1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
|
///
restart
uninstallPackage"NonminimalComplexes"
installPackage"NonminimalComplexes"
loadPackage("NonminimalComplexes", Reload => true)
check "NonminimalComplexes"
viewHelp "NonminimalComplexes"
///
newPackage(
"NonminimalComplexes",
Version => "0.2",
Date => "April 25, 2018",
Authors => {{Name => "Frank-Olaf Schreyer",
Email => "schreyer@math.uni-sb.de",
HomePage => "http://www.math.uni-sb.de/ag/schreyer"},
{Name => "Mike Stillman",
Email => "mike@math.cornell.edu",
HomePage => "http://www.math.cornell.edu/~mike"}
},
Keywords => {"Homological Algebra", "Commutative Algebra"},
PackageImports => { "SVDComplexes" },
Headline => "non-minimal strands of a non-minimal resolution of a homogeneous module"
)
export {
-- These functions should be moved. Where to?
"constantStrand", -- documented, tests
"constantStrands", -- documented, tests
"getNonminimalRes",
"degreeZeroMatrix",
"minimizeBetti",
"SVDBetti",
"SparseMatrix",
"newSparseMatrix",
"sparseMatrix",
"Entries",
"RowNums",
"ColumnNums"
}
debug Core
-*
-- The following shuold be where?
newChainComplexMap = method()
newChainComplexMap(ChainComplex, ChainComplex, HashTable) := (tar,src,maps) -> (
f := new ChainComplexMap;
f.cache = new CacheTable;
f.source = src;
f.target = tar;
f.degree = 0;
goodspots := select(spots src, i -> src_i != 0);
scan(goodspots, i -> f#i = if maps#?i then maps#i else map(tar_i, src_i, 0));
f
)
*-
SparseMatrix = new Type of HashTable
numRows SparseMatrix := S -> # S.RowNums
numColumns SparseMatrix := S -> # S.ColumnNums
net SparseMatrix := (S) -> (
netList{
{"", netList toList{toList(0..numColumns S - 1), S.ColumnNums}},
{
netList for r from 0 to numRows S - 1 list {r, S.RowNums#r},
netList S.Entries
}}
)
newSparseMatrix = method()
newSparseMatrix(List, List, List) := SparseMatrix => (mat, rownums, colnums) -> (
new SparseMatrix from {
Entries => mat,
RowNums => rownums,
ColumnNums => colnums
}
)
sparseMatrix = method()
sparseMatrix Matrix := SparseMatrix => (M) -> (
e := entries M;
mat := for e1 in e list (pos := positions(e1, x -> x != 0); {pos, e1_pos});
rownums := for r in mat list #r#0;
colnums := new MutableList from (numColumns M : 0);
for r from 0 to numRows M - 1 do (
for c in mat#r#0 do colnums#c = colnums#c + 1;
);
newSparseMatrix(mat, rownums, toList colnums)
)
removeRows = method()
removeRows(List,SparseMatrix) := (r,S) -> (
-- chores:
-- 1. remove entry r from RowNums, Entries.
-- 2. for each column in Entries#r#0:
removeThese := set r;
keep := sort toList(set toList(0..numRows S - 1) - removeThese);
colnums := new MutableList from S.ColumnNums;
for r1 in r do (
for c in S.Entries#r#0 do colnums#c = colnums#c - 1;
);
newSparseMatrix(S.Entries_keep, S.RowNums_keep, toList colnums)
)
removeColumn = method()
removeColumn(ZZ,SparseMatrix) := (c,S) -> (
-- remove c from ColNums
-- loop over all rows r
-- if c is in S.Entries#r#0
-- remove c from this list, and corresponding coeff.
-- decrement rownums#r.
)
removeZeroOneRows = method()
removeZeroOneRows SparseMatrix := (S) -> (
-- returns (#zero rows, #rows with 1 element)
-- removes columns in such rows too.
p := positions(toList S.RowNums, x -> x > 0);
)
///
restart
debug needsPackage "NonminimalComplexes"
kk := ZZ/101
M = mutableMatrix(kk, 10, 10);
fillMatrix(M, Density=>.2)
rank M
S = sparseMatrix matrix M
S = removeRows(positions(S.RowNums, x -> x == 0), S)
for r in positions(S.RowNums, x -> x == 1) list
M
///
-----------------------------------------------
-- Code for nonminimal resolutions over QQ ----
-----------------------------------------------
isMadeFromFastNonminimal = (C) -> C.?Resolution and C.Resolution.?RawComputation
fastNonminimalComputation = (C) -> if C.?Resolution and C.Resolution.?RawComputation then C.Resolution.RawComputation else null
constantStrand = method()
constantStrand(ChainComplex, Ring, ZZ) := (C, kk, deg) -> (
-- assumption: we are resolving an ideal, or at least all gens occur in degree >= 0.
