1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
|
--------------------------------------------
-- This Document is Reserved for Examples --
--------------------------------------------
--PUT SOME EXAMPLES INTO THE PACKAGE
viewHelp use
--Examples:
clearAll
uninstallPackage "NoetherNormalization"
installPackage "NoetherNormalization"
loadPackage "NoetherNormalization"
methods noetherNormalization
help NoetherNormalization
help noetherNormalization
viewHelp
-- Joe's example
clearAll
installPackage "NoetherNormalization"
loadPackage "NoetherNormalization"
n = 2;
A = QQ[x_(1,1)..x_(n,n),y_(1,1)..y_(n,n),MonomialOrder => Lex]
X = transpose genericMatrix(A,n,n)
Y = transpose genericMatrix(A,y_(1,1),n,n)
bracket = ideal flatten entries (X*Y - Y*X)
f = map(A,A,toList apply(0..(2*n^2-1), i -> sum(gens A)_{0..i}))
f bracket
viewHelp sum
(f,J,j) = noetherNormalization(bracket,Verbose=>true,LimitSequence => {5,10})
transpose gens J
--Example 1
clearAll
A = QQ[x_1..x_3][x_4]
A = QQ[x_1..x_4]
I = ideal(x_1^2 + x_1*x_4+1,x_1*x_2*x_3*x_4+1)
(f,J,j) = noetherNormalization(I,Verbose=>true,LimitList => {5})
A/f I
A = QQ
I = promote(ideal 0,QQ)
noetherNormalization(I,Verbose=>true)
transpose gens gb J
()
ring I
ring x_1
ring x_4
--Example 2
R = QQ[x_2,x_3,x_4,x_1,x_5,MonomialOrder=>Lex] -- this is a nice example...
R = QQ[x_1..x_5, MonomialOrder => Lex]; -- this is a nice example...
I = ideal(x_2*x_1-x_5^3, x_5*x_1^3); -- compare with the same example in singular.
(f,J,j) = noetherNormalization (I,Verbose => true)
transpose gens gb J
-- Not inverse maps!
S_2*S_1 -- Not inverse maps!
S_4*S_3
S_3*S_4
S_5*S_6
S_6*S_5
S_3*S_5*S_6*S_4
--Example 2.5
R = QQ[x_1..x_5,MonomialOrder=>Lex] -- this is a nice example...
I = ideal(x_2*x_1-x_5^3, x_5*x_1^3) -- compare with the same example in singular.
noetherNormalization(I,Verbose => true)
f = noetherPosition(I)
transpose gens gb f I
dim I
sort gens R
gens R
--Example 3 -- this one the indep vars are different
R = QQ[x_5,x_4,x_3,x_2,x_1]
I = ideal(x_1^3 + x_1*x_2, x_2^3-x_4+x_3, x_1^2*x_2+x_1*x_2^2)
noetherNormalization(I,Verbose => true)
f := (noetherNormalization(I))_1
support (independentSets(I,Limit=>1))_0
--Example 4
R = QQ[x_1,x_2,x_3]
I = ideal(x_1*x_2,x_1*x_3)
noetherNormalization(I,Verbose => true)
support (independentSets(I,Limit=>1))_0
X = (noetherNormalization(I,Verbose => true))_0
f = (noetherNormalization(I,Verbose => true))_1
R/f(I)
X
apply(X, i-> f i)
--Example 5
R := QQ[x_5,x_4,x_3,x_2,x_1, MonomialOrder => Lex]
I = ideal(x_4^3*x_3*x_2-x_4, x_2*x_1-x_5^3, x_5*x_1^3)
S = noetherNormalization(I,Verbose => true)
f = S_1
f x_2
x_2
describe ring x_2
--Example 6
R = QQ[x_1..x_5] --80
I = ideal(x_4^3*x_3*x_2-x_4, x_2*x_1-x_5^3, x_5*x_1^3)
noetherNormalization(I,Verbose => true)
support (independentSets(I,Limit=>1))_0
--Example 6.5
R = QQ[x_5,x_4,x_3,x_2,x_1] --20
I = ideal(x_4^3*x_3*x_2-x_4, x_2*x_1-x_5^3, x_5*x_1^3)
noetherNormalization(I,Verbose => true)
support (independentSets(I,Limit=>1))_0
--Example 7 Nat, check this one later. CANNOT DO in ALT NN
R = QQ[x_6,x_5,x_4,x_3,x_2,x_1];
I = ideal(x_6^2+x_5*x_3*x_4-2,x_4^4*x_3^2+x_1,x_2*x_1^3);
noetherNormalization(I,Verbose => true)
support (independentSets(I,Limit=>1))_0
--Example 8 -- kills m2 in AltNN!
R = QQ[x_6,x_5,x_4,x_3,x_2,x_1];
I = ideal(x_6^3+x_5^2*x_3*x_4-2,x_4^4*x_3^2+x_1,x_2*x_1^3);
noetherNormalization(I,Verbose => true)
support (independentSets(I,Limit=>1))_0
--We cannot compute even the gb with this ordering
R = QQ[x_1..x_4];
I = ideal(-(3/2)*x_3^3*x_2-(4/5)*x_2^2+4*x_1^5-x_1,x_3^3*x_1-(5/8)*x_3^2*x_2*x_1^2+(2/5)*x_2+(8/3)*x_1^3)
noetherNormalization I
support (independentSets(I,Limit=>1))_0
-- output should be:
-- alg independent vars, ideal, map
p s
I < k[x] <= k[y] <- k[p^-1(U)]
J<
we take I we currently return p^-1, we want p,s,J --MIKE AGREES
don't compute the inverse asking for it.
cache the inverse using something like
keys f.cache
-- Singular is better...
