegree, 0, "generateBipartiteGraphs", "MinDegree", "d") | 
        optionZZ(opts.MaxDegree, 0, "generateBipartiteGraphs", "MaxDegree", "D") | 
        (" " | toString n | " " | toString le | ":" | toString ue);
    
    callNauty(cmdStr, {})
)
generateGraphs (ZZ, ZZ) := List => opts -> (n, e) -> generateGraphs(n, e, e, opts)
generateGraphs ZZ := List => opts -> n -> generateGraphs(n, 0, binomial(n, 2), opts)

-- Generate random graphs with given properties.
generateRandomGraphs = method(Options => {RandomSeed => null})
generateRandomGraphs (ZZ, ZZ, ZZ) := List => opts -> (n, num, p) -> (
    if n < 1 then error("generateRandomGraphs: nauty does not like graphs with non-positive numbers of vertices.");
    if p < 1 then error("generateRandomGraphs: Probability must be positive.");
    if not instance(opts.RandomSeed, Nothing) and not instance(opts.RandomSeed, ZZ) then error("generateRandomGraphs: Option [RandomSeed] is not a valid type, i.e., ZZ or Nothing.");
    if p > 100000000 then p = 100000000; --silently bound it
    if num < 1 then return {};
    rndSeed := if instance(opts.RandomSeed, ZZ) then " -S" | toString(opts.RandomSeed % 2^30) else "";
    callNauty("genrang -qg -P" | toString p | " "  | toString n | " " | toString num | rndSeed, {})
)
generateRandomGraphs (ZZ, ZZ, QQ) := List => opts -> (n, num, p) -> (
    if n < 1 then error("generateRandomGraphs: nauty does not like graphs with non-positive numbers of vertices.");
    if num < 1 then return {};
    if p <= 0 or p > 1 then error("generateRandomGraphs: Probability must be between 0 and 1.");
    if not instance(opts.RandomSeed, Nothing) and not instance(opts.RandomSeed, ZZ) then error("generateRandomGraphs: Option [RandomSeed] is not a valid type, i.e., ZZ or Nothing.");
    rndSeed := if instance(opts.RandomSeed, ZZ) then " -S" | toString(opts.RandomSeed % 2^30) else "";
    -- limit the precision to 1e-8
    q := round(100000000 * p) / 100000000;
    callNauty("genrang -qg -P" | toString q | " "  | toString n | " " | toString num | rndSeed, {})
)
generateRandomGraphs (ZZ, ZZ, RR) := List => opts -> (n, num, p) -> generateRandomGraphs(n, num, promote(p, QQ), opts)
generateRandomGraphs (ZZ, ZZ) := List => opts -> (n, num) -> (
    if n < 1 then error("generateRandomGraphs: nauty does not like graphs with non-positive numbers of vertices.");
    if not instance(opts.RandomSeed, Nothing) and not instance(opts.RandomSeed, ZZ) then error("generateRandomGraphs: Option [RandomSeed] is not a valid type, i.e., ZZ or Nothing.");
    if num < 1 then return {};
    rndSeed := if instance(opts.RandomSeed, ZZ) then " -S" | toString(opts.RandomSeed % 2^30) else "";
    callNauty("genrang -qg " | toString n | " " | toString num | rndSeed, {})
)

-- Generate random regular graphs in the Ring with given properties.
generateRandomRegularGraphs = method(Options => {RandomSeed => null})
generateRandomRegularGraphs (ZZ, ZZ, ZZ) := List => opts -> (n, num, reg) -> (
    if n < 1 then error("generateRandomRegularGraphs: nauty does not like graphs with non-positive numbers of vertices.");
    if not instance(opts.RandomSeed, Nothing) and not instance(opts.RandomSeed, ZZ) then error("generateRandomGraphs: Option [RandomSeed] is not a valid type, i.e., ZZ or Nothing.");
    if num < 1 then return {};
    if reg < 1 or reg >= n then error("generateRandomRegularGraphs: Regularity must be positive but less than the number of vertices.");
    if odd n and odd reg then error("generateRandomRegularGraphs: There are no graphs with odd regularity on an odd number of vertices.");
    rndSeed := if instance(opts.RandomSeed, ZZ) then " -S" | toString(opts.RandomSeed % 2^30) else "";
    callNauty("genrang -qg -r" | toString reg | " " | toString n | " " | toString num | rndSeed, {})
)

-- Converts a Graph6 string to a Sparse6 string.
graph6ToSparse6 = method()
graph6ToSparse6 String := String => g6 -> first callNauty("copyg -qs", {g6})

-- Complements a graph.
graphComplement = method(Options => {OnlyIfSmaller => false})
graphComplement List := List => opts -> L -> (
    cmdStr := "complg -q" | optionBoolean(opts.OnlyIfSmaller, "graphComplement", "OnlyIfSmaller", "r");
    callNauty(cmdStr, L)
)
graphComplement String := String => opts -> S -> first graphComplement({S}, opts)
graphComplement Graph := Graph => opts -> G -> stringToGraph first graphComplement({G}, opts)

-- Converts a graph to a string in Graph6 format.
graphToString = method()
graphToString (List, ZZ) := String => (E, n) -> (
    if n < 1 then error("graphToString: nauty does not like graphs with non-positive numbers of vertices.");
    if n > 68719476735 then error("graphToString: nauty does not like too many vertices (more than 68719476735).");
    if any(E, e -> #e != 2) or any(E, e -> first e == last e) or max(flatten E) >= n then error("graphToString: Edges are malformed.");
    N := take(reverse apply(6, i -> (n // 2^(6*i)) % 2^6), if n < 63 then -1 else if n < 258047 then -3 else -6);

    B := new MutableList from toList(6*ceiling(binomial(n,2)/6):0);
    -- the edges must be in {min, max} order, so sort them
    for e in sort \ E do B#(binomial(last e, 2) + first e) = 1;
    ascii apply(N | apply(pack(6, toList B), b -> fold((i,j) -> i*2+j, b)), l -> l + 63)
)
graphToString MonomialIdeal := String => I -> graphToString(indices \ first entries generators I, #gens ring I)
graphToString Ideal := String => I -> graphToString monomialIdeal I
graphToString Graph := String => G -> (
    V := vertices G;
    idx := hashTable apply(#V, i-> V_i => i);
    E := apply(toList \ edges G, e -> {idx#(e_0), idx#(e_1)});
    graphToString(E, #V)
);
graphToString String := String => S -> S

-- Tests the planarity of a graph
isPlanar = method()
isPlanar String := Boolean => G -> (#callNauty("planarg -q", {G})) != 0
isPlanar Graph := Boolean => G -> isPlanar(graphToString G)

-- For each vertex, switch the edges between its neighborhood and its neighborhood's complement.
neighborhoodComplements = method()
neighborhoodComplements List := List => L -> callNauty("NRswitchg -q", L)
neighborhoodComplements String := List => S -> neighborhoodComplements {S}
neighborhoodComplements Graph := List => G -> stringToGraph \ neighborhoodComplements {G}

-- For each disjoint pair of edges (a,b), (c,d), replace the edges with 
-- (a,e), (e,b), (c,f), (f,d), and add the edge (e,f), where {e,f} are
-- new vertices.
newEdges = method()
newEdges List := List => L -> callNauty("newedgeg -q", L)
newEdges String := List => S -> newEdges {S}
newEdges Graph := List => G -> stringToGraph \ newEdges {G}

-- Removes non-planar graphs from a list of graphs
onlyPlanar = method()
onlyPlanar (List, Boolean) := List => (L, non) -> (
    cmdStr := "planarg -q " | if non then "-v" else "";
    callNauty(cmdStr, L)
)
onlyPlanar List := List => L -> onlyPlanar(L, false)

-- Reorders a bipartite graph so all vertices of each color are contiguous.
relabelBipartite = method()
relabelBipartite List := List => L -> (
    r := callNauty("biplabg -q", L);
    if #r == #L then r else error("relabelBipartite: One of the graphs is not a bipartite graph.")
)
relabelBipartite String := String => S -> first relabelBipartite {S}
relabelBipartite Graph := Graph => G -> stringToGraph first relabelBipartite {G}