comp := fastNonminimalComputation C;
if comp === null then error "currently expect chain complex to have been constructed with res(...,FastNonminimal=>true)";
len := length C;
reg := regularity C;
chainComplex for lev from 1 to len list (
matrix map(kk, rawResolutionGetMutableMatrix2B(comp, raw kk, deg,lev))
)
)
constantStrand(ChainComplex, ZZ) := (C, deg) -> (
kk := coefficientRing ring C;
if kk === QQ then error "coefficient ring is QQ: need to provide a ring: RR_53, RR_1000, ZZ/1073741891, or ZZ/1073741909, or ZZ";
comp := fastNonminimalComputation C;
if comp === null then error "currently expect chain complex to have been constructed with res(...,FastNonminimal=>true)";
-- assumption: we are resolving an ideal, or at least all gens occur in degree >= 0.
len := length C;
reg := regularity C;
chainComplex for lev from 1 to len list (
matrix map(kk, rawResolutionGetMutableMatrix2B(comp, raw kk, deg,lev))
)
)
constantStrands = method()
constantStrands(ChainComplex, Ring) := (C, kk) -> (
-- base ring of C should be QQ
-- if coefficientRing ring C =!= QQ then error "ring of the complex must be a polynomial ring over QQ";
-- assumption: we are resolving an ideal, or at least all gens occur in degree >= 0.
len := length C;
reg := regularity C;
hashTable for deg from 0 to len+reg list (
D := constantStrand(C,kk,deg);
if D == 0 then continue else deg => D
)
)
constantStrands ChainComplex := (C) -> constantStrands(C, coefficientRing ring C)
getNonminimalRes = method()
getNonminimalRes(ChainComplex, Ring) := (C, R) -> (
-- if C was created using FastNonminimal=>true, then returns the nonminimal complex.
-- if ring C is not QQ, this should be exactly C (with C.dd set).
-- if ring C is QQ, then R must be either RR_53 (monoid ring C), or (ZZ/p)(monoid ring C), where p is the prime used to
-- construct the resolution (later, there might be several such primes, and also we can
-- query and get them. But not yet.)
rawC := C.Resolution.RawComputation;
result := new MutableList;
for i from 0 to length C - 1 do (
result#i = matrix map(R, rawResolutionGetMutableMatrixB(rawC, raw R, i+1));
if i > 0 then result#i = map(source result#(i-1),,result#i);
);
chainComplex toList result
)
TEST ///
-- TODO for constantStrand, constantStrands:
-- a. make it work for complexes constructed in different manners, not just for FastNonminimal
-- b. allow a single multi-degree
-- constantStrand, constantStrands
-- these are from nonminimal free resolutions over QQ
-*
restart
needsPackage "NonminimalComplexes"
*-
R = QQ[a..e]
I = ideal(a^3, b^3, c^3, d^3, e^3, (a+b+c+d+e)^3)
C = res(ideal gens gb I, Strategy=>4.1)
betti C
constantStrand(C, RR_53, 4)
constantStrand(C, RR_53, 5)
constantStrand(C, RR_53, 10)
constantStrands(C, RR_53)
constantStrands(C, RR_1000)
constantStrands(C, RR_300)
kk1 = ZZ/32003
kk2 = ZZ/1073741909
constantStrands(C, kk1)
constantStrands(C, kk2)
constantStrands(C, ZZ)
R1 = RR_53 (monoid R)
R2 = RR_1000 (monoid R)
R3 = kk1 (monoid R)
R4 = kk2 (monoid R)
betti'ans = new BettiTally from {(0,{0},0) => 1, (1,{3},3) => 6, (1,{4},4) => 1, (1,{5},5) => 3, (1,{6},6) => 6,
(2,{4},4) => 1, (2,{5},5) => 3, (2,{6},6) => 22, (2,{7},7) => 29, (2,{8},8) => 9, (3,{6},6) => 1, (3,{7},7)
=> 14, (3,{8},8) => 52, (3,{9},9) => 45, (3,{10},10) => 4, (4,{8},8) => 4, (4,{9},9) => 35, (4,{10},10) =>
52, (4,{11},11) => 14, (4,{12},12) => 4, (5,{10},10) => 9, (5,{11},11) => 29, (5,{12},12) => 10, (5,{13},13)
=> 3, (5,{14},14) => 1, (6,{12},12) => 6, (6,{13},13) => 3, (6,{14},14) => 1}
-*
assert(betti'ans ==betti (C1 = getNonminimalRes(C, R1)))
assert(betti'ans == betti (C2 = getNonminimalRes(C, R2)))