R = QQ[x_5,x_4,x_3,x_2,x_1,MonomialOrder => Lex]
I = ideal(x_2*x_1-x_5^3, x_5*x_1^3)
gens gb I
noetherNormalization I
R = QQ[x_5,x_4,x_3,x_2,x_1,MonomialOrder => Lex]
I = ideal(x_4^3*x_3*x_2-x_4, x_2*x_1-x_5^3, x_5*x_1^3)
gens gb I
noetherNormalization I
--this guys a problem, what to do?
R = QQ[x_1..x_4,MonomialOrder => Lex];
I = ideal((4/7)*x_3^2*x_4-(4/3)*x_4^2-(3/7)*x_3,(5/4)*x_2*x_4^2+(7/8)*x_1+(7/2),-(10/9)*x_1^2*x_4-(7/9)*x_2^2+(7/4)*x_4+(3/2))
noetherNormalization(I,Verbose => true)
-- Examples should be listed in a reasonable order
-- Comments should be given about why each example is good
--========================================================
--Examples:
clearAll
uninstallPackage "NoetherNormalization"
installPackage "NoetherNormalization"
methods noetherNormalization
help noetherNormalization
R = QQ[x_3,x_3,x_2,x_1, MonomialOrder => Lex];
I = ideal(-(3/2)*x_3^3*x_2-(4/5)*x_2^2+4*x_1^5-x_1,x_3^3*x_1-(5/8)*x_3^2*x_2*x_1^2+(2/5)*x_2+(8/3)*x_1^3)
--Ex#1
-- this is the example from the paper
-- this makes it a good first example
R = QQ[x_1..x_4,MonomialOrder => Lex];
R = QQ[x_4,x_3,x_2,x_1, MonomialOrder => Lex]; --the same ordering as in the paper
R = QQ[x_2,x_3,x_4,x_1, MonomialOrder => Lex];
I = ideal(x_2^2+x_1*x_2+1, x_1*x_2*x_3*x_4+1);
noetherNormalization I
I = ideal((6/5)*x_4*x_1-(8/7)*x_1^3-(9/4),(3/7)*x_4*x_3+(7/8)*x_3*x_2^2+x_1-(5/3),-(5/6)*x_4*x_2-(5/6)*x_3^2*x_1)
G = gb I
X = sort gens R -- note that this "sort" is very important
benchmark "varPrep(X,G)"
benchmark "support (independentSets(I,Limit => 1))_0"
--Examples of not so good I
--Ex#2
R = QQ[x_5,x_4,x_3,x_2,x_1,MonomialOrder => Lex]
I = ideal(x_1^3 + x_1*x_2, x_2^3-x_4+x_3, x_1^2*x_2+x_1*x_2^2)
noetherNormalization I
G = gb I
X = sort gens R -- note that this "sort" is very important
varPrep(X,G)
ZZ[x]
support (independentSets(ideal(x),Limit => 1))_0
independentSets(ideal(x))
dim(ZZ[x]/(7,x))
dim (ZZ[x]/ideal(7,x))
--Ex#3
R = QQ[x_1,x_2,x_3,MonomialOrder => Lex]
I = ideal(x_1*x_2,x_1*x_3)
noetherNormalization(I)
G = gb I
X = sort gens R -- note that this "sort" is very important
benchmark "varPrep(X,G)"
benchmark "support (independentSets(I,Limit => 1))_0"
benchmark "independentSets(I,Limit => 1)"
altVarPrep(X,I)
--Ex#4
R = QQ[x_3,x_2,x_1,MonomialOrder => Lex]
I = ideal(x_1*x_2, x_1*x_3)
G = gb I
X = sort gens R -- note that this "sort" is very important
varPrep(X,G)
independentSets I
prune ideal gens G
d = dim I
X = sort gens R -- note that this "sort" is very important
varPrep(X,G)
np = maxAlgPerm(R,X,G,d)
maxAlgPermC(R,X,G,d)
maxAlgPermB(R,X,G,d,{})
--Ex#5
R = QQ[x_1..x_6,MonomialOrder => Lex]
R = QQ[x_6,x_5,x_4,x_3,x_2,x_1,MonomialOrder => Lex]
I = ideal(x_1*x_2,x_1*x_3, x_2*x_3,x_2*x_4,x_2*x_5,x_3*x_4,x_3*x_5,x_4*x_5, x_4*x_6, x_5*x_6)
G = gb I
d = dim I
X = sort gens R -- note that this "sort" is very important
varPrep(X,G)
np = maxAlgPerm(R,X,G,d)
G = gb np I
(U,V) = varPrep(X,G)
noetherNormalization I
x_5<x_4
--Dan's finite field killing examples
xy(x+y)
(xy-1)(x+y)
x^2*y+x*y^2+1
R = ZZ/2[x,y]
I = ideal((x^2*y+x*y^2+1))
noetherNormalization I
-- we need more complex examples.
viewHelp
--Nat's examples
R = QQ[x_7,x_6,x_5,x_4,x_3,x_2,x_1, MonomialOrder => Lex];
I = ideal(x_2^2+x_1*x_2+x_5^2+1, x_1*x_2*x_3*x_4+x_5^4, x_6^4*x_3+x_4^2+8, x_7*x_6*x_5^2+x_5*x_2^2+12);
gens gb I
noetherNormalization I
|