-- Relabels a graph using a canonical labelling.
relabelGraph = method()
relabelGraph (List, ZZ, ZZ) := List => (L, i, a) -> (
    if i > 15 or i < 0 then error("relabelGraph: The invariant selected is invalid.");
    if a < 0 then error("relabelGraph: The invariant argument must be nonnegative.");
    callNauty("labelg -qg -i" | toString i | " -K" | toString a, L)
)
relabelGraph (String, ZZ, ZZ) := String => (S, i, a) -> first relabelGraph({S}, i, a)
relabelGraph (Graph, ZZ, ZZ) := Graph => (G, i, a) -> stringToGraph first relabelGraph({G}, i, a)
relabelGraph (List, ZZ) := String => (L, i) -> relabelGraph(L, i, 3)
relabelGraph (String, ZZ) := String => (S, i) -> first relabelGraph({S}, i, 3)
relabelGraph (Graph, ZZ) := Graph => (G, i) -> stringToGraph first relabelGraph({G}, i, 3)
relabelGraph List := String => L -> relabelGraph(L, 0, 3)
relabelGraph String := String => S -> first relabelGraph({S}, 0, 3)
relabelGraph Graph := Graph => G -> stringToGraph first relabelGraph({G}, 0, 3)
        
-- Finds all graphs defined by G with one edge removed.
removeEdges = method(Options => {MinDegree => null})
removeEdges List := List => opts -> L -> (
    cmdStr := "deledgeg -q" | optionZZ(opts.MinDegree, 0, "removeEdges", "MinDegree", "d");
    callNauty(cmdStr, L)
)
removeEdges String := List => opts -> S -> removeEdges({S}, opts)
removeEdges Graph := List => opts -> G -> stringToGraph \ removeEdges({G}, opts)

-- Removes all isomorphs from a list of graphs. 
removeIsomorphs = method()
removeIsomorphs List := List => L -> (
    if #L == 0 then return {};
    -- nauty outputs useful information to the stderr and (to us) junk on stdout
    r := callNauty("shortg -qv", L, ReadError => true);
    -- for each line, check if it has a colon, if so, take the first graph
    for l in r list ( 
        s := separate(":", l);
        if #s < 2 then continue else ( 
            t := select("[[:digit:]]+", s_1);
            if #t == 0 then continue else L_(-1 + value first t)
        )
    )
)

-- Converts a Sparse6 string to a Graph6 string.
sparse6ToGraph6 = method()
sparse6ToGraph6 String := String => (s6) -> (
    r := callNauty("copyg -qg", {s6});
    if #r != 0 then first r else error("sparse6ToGraph6: The graph format is incorrect.")
)

-- Converts a graph given by a string in either Sparse6 or Graph6 format to an edge ideal in the given ring.
stringToEdgeIdeal = method()
stringToEdgeIdeal (String, PolynomialRing) := MonomialIdeal => (str, R) -> (
    L := stringToList str;
    if first L != #gens R then error("stringToEdgeIdeal: Wrong number of variables in the ring.");
    E := last L;
    monomialIdeal if #E == 0 then 0_R else apply(E, e -> R_(e_0) * R_(e_1))
)

-- Converts a string to a graph object
stringToGraph = method()
stringToGraph String := Graph => str -> (
    L := stringToList str;
    V := toList(0..(first L - 1));
    V' := unique flatten last L;
    if #V' == #V then graph last L else graph(last L, Singletons => select(V, v -> not member(v, V')))
);

-------------------
-- Local-Only Code
-------------------

nauty = null

-- Sends a command and retrieves the results into a list of lines.
-- If ReadError is set to true and the command is successfully executed,
-- then the data from stderr is returned (filterGraphs and removeIsomorphs
-- use this).
protect ReadError;
callNauty = method(Options => {ReadError => false})
callNauty (String, List) := List => opts -> (cmdStr, dataList) -> (
    if nauty === null then
       nauty = findProgram("nauty", "complg --help",
	   Prefix => {(".*", "nauty-")}); -- debian/fedora
    infn := temporaryFileName();
    erfn := temporaryFileName();
    -- output the data to a file
    o := openOut infn;
    scan(graphToString \ dataList, d -> o << d << endl);
    close o;
    exe := first separate(" ", cmdStr);
    args := replace(exe | " ", "", cmdStr);
    r := runProgram(nauty, exe, args | " < " | infn);
    removeFile infn;
    if opts.ReadError then lines r#"error" else lines r#"output"
)

-- Processes an option which should be a Boolean.
-- Throws an appropriate error if the type is bad, otherwise it returns the flag.
optionBoolean = (b, m, o, f) -> (
    if instance(b, Nothing) then ""
    else if not instance(b, Boolean) then error(m | ": Option [" | o | "] is not a valid type, i.e., Boolean or Nothing.")
    else if b then " -" | f 
    else ""
)

-- Processes an option which should be an integer (ZZ).
-- Throws an appropriate error if the type is bad or the bound is bad, otherwise it returns the flag.
optionZZ = (i, b, m, o, f) -> (
    if instance(i, Nothing) then ""
    else if not instance(i, ZZ) then error(m | ": Option [" | o | "] is not a valid type, i.e., ZZ or Nothing.")
    else if i < b then error(m | ": Option [" | o | "] is too small (minimum is " | toString b | ").")
    else " -" | f | toString i
)

-- Converts a graph given by a string in either Sparse6 or Graph6 format to a list
stringToList = method()
stringToList String := List => str -> (
    -- basic parse
    if #str == 0 then return;
    sparse := str_0 == ":";
    A := apply(ascii str, l -> l - 63);
    if sparse then A = drop(A, 1);
    if min A < 0 or max A > 63 then error("stringToList: Not a Sparse6/Graph6 string.");

    -- get number of vertices
    p := 0;
    n := if A_0 < 63 then (
             p = 1;
             A_0
         ) else if A_1 < 63 then ( 
             if #A < 4 then error("stringToList: Not a Sparse6/Graph6 string.");
             p = 4;
             fold((i,j) -> i*2^6+j, take(A, {1,3}))
         ) else (
             if #A < 8 then error("stringToList: Not a Sparse6/Graph6 string.");
             p = 8;
             fold((i,j) -> i*2^6+j, take(A, {2,7}))
         );

    bits := flatten apply(drop(A, p), n -> ( n = n*2; reverse for i from 1 to 6 list (n=n//2)%2 ));
    c := 0;

    {n, if sparse then (
        -- Sparse6 format
        k := ceiling(log(n) / log(2));
        v := 0;
        xi := 0;
        while c + k < #bits list (
            if bits_c == 1 then v = v + 1;
            xi = fold((i,j) -> 2*i+j, take(bits, {c+1,c+k})); 
            c = c + k + 1;
            if xi > v then ( v = xi; continue ) else {xi, v}
        )
    ) else ( 
        -- Graph6 format
        if #A != p + ceiling(n*(n-1)/12) then error("stringToList: Not a Graph6 string.");
        c = -1;
        flatten for i from 1 to n - 1 list for j from 0 to i - 1 list ( c = c + 1; if bits_c == 1 then {i, j} else continue)
    )}
)

-------------------
-- Documentation
-------------------
beginDocumentation()

doc ///
    Key
        NautyGraphs
    Headline
        Interface to nauty (Graphs fork)
    Description
        Text
            This package provides an interface from Macaulay2 to many of the functions provided in
            the software nauty by Brendan D. McKay, available at @HREF "http://cs.anu.edu.au/~bdm/nauty/"@.
            The nauty package provides very efficient methods for determining whether
            given graphs are isomorphic, generating all graphs with particular properties,
            generating random graphs, and more.
            
            Most methods can handle graphs in either the Macaulay2 @TO "Graph"@ type as provided by
            the @TO "Graphs"@ package or as Graph6 and Sparse6 strings as used by nauty.
            The purpose of this is that graphs stored as strings are greatly more efficient than
            graphs stored as instances of the class @TO "Graph"@.  
            (See @TO "Comparison of Graph6 and Sparse6 formats"@.)

            It is recommended to work with graphs represented as strings while using nauty-provided
            methods and then converting the graphs to instances of the class @TO "Graph"@ for further work.

            The theoretical underpinnings of nauty are in the paper:
            B. D. McKay, "Practical graph isomorphism," Congr. Numer. 30 (1981), 45--87.
    SeeAlso
        "Comparison of Graph6 and Sparse6 formats"
        "Example: Checking for isomorphic graphs"
        "Example: Generating and filtering graphs"
///


doc ///
    Key
        addEdges
        (addEdges, List)
        (addEdges, String)
        (addEdges, Graph)
        [addEdges, MaxDegree]
        [addEdges, NoNew3Cycles]
        [addEdges, NoNew4Cycles]
        [addEdges, NoNew5Cycles]
        [addEdges, NoNewOddCycles]
        [addEdges, NoNewSmallCycles]
    Headline
        creates a list of graphs obtained by adding one new edge to the given graph in all possible ways
    Usage
        Ll = addEdges L
        Lg = addEdges G
        Ls = addEdges S
    Inputs
        L:List
            containing graphs in various formats
        S:String
            which describes a graph in Graph6 or Sparse6 format
        G:Graph
        MaxDegree=>ZZ
            the maximum degree allowable for any vertex in the output graphs
        NoNew3Cycles=>Boolean
            whether graphs with new 3-cycles are allowed
        NoNew4Cycles=>Boolean
            whether graphs with new 4-cycles are allowed
        NoNew5Cycles=>Boolean
            whether graphs with new 5-cycles are allowed
        NoNewOddCycles=>Boolean
            whether graphs with new odd-cycles are allowed
        NoNewSmallCycles=>ZZ
            an upper bound on cycles which are not allowed
    Outputs
        Ll:List
            the list of graphs obtained from the graphs in $L$ in Graph6 format
        Lg:List
            the list of graphs obtained from $G$
        Ls:List
            the list of strings (in Graph6 format) obtained from $S$
    Description
        Text
            Simply creates a list, in the same format as the input, of all possible graphs
            obtained by adding one new edge to the input graph.
        Example
            G = graph {{1,2},{2,3},{3,4},{4,5},{1,5}};
            addEdges G
        Text
            If the List input format is used, then one should use care as
            the list may contain isomorphic pairs.
    SeeAlso
        removeEdges
///

doc ///
    Key
        areIsomorphic
        (areIsomorphic, String, String)
        (areIsomorphic, Graph, Graph)
        (areIsomorphic, String, Graph)
        (areIsomorphic, Graph, String)
        (symbol ==, Graph, Graph)
        (symbol ==, Graph, String)
        (symbol ==, String, Graph)
    Headline
        determines whether two graphs are isomorphic
    Usage
        b = areIsomorphic(G, H)
        G == H
        b = areIsomorphic(S, T)
        b = areIsomorphic(S, H)
        S == H
        b = areIsomorphic(G, T)
        G == T
    Inputs
        G:Graph
        H:Graph
        S:String
        T:String
    Outputs
        b:Boolean
            whether the two graphs are isomorphic
    Description
        Text
            A very efficient method for determining whether two graphs (of the same format) are isomorphic.
        Example
            G = graph {{1,2},{2,3},{3,4},{4,5},{1,5}};
            H = graph {{1,3},{3,5},{5,2},{2,4},{4,1}};
            I = graph {{1,2},{1,3},{1,4},{1,5},{2,3},{2,4},{2,5},{3,4},{3,5},{4,5}};
            areIsomorphic(G, H)
            G == H
            areIsomorphic(G, I)
            G == "Dhc"
            I == "Dhc"

    SeeAlso
        "Example: Checking for isomorphic graphs"
        removeIsomorphs
///

doc ///
    Key
        buildGraphFilter
        (buildGraphFilter, HashTable)
        (buildGraphFilter, List)
    Headline
        creates the appropriate filter string for use with filterGraphs and countGraphs
    Usage
        s = buildGraphFilter h
        s = buildGraphFilter l
    Inputs
        h:HashTable
            which describes the properties desired in filtering
        l:List
            which describes the properties desired in filtering
    Outputs
        s:String
            which can be used with @TO "filterGraphs"@ and @TO "countGraphs"@
    Description
        Text
            The @TO "filterGraphs"@ and @TO "countGraphs"@ methods both can use a tremendous number of constraints
            which are described by a rather tersely encoded string.  This method builds that string given information
            in the @TO "HashTable"@ $h$ or the @TO "List"@ $l$.  Any keys which do not exist are simply ignored and 
            any values which are not valid (e.g., exactly $-3$ vertices) are also ignored.
            
            The values can either be @TO "Boolean"@ or in @TO "ZZ"@.  @TO "Boolean"@ values are treated exactly
            as expected.  Numerical values are more complicated; we use an example to illustrate how numerical values
            can be used, but note that this usage works for all numerically valued keys.
 
            The key @TT "NumEdges"@ restricts to a specific number of edges in the graph.  If the value is
            the integer $n$, then only graphs with @EM "exactly"@ $n$ edges are returned.
        Example
            L = {graph {{1,2}}, graph {{1,2},{2,3}}, graph {{1,2},{2,3},{3,4}}, graph {{1,2},{2,3},{3,4},{4,5}}};
            s = buildGraphFilter {"NumEdges" => 3};
            filterGraphs(L, s)
        Text
            If the value is the @TO "Sequence"@ $(m,n)$, then all graphs with at least $m$ and at most $n$ edges are returned.
        Example
            s = buildGraphFilter {"NumEdges" => (2,3)};
            filterGraphs(L, s)
        Text
            If the value is the @TO "Sequence"@ $(,n)$, then all graphs with at most $n$ edges are returned.
        Example
            s = buildGraphFilter {"NumEdges" => (,3)};
            filterGraphs(L, s)
        Text
            If the value is the @TO "Sequence"@ $(m,)$, then all graphs with at least $m$ edges are returned.
        Example
            s = buildGraphFilter {"NumEdges" => (2,)};
            filterGraphs(L, s)
        Text
            Moreover, the associated key @TT "NegateNumEdges"@, if true, causes the @EM "opposite"@ to occur.
        Example
            s = buildGraphFilter {"NumEdges" => (2,), "NegateNumEdges" => true};
            filterGraphs(L, s)
        Text
            The following are the boolean options: "Regular", "Bipartite", "Eulerian", "VertexTransitive".

            The following are the numerical options (recall all have the associate "Negate" option): "NumVertices", "NumEdges",
            "MinDegree", "MaxDegree", "Radius", "Diameter", "Girth", "NumCycles", "NumTriangles", "GroupSize", "Orbits",
            "FixedPoints", "Connectivity", "MinCommonNbrsAdj", "MaxCommonNbrsAdj", "MinCommonNbrsNonAdj", "MaxCommonNbrsNonAdj".
    Caveat
            @TT "Connectivity"@ only works for the values $0, 1, 2$ and uses the following definition of $k$-connectivity.
            A graph is $k$-connected if $k$ is the minimum size of a set of vertices whose complement is not connected.

            Thus, in order to filter for connected graphs, one must use @TT "{\"Connectivity\" => 0, \"NegateConnectivity\" => true}"@.

            @TT "NumCycles"@ can only be used with graphs on at most $n$ vertices, where $n$ is the number of bits for which
            nauty was compiled, typically $32$ or $64$.
    SeeAlso
        countGraphs
        "Example: Generating and filtering graphs"
        filterGraphs
///

doc ///
    Key
        "Comparison of Graph6 and Sparse6 formats"
    Description
        Text
            The program nauty uses two string-based formats for storing graphs:  Graph6 and Sparse6 format.
            Each format has benefits and drawbacks.  

            In particular, the length of a Graph6 string representation of a graph depends only on the number of vertices.
            However, this also means that graphs with few edges take as much space as graphs with many edges.
            On the other hand, Sparse6 is a variable length format which can use dramatically less space for
            sparse graphs but can have a much larger storage size for dense graphs.

            Consider the 26-cycle, a rather sparse graph.  Notice how Sparse6 format takes half the space
            of the Graph6 format.
        Example
            C26 = graph append(apply(25, i -> {i, i+1}), {0, 25});
            g6 = graphToString C26; #g6
            s6 = graph6ToSparse6 g6; #s6
        Text
            However, the complete graph, which is as dense as possible, on 26 vertices is the opposite: 
            the Sparse6 format takes nearly six times the space of the Graph6 format.
        Example
            K26 = graph flatten for i from 0 to 25 list for j from i+1 to 25 list {i,j};
            g6 = graphToString K26; #g6
            s6 = graph6ToSparse6 g6; #s6
    SeeAlso
        graph6ToSparse6
        graphToString
        sparse6ToGraph6
        stringToGraph
///

doc ///
    Key
        countGraphs
        (countGraphs, List, String)
        (countGraphs, List, HashTable)
        (countGraphs, List, List)
    Headline
        counts the number of graphs in the list with given properties
    Usage
        n = countGraphs(L, s)
        n = countGraphs(L, h)
        n = countGraphs(L, l)
    Inputs
        L:List
            containing graphs (mixed formats are allowed)
        s:String
            a filter, as generated by @TO "buildGraphFilter"@
        h:HashTable
            a filter, as used by @TO "buildGraphFilter"@
        l:List
            a filter, as used by @TO "buildGraphFilter"@
    Outputs
        n:ZZ
            the number of graphs in $L$ satisfying the filter
    Description
        Text
            Counts the number of graphs in a list that satisfy certain restraints as given in
            the filter (see @TO "buildGraphFilter"@).  Notice that the input list can be graphs
            represented as instances of the class @TO "Graph"@ or in a nauty-based @TO "String"@ format.
        Text
            For example, we can count the number of connected graphs on five vertices.
        Example
            L = generateGraphs 5;
            countGraphs(L, {"Connectivity" => 0, "NegateConnectivity" => true})
    SeeAlso
        buildGraphFilter
        filterGraphs
///

doc ///
    Key
        "Example: Checking for isomorphic graphs"
    Description
        Text
            The main use of nauty is to determine if two graphs are isomorphic.  We can
            demonstrate it for two given graphs with the method @TO "areIsomorphic"@.  
        Example
            G = graph {{1,2},{2,3},{3,4},{4,5},{1,5}};
            H = graph {{1,3},{3,5},{5,2},{2,4},{4,1}};
            areIsomorphic(G, H)
        Text
            Further, a list of graphs can be reduced to only graphs that are non-isomorphic
            with the method @TO "removeIsomorphs"@.  Here we create a list of 120 different
            labellings of the 5-cycle and use nauty to verify they are indeed all
            the same.
        Example
            L = graphToString \ apply(permutations 5, P -> graph apply(5, i -> {P_i, P_((i+1)%5)}));
            N = removeIsomorphs L
            stringToGraph first N
    SeeAlso
        areIsomorphic
        removeIsomorphs
///

doc ///
    Key
        "Example: Generating and filtering graphs"
    Description
        Text
            The method @TO "generateGraphs"@ can generate all graphs with a given property.
            For example, we can verify the number of graphs on a given number of vertices.
            Compare these results to the Online Encyclopedia of Integer Sequences (@HREF "http://oeis.org/"@),
            where the sequence name is also its OEIS identifier.
        Example
            A000088 = apply(1..9, n -> #generateGraphs n)
            B = apply(1..12, n -> generateGraphs(n, OnlyBipartite => true));
        Text
            Further, we can use @TO "filterGraphs"@ to refine the set of generate graphs
            for deeper properties.

            Here we filter for forests, then for trees only,
        Example
            forestsOnly = buildGraphFilter {"NumCycles" => 0};
            A005195 = apply(B, graphs -> #filterGraphs(graphs, forestsOnly))
            treesOnly = buildGraphFilter {"NumCycles" => 0, "Connectivity" => 0, "NegateConnectivity" => true};
            A000055 = apply(B, graphs -> #filterGraphs(graphs, treesOnly))
        Text
            Moreover, we can generate random graphs using the @TO "generateRandomGraphs"@ method.  Here
            we verify a result of Erdos and R\'enyi (see @HREF "http://www.ams.org/mathscinet-getitem?mr=120167"@),
            which says that a random graph on $n$ vertices with edge probability $(1+\epsilon)$log$(n)/n$ is almost
            always connected while a graph with edge probability $(1-\epsilon)$log$(n)/n$ is almost never connected,
            at least as $n$ tends to infinity.
        Example
            connected = buildGraphFilter {"Connectivity" => 0, "NegateConnectivity" => true};
            prob = n -> log(n)/n;
            apply(2..30, n -> #filterGraphs(generateRandomGraphs(n, 100, 2*(prob n)), connected))
            apply(2..30, n -> #filterGraphs(generateRandomGraphs(n, 100, (prob n)/2), connected))
    SeeAlso
        buildGraphFilter
        filterGraphs
        generateGraphs
        generateRandomGraphs
///
            

doc ///
    Key
        filterGraphs
        (filterGraphs, List, String)
        (filterGraphs, List, HashTable)
        (filterGraphs, List, List)
    Headline
        filters (i.e., selects) graphs in a list for given properties
    Usage
        F = filterGraphs(L, s)
        F = filterGraphs(L, h)
        F = filterGraphs(L, l)
    Inputs
        L:List
            containing graphs (mixed formats are allowed)
        s:String
            a filter, as generated by @TO "buildGraphFilter"@
        h:HashTable
            a filter, as used by @TO "buildGraphFilter"@
        l:List
            a filter, as used by @TO "buildGraphFilter"@
    Outputs
        F:List
            the graphs in $L$ satisfying the filter
    Description
        Text
            Filters the graphs in a list which satisfy certain restraints as given in
            the filter (see @TO "buildGraphFilter"@).  Notice that the input list can be graphs
            represented as instances of the class @TO "Graph"@ or in a nauty-based @TO "String"@ format.
        Text
            For example, we can filter for the connected graphs on five vertices.
        Example
            L = generateGraphs 5;
            filterGraphs(L, {"Connectivity" => 0, "NegateConnectivity" => true})
    SeeAlso
        buildGraphFilter
        countGraphs
        "Example: Generating and filtering graphs"
///

doc ///
    Key
        generateBipartiteGraphs
        (generateBipartiteGraphs, ZZ)
        (generateBipartiteGraphs, ZZ, ZZ)
        (generateBipartiteGraphs, ZZ, ZZ, ZZ)
        (generateBipartiteGraphs, ZZ, ZZ, ZZ, ZZ)
        [generateBipartiteGraphs, Class2Degree2]
        [generateBipartiteGraphs, Class2DistinctNeighborhoods]
        [generateBipartiteGraphs, Class2MaxCommonNeighbors]
        [generateBipartiteGraphs, MaxDegree]
        [generateBipartiteGraphs, MinDegree]
        [generateBipartiteGraphs, OnlyConnected]
    Headline
        generates the bipartite graphs with a given bipartition
    Usage
        G = generateBipartiteGraphs n
        G = generateBipartiteGraphs(n, m)
        G = generateBipartiteGraphs(n, m, e)
        G = generateBipartiteGraphs(n, m, le, ue)
    Inputs
        n:ZZ
            the number of vertices of the graphs, must be positive (see caveat)
        m:ZZ
            the number of vertices in the first class of the bipartition
        e:ZZ
            the number of edges in the graphs
        le:ZZ
            a lower bound on the number of edges in the graphs
        ue:ZZ 
            an upper bound on the number of edges in the graphs
        Class2Degree2=>Boolean
            whether the vertices in the second class must have at least two neighbors of degree at least 2
        Class2DistinctNeighborhoods=>Boolean 
            whether all vertices in the second class must have distinct neighborhoods
        Class2MaxCommonNeighbors=>ZZ
            an upper bound on the number of common neighbors of vertices in the second class
        MaxDegree=>ZZ
            an upper bound on the degrees of the vertices
        MinDegree=>ZZ
            a lower bound on the degrees of the vertices
        OnlyConnected=>Boolean
            whether to only allow connected graphs
    Outputs
        G:List
            the bipartite graphs satisfying the input conditions
    Description
        Text
            This method generates all bipartite graphs on $n$ vertices.  
            The size of the bipartition is specified by giving the size of
            one class; the other class is determined automatically from the
            number of vertices.
        Text
            If only one integer argument is given, then the method generates
            all bipartite graphs on that number of vertices with first class
            of sizes $0$ to $n$.
    Caveat
        The number of vertices $n$ must be positive as nauty cannot handle
        graphs with zero vertices.
    SeeAlso
        generateGraphs
///

doc ///
    Key
        generateGraphs
        (generateGraphs, ZZ)
        (generateGraphs, ZZ, ZZ)
        (generateGraphs, ZZ, ZZ, ZZ)
        [generateGraphs, MaxDegree]
        [generateGraphs, MinDegree]
        [generateGraphs, Only4CycleFree]
        [generateGraphs, OnlyBiconnected]
        [generateGraphs, OnlyBipartite]
        [generateGraphs, OnlyConnected]
        [generateGraphs, OnlyTriangleFree]
    Headline
        generates the graphs on a given number of vertices
    Usage
        G = generateGraphs n
        G = generateGraphs(n, e)
        G = generateGraphs(n, le, ue)
    Inputs
        n:ZZ
            the number of vertices of the graphs, must be positive (see caveat)
        e:ZZ
            the number of edges in the graphs
        le:ZZ
            a lower bound on the number of edges in the graphs
        ue:ZZ
            an upper bound on the number of edges in the graphs
        MaxDegree=>ZZ
            an upper bound on the degrees of the vertices
        MinDegree=>ZZ
            a lower bound on the degrees of the vertices
        Only4CycleFree=>Boolean
            whether to only allow graphs without 4-cycles
        OnlyBiconnected=>Boolean
            whether to only allow biconnected graphs
        OnlyBipartite=>Boolean
            whether to only allow bipartite graphs
        OnlyConnected=>Boolean
            whether to only allow connected graphs
        OnlyTriangleFree=>Boolean
            whether to only allow graphs without triangles (3-cycles)
    Outputs
        G:List
            the graphs satisfying the input conditions
    Description
        Text
            This method generates all graphs on $n$ vertices subject to the 
            constraints on the number of edges.  It uses numerous options
            to allow further constraining of the output.
        Example
            generateGraphs(5, 4, 6, OnlyConnected => true)
    Caveat 
        The number of vertices $n$ must be positive as nauty cannot handle
        graphs with zero vertices.
    SeeAlso
        "Example: Generating and filtering graphs"
        generateBipartiteGraphs
///

doc ///
    Key
        generateRandomGraphs
        (generateRandomGraphs, ZZ, ZZ)
        (generateRandomGraphs, ZZ, ZZ, ZZ)
        (generateRandomGraphs, ZZ, ZZ, QQ)
        (generateRandomGraphs, ZZ, ZZ, RR)
        [generateRandomGraphs, RandomSeed]
    Headline
        generates random graphs on a given number of vertices
    Usage
        G = generateRandomGraphs(n, num)
        G = generateRandomGraphs(n, num, pq)
        G = generateRandomGraphs(n, num, pz)
    Inputs
        n:ZZ 
            the number of vertices of the graphs, must be positive (see caveat)
        num:ZZ 
            the number of random graphs to generate
        pq:QQ 
            the edge probability (between 0 and 1)
        pq:RR 
            the edge probability (between 0 and 1)
        pz:ZZ 
            the reciprocal of the edge probability (positive)
        RandomSeed=>ZZ
            the specified random seed is passed to nauty
    Outputs
        G:List
            the randomly generated graphs
    Description
        Text
            This method generates a specified number of random graphs with a given
            number of vertices.  Note that some graphs may be isomorphic.
        Text
            If the input $pq$ is included, then the edges are chosen to be
            included with probability $pq$.  If the input $pz$ is included
            and is positive, then the edges are chosen to be included with
            probability $1/pz$.
        Example
            generateRandomGraphs(5, 5, RandomSeed => 314159)
            generateRandomGraphs(5, 5)
            generateRandomGraphs(5, 5, RandomSeed => 314159)
    Caveat 
        The number of vertices $n$ must be positive as nauty cannot handle
        graphs with zero vertices.  Further, if the probability $pq$ is included,
        then it is rounded to a precision of one-hundred millionth.
    SeeAlso
        "Example: Generating and filtering graphs"
        generateRandomRegularGraphs
///

doc ///
    Key
        generateRandomRegularGraphs
        (generateRandomRegularGraphs, ZZ, ZZ, ZZ)
        [generateRandomRegularGraphs, RandomSeed]
    Headline
        generates random regular graphs on a given number of vertices
    Usage
        G = generateRandomRegularGraphs(n, num, reg) 
    Inputs 
        n:ZZ
            the number of vertices of the graphs, must be positive (see caveat)
        num:ZZ 
            the number of random graphs to generate
        reg:ZZ 
            the regularity of the generated graphs
        RandomSeed=>ZZ 
            the specified random seed is passed to nauty
    Outputs 
        G:List
            the randomly generated regular graphs
    Description
        Text
            This method generates a specified number of random graphs on
            a given number of vertices with a given regularity.
            Note that some graphs may be isomorphic.
        Example
            generateRandomRegularGraphs(5, 3, 2)
    Caveat
        The number of vertices $n$ must be positive as nauty cannot handle
        graphs with zero vertices.
    SeeAlso
        generateRandomGraphs
///

doc ///
    Key
        graph6ToSparse6
        (graph6ToSparse6, String)
    Headline
        converts a Graph6 string to a Sparse6 string
    Usage
        s6 = graph6ToSparse6 g6
    Inputs
        g6:String
            a string in nauty's Graph6 format
    Outputs
        s6:String
            a string in nauty's Sparse6 format
    Description
        Text
            This method converts a graph stored in nauty's Graph6 format
            to a graph stored in nauty's Sparse6 format.  For graphs with
            very few edges, the Sparse6 format can use dramatically less
            space.  However, for graphs with many edges, the Sparse6
            format can increase the storage requirements.
        Example
            graph6ToSparse6 "Dhc"
            graph6ToSparse6 "M????????????????"
    SeeAlso
        "Comparison of Graph6 and Sparse6 formats"
        graphToString
        stringToEdgeIdeal
        stringToGraph
        sparse6ToGraph6
///

doc ///
    Key
        graphComplement
        (graphComplement, List)
        (graphComplement, String)
        (graphComplement, Graph)
        [graphComplement, OnlyIfSmaller]
    Headline
        computes the complement of a graph
    Usage 
        L' = graphComplement L
        T = graphComplement S
        H = graphComplement G
    Inputs
        L:List
            containing graphs in various formats
        S:String
            a graph encoded in either Sparse6 or Graph6 format
        G:Graph
        OnlyIfSmaller=>Boolean
            when true, then the smaller (fewer edges) of the graph and its complement are returned
    Outputs
        L':List
            the graph complement of the elements of $L$ stored in Graph6 format
        T:String
            the graph complement of $S$ stored in the same format at $S$
        H:Graph
            the graph complement of $G$
    Description
        Text
            This method computes the graph complement of the input graph
            and returns the result in the same format.
        Example
            graphComplement "Dhc"
            graphComplement graph {{1,2},{2,3},{3,4},{4,5},{1,5}}
        Text
            Batch calls can be performed considerably faster when using the 
            List input format.  However, care should be taken as the returned
            list is entirely in Graph6 or Sparse6 format.
        Example
            G = generateBipartiteGraphs 7;
            time graphComplement G;
            time (graphComplement \ G);
///

doc ///
    Key
        graphToString
        (graphToString, List, ZZ)
        (graphToString, MonomialIdeal)
        (graphToString, Ideal)
        (graphToString, Graph)
        (graphToString, String)
    Headline
        converts a graph to a string in the Graph6 format
    Usage
        S = graphToString(E, n)
        S = graphToString I
        S = graphToString G
        S = graphToString T
    Inputs
        E:List
            a list of edge pairs
        n:ZZ
            the number of vertices in the graph, must be positive (see caveat)
        I:Ideal
            the edge ideal of a graph
        G:Graph
        T:String
            a string containing a graph; the string automatically passes through untouched
    Outputs
        S:String
            the graph converted to a Graph6 format string
    Description
        Text
            This method converts various ways of representing a graph into
            nauty's Graph6 string format.  Note that if the @TO "Ideal"@
            (or @TO "MonomialIdeal"@) passed to the method is not squarefree and monomial, then the
            method may have unknown and possibly undesired results.

            In this example, all graphs are the 5-cycle.
        Example
            graphToString({{0,1}, {1,2}, {2,3}, {3,4}, {0,4}}, 5)
            R = QQ[a..e];
            graphToString monomialIdeal (a*c, a*d, b*d, b*e, c*e)
            graphToString graph {{0,1}, {1,2}, {2,3}, {3,4}, {0,4}}
            graphToString "Dhc"
        Text
            We note that if the input is a string, then the output is simply that string returned,
            regardless of format or correctness.
    Caveat
        Notice that if using a @TO "List"@ and number of vertices input to create
        the string, then the @TO "List"@ must have vertices labeled $0$ to
        $n-1$.

        The number of vertices $n$ must be positive as nauty cannot handle
        graphs with zero vertices.
    SeeAlso
        "Comparison of Graph6 and Sparse6 formats"
        graph6ToSparse6
        sparse6ToGraph6
        stringToGraph
///

doc ///
    Key
        isPlanar
        (isPlanar, Graph)
        (isPlanar, String)
    Headline
        determines if a given graph is planar
    Usage
        p = isPlanar G
        p = isPlanar S
    Inputs
        S:String
            a graph encoded in either Sparse6 or Graph6 format
        G:Graph
    Outputs
        p:Boolean
            whether the given graph is planar
    Description
        Text
            A graph is planar if the graph can be embedded in the plane, i.e.,
            the vertices can be arranged such that no edges cross except at
            vertices.
        Example
            isPlanar graph {{0,1}, {1,2}, {2,3}, {3,4}, {0,4}}
            isPlanar graph flatten for i from 0 to 4 list for j from i+1 to 4 list {i,j}
        Text
            This method uses the program @TT "planarg"@. The
            code was written by Paulette Lieby for the Magma project and
            used with permission in the software nauty.
    SeeAlso
        onlyPlanar
///

doc ///
    Key
        neighborhoodComplements
        (neighborhoodComplements, List)
        (neighborhoodComplements, String)
        (neighborhoodComplements, Graph)
    Headline
        complements the neighborhood for each vertex, individually
    Usage
        N' = neighborhoodComplements L
        N = neighborhoodComplements S
        N = neighborhoodComplements G
    Inputs
        L:List
            containing graphs in various formats
        S:String
            a graph encoded in either Sparse6 or Graph6 format
        G:Graph
    Outputs
        N':List
            containing graphs in either Graph6 or Sparse6 format, modified as described below
        N:List
            containing graphs, in the same format as the input, modified as described below
    Description
        Text
            The method creates a list of graphs, one for each vertex of the
            original graph $G$.  The graph associated to a vertex $v$
            of $G$ has the neighborhood of $v$ complemented.  

            The method does not remove isomorphs.
        Example
            neighborhoodComplements graph {{1,2},{1,3},{2,3},{3,4},{4,5}}
    SeeAlso
        graphComplement
        neighbors
///

doc ///
    Key
        newEdges
        (newEdges, List)
        (newEdges, String)
        (newEdges, Graph)
    Headline
        replaces disjoint pairs of edges by disjoint pairs of two-chains
    Usage
        N' = newEdges L
        N = newEdges S
        N = newEdges G
    Inputs
        L:List
            containing graphs in various formats
        S:String
            a graph encoded in either Sparse6 or Graph6 format
        G:Graph
    Outputs
        N':List
            containing graphs in either Graph6 or Sparse6 format, modified as described below
        N:List
            a list of graphs, in the same format as the input, modified as described below
    Description
        Text
            The list of "new edge" graphs are formed as follows:
            Let $ab$ and $cd$ be disjoint edges of $G$.  Then the
            associated "new edge" graph $H$ is $G$ with the edges
            $ab$ and $cd$ removed, the vertices $e$ and $f$ added,
            and the new edges $ae, be, cf, df,$ and $ef$ added.
        Example
            newEdges graph {{a,b},{c,d}}
        Text
            If the List input format is used, then one should use care as
            the list may contain isomorphic pairs.
///

doc ///
    Key
        onlyPlanar
        (onlyPlanar, List, Boolean)
        (onlyPlanar, List)
    Headline
        removes non-planar graphs from a list
    Usage
        P = onlyPlanar L
        P = onlyPlanar(L, non)
    Inputs
        L:List
            containing graphs in various formats
        non:Boolean
            whether to return non-planar graphs
    Outputs
        P:List
            containing the planar graphs of $L$ in Graph6 or Sparse6 format
    Description
        Text
            A graph is planar if the graph can be embedded in the plane, i.e.,
            the vertices can be arranged such that no edges cross except at
            vertices.
        Text
            The only non-planar graph on five vertices is the complete graph.
        Example
            K5 = graph flatten for i from 0 to 4 list for j from i+1 to 4 list {i,j};
            P = onlyPlanar(generateGraphs 5, true)
            areIsomorphic(first P, K5)
        Text
            This method uses the program @TT "planarg"@. The
            code was written by Paulette Lieby for the Magma project and
            used with permission in the software nauty.
    SeeAlso
        isPlanar
///

doc ///
    Key
        relabelBipartite
        (relabelBipartite, List)
        (relabelBipartite, String)
        (relabelBipartite, Graph)
    Headline
        relabels a bipartite graph so all vertices of a given class are contiguous
    Usage
        L' = relabelBipartite L
        T = relabelBipartite S
        H = relabelBipartite G
    Inputs
        L:List
            a list of bipartite graphs in various formats
        S:String
            a bipartite graph encoded in either Sparse6 or Graph6 format
        G:Graph
            a bipartite graph
    Outputs
        L':List
            a list of graphs isomorphic to $S$
        T:String
            a graph isomorphic to $S$ encoded in either Sparse6 or Graph6 format
        H:Graph
            a graph isomorphic to $G$
    Description
        Text
            A bipartite graph can be labeled so all vertices of a given
            class are contiguous.  This method does precisely that to a
            bipartite graph.
        Example
            G = graph {{1,2},{1,4},{1,6},{3,2},{3,4},{3,6},{5,2},{5,4},{5,6}};
            relabelBipartite G
        Text
            If any of the inputs are not bipartite graphs, then the method
            throws an error.
    SeeAlso
        relabelGraph
///

doc ///
    Key
        relabelGraph
        (relabelGraph, List, ZZ, ZZ)
        (relabelGraph, List, ZZ)
        (relabelGraph, List)
        (relabelGraph, String, ZZ, ZZ)
        (relabelGraph, String, ZZ)
        (relabelGraph, String)
        (relabelGraph, Graph, ZZ, ZZ)
        (relabelGraph, Graph, ZZ)
        (relabelGraph, Graph)
    Headline
        applies a vertex invariant based refinement to a graph
    Usage
        L' = relabelGraph(L, i, a)
        L' = relabelGraph(L, i)
        L' = relabelGraph L
        T = relabelGraph(S, i, a)
        T = relabelGraph(S, i)
        T = relabelGraph S
        H = relabelGraph(G, i, a)
        H = relabelGraph(G, i)
        H = relabelGraph G
    Inputs
        L:List
            a list of graphs in various formats
        S:String
            a graph encoded in either Sparse6 or Graph6 format
        G:Graph
        i:ZZ
            a choice of invariant to order by ($0 \leq i \leq 15$, default is $0$)
        a:ZZ
            a non-negative argument passed to nauty, (default is $3$)
    Outputs
        L':List
            a list of graphs isomorphic to $S$
        T:String
            a graph isomorphic to $S$ encoded in either Sparse6 or Graph6 format
        H:Graph
            a graph isomorphic to $G$
    Description
        Text
            This method applies one of sixteen vertex invariant based refinements to a 
            graph.  See the nauty documentation for a more complete description
            of each and how the argument $a$ is used.

            The sixteen vertex invariants are:

            @UL ({
                "$i = 0$: none,",
                "$i = 1$: twopaths,",
                "$i = 2$: adjtriang(K),",
                "$i = 3$: triples,",
                "$i = 4$: quadruples,",
                "$i = 5$: celltrips,",
                "$i = 6$: cellquads,",
                "$i = 7$: cellquins,",
                "$i = 8$: distances(K),",
                "$i = 9$: indsets(K),",
                "$i = 10$: cliques(K),",
                "$i = 11$: cellcliq(K),",
                "$i = 12$: cellind(K),",
                "$i = 13$: adjacencies,",
                "$i = 14$: cellfano, and",
                "$i = 15$: cellfano2."
            } / TEX) @
        Example
            G = graph {{0,1},{1,2},{2,3},{3,4},{0,4}}
            relabelGraph G
        Text
            Note that on most small graphs, all sixteen orderings produce the same result.
    SeeAlso
        relabelBipartite
///

doc ///
    Key
        removeEdges
        (removeEdges, List)
        (removeEdges, String)
        (removeEdges, Graph)
        [removeEdges, MinDegree]
    Headline
        creates a list of graphs obtained by removing one edge from the given graph in all possible ways
    Usage
        R' = removeEdges L
        R = removeEdges S
        R = removeEdges G
    Inputs
        L:List
            containing graphs in various formats
        S:String 
            a graph encoded in either Sparse6 or Graph6 format
        G:Graph
        MinDegree=>ZZ
            the minimum degree which a returned graph can have
    Outputs
        R':List
            a list of all graphs obtained by removed one edge from the given graphs; it contains graphs in Graph6 or Sparse6 format
        R:List
            a list of all graphs obtained by removed one edge from the given graph; it contains graphs in the same format as the input
    Description
        Text
            This method creates a list of all possible graphs obtainable from
            the given graph by removing one edge.  Notice that isomorphic graphs
            are allowed within the list.
        Example
            removeEdges graph {{1,2},{1,3},{2,3},{3,4},{4,5}}
        Text
            If the List input format is used, then one should use care as
            the list may contain isomorphic pairs.
    SeeAlso
        "addEdges"
///

doc ///
    Key
        removeIsomorphs
        (removeIsomorphs, List)
    Headline
        removes all isomorphs from a list of graphs
    Usage
        M = removeIsomorphs L
    Inputs
        L:List
            containing graphs (mixed formats allowed)
    Outputs
        M:List
            containing the sub-list of non-isomorphic graphs of the input list, retaining format
    Description
        Text
            This method returns the sublist of $L$ giving all 
            non-isomorphic graphs with selection based on which comes
            first in $L$.  The format of the graph is retained.
        Example
            G = {"EhEG", graph {{0,1},{1,2},{2,3},{3,4},{4,5},{0,5}}, "DhC", graph {{0,1}}};
            removeIsomorphs G
    SeeAlso
        areIsomorphic
        "Example: Checking for isomorphic graphs"
///

doc ///
    Key
        sparse6ToGraph6
        (sparse6ToGraph6, String)
    Headline
        converts a Sparse6 string to a Graph6 string
    Usage
        g6 = sparse6ToGraph6 s6
    Inputs
        s6:String
            a string in nauty's Sparse6 format
    Outputs
        g6:String
            a string in nauty's Graph6 format
    Description
        Text
            This method converts a graph stored in nauty's Sparse6 format
            to a graph stored in nauty's Graph6 format.  The Graph6 format
            has the benefit of being a constant length dependent only
            on the number of vertices.
        Example
            sparse6ToGraph6 ":DaY_~"
            sparse6ToGraph6 ":M"
    SeeAlso
        "Comparison of Graph6 and Sparse6 formats"
        graph6ToSparse6
        graphToString
        stringToEdgeIdeal
        stringToGraph
///

doc ///
    Key
        stringToEdgeIdeal
        (stringToEdgeIdeal, String, PolynomialRing)
    Headline
        converts a Sparse6 or Graph6 String to an edge ideal in the given polynomial ring
    Usage
        I = stringToEdgeIdeal(S, R)
    Inputs
        S:String
            a string in nauty's Sparse6 or Graph6 format
        R:PolynomialRing
            a polynomial ring
    Outputs
        I:Ideal
            an ideal in the given polynomial ring
    Description
        Text
            This method converts a Sparse6 or Graph6 string $S$ to an edge
            ideal $I$ in the given polynomial ring $R$.  That is, for
            each edge $(a,b)$ in the graph given by $S$, the monomial
            $a*b$ is added as a generator to $I$.  

            Note, this method requires that the number of variables of $R$
            be the same as the number of vertices of $S$.
        Example
            R = QQ[a..e];
            stringToEdgeIdeal("Dhc", R)
        Text
            This method is almost always faster than converting the string to
            a graph and then to an edge ideal using the @TO "edgeIdeal"@ method.
    SeeAlso
        graphToString
        stringToGraph
///

doc ///
    Key
        stringToGraph
        (stringToGraph, String)
    Headline
        converts a Sparse6 or Graph6 String to a Graph
    Usage
        G = stringToEdgeIdeal S
    Inputs
        S:String
            a string in nauty's Sparse6 or Graph6 format
    Outputs
        G:Graph
    Description
        Text
            This method converts a Sparse6 or Graph6 string $S$ to an instance
            of the class Graph, stored in $G$.
        Example
            stringToGraph "Dhc"
    SeeAlso
        graphToString
        stringToEdgeIdeal
///

-- Each of these are documented within the documentation for the
-- methods which use them.
undocumented { 
    "Class2Degree2",
    "Class2DistinctNeighborhoods",
    "Class2MaxCommonNeighbors",
    "MaxDegree",
    "MinDegree",
    "NoNew3Cycles",
    "NoNew4Cycles",
    "NoNew5Cycles",
    "NoNewOddCycles",
    "NoNewSmallCycles",
    "Only4CycleFree",
    "OnlyBiconnected",
    "OnlyBipartite",
    "OnlyConnected",
    "OnlyIfSmaller",
    "OnlyTriangleFree",
    "RandomSeed"
};

-------------------
-- Tests
-------------------

-- addEdges
TEST ///
    C6 = graph {{0,1},{1,2},{2,3},{3,4},{4,5},{0,5}};
    K6 = graph flatten for i from 0 to 5 list for j from i+1 to 5 list {i,j}
    assert(#addEdges C6 == 9);
    assert(#addEdges {C6} == 9);
    assert(#addEdges K6 == 0);
    assert(#addEdges {K6} == 0);
    -- "E???" is the empty graph
    assert(#addEdges "E???" == binomial(6, 2));
///

-- areIsomorphic
TEST ///
    C6 = graph {{0,1},{1,2},{2,3},{3,4},{4,5},{0,5}};
    C = graph {{0,2},{2,4},{4,1},{1,3},{3,5},{0,5}};
    K6 = graph flatten for i from 0 to 5 list for j from i+1 to 5 list {i,j}
    assert(areIsomorphic(C6, C));
    assert(not areIsomorphic(C6, K6));
///

-- buildGraphFilter
TEST ///
    assert(buildGraphFilter {"NumVertices" => 3} == "-n3 ");
    assert(buildGraphFilter {"NumVertices" => (3,4)} == "-n3:4 ");
    assert(buildGraphFilter {"NumVertices" => (3,)} == "-n3: ");
    assert(buildGraphFilter {"NumVertices" => (,4)} == "-n:4 ");
    assert(buildGraphFilter hashTable {"NumVertices" => 3, "NegateNumVertices" => true} == "-~n3 ");
    assert(buildGraphFilter hashTable {"Regular" => true} == "-r ");
    assert(buildGraphFilter hashTable {"Regular" => false} == "-~r ");
    assert(buildGraphFilter hashTable {} == "");
///

-- countGraphs
TEST ///
    G = {graph {{0,1},{1,2},{2,3},{3,4},{4,5},{0,5}},
         graph flatten for i from 0 to 5 list for j from i+1 to 5 list {i,j},
         graph({}, Singletons => {0,1,2,3,4,5}),
         graph {{0,1},{2,3},{3,4}},
         graph({{0,1},{1,2},{2,3},{3,4}}, Singletons => {5})};
    -- Connected?
    assert(countGraphs(G, {"Connectivity" => 0, "NegateConnectivity" => true}) == 2);
    -- Bipartite?
    assert(countGraphs(G, {"Bipartite" => true}) == 4);
    -- At least 4 edges?
    assert(countGraphs(G, hashTable {"NumEdges" => (4,)}) == 3);
///

-- filterGraphs
TEST ///
    G = {graph {{0,1},{1,2},{2,3},{3,4},{4,5},{0,5}},
         graph flatten for i from 0 to 5 list for j from i+1 to 5 list {i,j},
         graph({}, Singletons => {0,1,2,3,4,5}),
         graph {{0,1},{2,3},{3,4}},
         graph({{0,1},{1,2},{2,3},{3,4}}, Singletons => {5})};
    -- Connected?
    assert(filterGraphs(G, {"Connectivity" => 0, "NegateConnectivity" => true}) === G_{0, 1});
    -- Bipartite?
    assert(filterGraphs(G, {"Bipartite" => true}) === G_{0, 2, 3, 4});
    -- At least 4 edges?
    assert(filterGraphs(G, hashTable {"NumEdges" => (4,)}) === G_{0, 1, 4});
///

-- generateBipartiteGraphs
TEST ///
    -- All bipartite graphs in R.
    assert(#generateBipartiteGraphs(6) == 57);
    -- All bipartite graphs in R with Class1 of size 3.
    assert(#generateBipartiteGraphs(6, 3) == 36);
    -- All bipartite graphs in R with Class1 of size 3 and 2 edges.
    assert(#generateBipartiteGraphs(6, 3, 2) == 3);
    -- All bipartite graphs in R with Class1 of size 3 and 1-2 edges.
    assert(#generateBipartiteGraphs(6, 3, 1, 2) == 4);
    assert(apply(toList(1..8), n -> #removeIsomorphs generateBipartiteGraphs n) == {1, 2, 3, 7, 13, 35, 88, 303}); --A033995
    assert(apply(toList(1..8), n -> #removeIsomorphs generateBipartiteGraphs(n, OnlyConnected => true)) == {1, 1, 1, 3, 5, 17, 44, 182}); --A005142
///

-- generateGraphs
TEST ///
    assert(#generateGraphs(6) == 156);
    assert(#generateGraphs(6, OnlyConnected => true) == 112);
    assert(#generateGraphs(6, 7) == 24);
    assert(#generateGraphs(6, 7, 8, OnlyConnected => true) == 19+22);
    assert(apply(toList(1..8), n -> #generateGraphs n) == {1, 2, 4, 11, 34, 156, 1044, 12346}); -- A000088
///

-- generateRandomGraphs
TEST ///
    assert(#generateRandomGraphs(6, 10) == 10);
    assert(#generateRandomGraphs(6, 17, 1/4) == 17);
    assert(#generateRandomGraphs(6, 42, 4) == 42);
///

-- generateRandomRegularGraphs
TEST ///
    assert(#generateRandomRegularGraphs(6, 10, 3) == 10);
    -- There is only one regular graph on 6 vertices with regularity degree 5--K6.
    assert(#unique generateRandomRegularGraphs(6, 10, 5) == 1);
///

-- graph6ToSparse6
TEST ///
    assert(graph6ToSparse6 "Dhc" == ":DaY_~");
    assert(graph6ToSparse6 "M????????????????" == ":M");
///

-- graphComplement
TEST ///
    C5 = graph {{0,1},{1,2},{2,3},{3,4},{0,4}};
    assert(#edges graphComplement C5 == 5);
    G = graph {{1,2},{2,3},{3,4},{4,5}};
    assert(areIsomorphic(graphComplement(G, OnlyIfSmaller => true), G));
    assert(#edges graphComplement G == 6);
    L = generateGraphs 6;
    assert(#graphComplement L == #L);
///

-- graphToString
TEST ///
    C5 = graph {{0,1},{1,2},{2,3},{3,4},{0,4}};
    K5 = graph flatten for i from 0 to 4 list for j from i+1 to 4 list {i,j}
    R = ZZ[a..e];
    assert(graphToString C5 == "Dhc");
    assert(graphToString ideal (a*b, b*c, c*d, d*e, a*e) == "Dhc");
    assert(graphToString monomialIdeal (a*b, b*c, c*d, d*e, a*e) == "Dhc");
    assert(graphToString "Dhc" == "Dhc");
    assert(graphToString ({{0,1}, {1,2}, {2,3}, {3,4}, {0,4}}, 5) == "Dhc");
    assert(graphToString K5 == "D~{");
    C100 = graph append(apply(99, i -> {i, i+1}), {0, 99});
    assert(graphToString C100 == "?@chCGGC@?G?_@?@??_?G?@??C??G??G??C??@???G???_??@???@????_???G???@????C????G????G????C????@?????G?????_????@?????@??????_?????G?????@??????C??????G??????G??????C??????@???????G???????_??????@???????@????????_???????G???????@????????C????????G????????G????????C????????@?????????G?????????_????????@?????????@??????????_?????????G?????????@??????????C??????????G??????????G??????????C??????????@???????????G???????????_??????????@???????????@????????????_???????????G???????????@????????????C????????????G????????????G????????????C????????????@?????????????G?????????????_????????????@?????????????@??????????????_?????????????G?????????????@??????????????C??????????????G??????????????G??????????????C??????????????@???????????????G???????????????_??????????????@???????????????@????????????????_???????????????K???????????????@");
///

-- isPlanar
TEST ///
    C6 = graph {{0,1},{1,2},{2,3},{3,4},{4,5},{0,5}};
    K6 = graph flatten for i from 0 to 5 list for j from i+1 to 5 list {i,j}
    assert(isPlanar "Dhc");
    assert(isPlanar C6);
    assert(not isPlanar K6);
///

-- neighborhoodComplements
TEST ///
    C6 = graph {{0,1},{1,2},{2,3},{3,4},{4,5},{0,5}};
    assert(#neighborhoodComplements C6 == 6);
    assert(#neighborhoodComplements {C6} == 6);
///

-- newEdges
TEST ///
    C6 = graph {{0,1},{1,2},{2,3},{3,4},{4,5},{0,5}};
    K6 = graph flatten for i from 0 to 5 list for j from i+1 to 5 list {i,j}
    -- There are nine pairs of disjoint edges in C6.
    assert(#newEdges C6 == 9);
    -- There are 45 pairs of disjoint edges in K6.
    assert(#newEdges K6 == 45);
    assert(#newEdges {K6} == 45);
///

-- onlyPlanar
TEST ///
    L = generateGraphs 5;
    assert(#onlyPlanar L == #L - 1);
    K5 = graph flatten for i from 0 to 4 list for j from i+1 to 4 list {i,j}
    assert(areIsomorphic(K5, first onlyPlanar(L, true)));
///

-- relabelBipartite
TEST ///
    C6 = graph {{0,1},{1,2},{2,3},{3,4},{4,5},{0,5}};
    G = graph {{0,3},{3,1},{1,4},{4,2},{2,5},{5,0}};
--    assert(relabelBipartite C6 === G);
    assert(relabelBipartite {"EhEG"} == {"EEY_"});
///

-- relabelGraph
TEST ///
    C6 = graph {{0,1},{1,2},{2,3},{3,4},{4,5},{0,5}};
    assert(#apply(0..15, i -> relabelGraph(C6, i)) == 16);
    L = generateGraphs 5;
    assert(#relabelGraph L == #L);
///

-- removeEdges
TEST ///
    C6 = graph {{0,1},{1,2},{2,3},{3,4},{4,5},{0,5}};
    K6 = graph flatten for i from 0 to 5 list for j from i+1 to 5 list {i,j}
    assert(#removeEdges C6 == 6);
    assert(#removeEdges {C6} == 6);
    assert(#removeEdges K6 == binomial(6,2));
///

-- removeIsomorphs
TEST ///
    G = {"EhEG", graph {{0,1},{1,2},{2,3},{3,4},{4,5},{0,5}}, "DhC", graph {{0,1}}};
    assert(#removeIsomorphs G == 3);
    L = graphToString \ apply(permutations 5, P -> graph apply(5, i -> {P_i, P_((i+1)%5)}));
    assert(#removeIsomorphs L == 1);
///

-- sparse6ToGraph6
TEST ///
    assert(sparse6ToGraph6 ":DaY_~" == "Dhc");
    assert(sparse6ToGraph6 ":M" == "M????????????????");
///

-- stringToEdgeIdeal
TEST ///
    R = ZZ[a..f];
    assert(stringToEdgeIdeal("EhEG", R) == monomialIdeal (a*b, b*c, c*d, d*e, a*f, e*f));
    assert(stringToEdgeIdeal("E???", R) == monomialIdeal (0_R));
///

-- stringToGraph
TEST ///
    A := sort(sort@@toList \ edges graph {{0,1},{1,2},{2,3},{3,4},{4,5},{0,5}});
    B := sort(sort@@toList \ edges stringToGraph "EhEG");
    assert(A == B);
    assert(stringToGraph "E???" === graph({}, Singletons => {0,1,2,3,4,5}));
///

-------------------
-- HappyHappyJoyJoy
-------------------
end

restart
uninstallPackage "Nauty"
installPackage "Nauty"
check "Nauty"

-----------------------
-- For J-SAG Manuscript
-----------------------
restart

needsPackage "Nauty";
R = QQ[a..e];
graphToString cycle R
graphToString completeGraph R
edges stringToGraph("Dhc", R)

G = graph {{a, c}, {c, e}, {e, b}, {b, d}, {d, a}};
areIsomorphic(cycle R, G)
removeIsomorphs apply(permutations gens R, 
   P -> graphToString graph apply(5, i-> {P_i, P_((i+1)%5)}))

A000088 = apply(1..9, n -> #generateGraphs n)

B = apply(1..12, n -> generateGraphs(n, OnlyBipartite => true));
forestsOnly = buildGraphFilter {"NumCycles" => 0};
A005195 = apply(B, graphs -> #filterGraphs(graphs, forestsOnly))

treesOnly = buildGraphFilter {"NumCycles" => 0,
   "Connectivity" => 0, "NegateConnectivity" => true};
A000055 = apply(B, graphs -> #filterGraphs(graphs, treesOnly))

connected = buildGraphFilter {"Connectivity" => 0, 
    "NegateConnectivity" => true};
prob = n -> log(n)/n;
apply(2..30, n-> #filterGraphs(generateRandomGraphs(n, 100, 2*(prob n)), connected))
apply(2..30, n-> #filterGraphs(generateRandomGraphs(n, 100, (prob n)/2), connected))