assert(betti'ans == betti (C3 = getNonminimalRes(C, R3)))
assert(betti'ans == betti (C4 = getNonminimalRes(C, R4)))
assert(C1.dd^2 == 0)
assert(C2.dd^2 == 0)
assert(C3.dd^2 == 0)
assert(C4.dd^2 == 0)
*-
///
TEST ///
-*
restart
needsPackage "NonminimalComplexes"
*-
R = ZZ/32003[a..e]
I = ideal(a^3, b^3, c^3, d^3, e^3, (a+b+c+d+e)^3)
C = res(ideal gens gb I, Strategy=>4.1)
C1 = getNonminimalRes(C, R)
assert(C == C1)
///
degreeZeroMatrix = method()
degreeZeroMatrix(ChainComplex, ZZ, ZZ) := (C, slanteddeg, level) -> (
if ring C === QQ then error "need to provide a target coefficient ring, QQ is not allowed";
kk := coefficientRing ring C;
rawC := C.Resolution.RawComputation;
matrix map(coefficientRing ring C, rawResolutionGetMatrix2(rawC, level, slanteddeg+level))
)
degreeZeroMatrix(ChainComplex, Ring, ZZ, ZZ) := (C, kk, slanteddeg, level) -> (
if kk =!= QQ then degreeZeroMatrix(C,slanteddeg, level)
else (
rawC := C.Resolution.RawComputation;
matrix map(kk, rawResolutionGetMutableMatrix2B(rawC, raw kk, slanteddeg+level,level))
)
)
-- given a mutable Betti table, find the spots (deg,lev) where there are degree 0 maps.
degzero = (B) -> (
degsB := select(keys B, (lev,deglist,deg) -> B#?(lev-1,deglist,deg));
degsB = degsB/(x -> (x#0, x#2-x#0));
degsB = degsB/reverse//sort -- (deg,lev) pairs.
)
minimizeBetti = method()
minimizeBetti(ChainComplex, Ring) := (C, kk) -> (
B := betti C;
mB := new MutableHashTable from B;
rk := if kk =!= RR_53 then rank else numericRank;
for x in degzero B do (
(sdeg,lev) := x;
m := degreeZeroMatrix(C, kk, sdeg, lev);
r := rk m;
<< "doing " << (sdeg, lev) << " rank[" << numRows m << "," << numColumns m << "] = " << r << endl;
mB#(lev,{lev+sdeg},lev+sdeg) = mB#(lev,{lev+sdeg},lev+sdeg) - r;
mB#(lev-1,{lev+sdeg},lev+sdeg) = mB#(lev-1,{lev+sdeg},lev+sdeg) - r;
if debugLevel > 2 then << "new betti = " << betti mB << endl;
);
new BettiTally from mB
)
toBetti = method()
toBetti(ZZ, HashTable) := (deg, H) -> (
new BettiTally from for k in keys H list (k, {deg}, deg) => H#k
)
-- How to handle this here??
SVDBetti = method()
SVDBetti ChainComplex := (C) -> (
if coefficientRing ring C =!= QQ then error "expected FastNonminimal resolution over QQ";
Ls := constantStrands(C,RR_53);
H := hashTable for i in keys Ls list i => SVDHomology Ls#i;
H2 := hashTable for i in keys H list i => last H#i;
-- << "singular values: " << H2 << endl;
sum for i in keys H list toBetti(i, first H#i)
)
beginDocumentation()
doc ///
Key
NonminimalComplexes
Headline
support for computing homology, ranks and SVD complexes, from a chain complex over the real numbers
Description
Text
Some functionality here should be moved elsewhere.
Caveat
Currently, this package requires that the Macaulay2 being run is from the res-2107 git branch
///
doc ///
Key
constantStrand
(constantStrand, ChainComplex, Ring, ZZ)
Headline
a constant strand of a chain complex
Usage
Cd = constantStrand(C, kk, deg)
Inputs
C:ChainComplex
a chain complex created using {\tt res(I, Strategy=>4.1)}
kk:Ring
if the coefficient ring of the ring of C is QQ, then this should be either:
RR_{53}, RR_{1000},ZZ/32003, or ZZ/1073741909.
deg:ZZ
the degree that one wants to choose.
Outputs
Cd:ChainComplex
a chain complex over {\tt kk}, consisting of the submatrices of {\tt C} of degree {\tt deg}
Description
Text
Warning! This function is very rough currently. It works if one uses it in the intended manner,
as in the example below. But it should be much more general, handling other rings with grace,
and also it should handle arbitrary (graded) chain complexes.
Example
R = QQ[a..d]
I = ideal(a^3, b^3, c^3, d^3, (a+3*b+7*c-4*d)^3)
C = res(ideal gens gb I, Strategy=>4.1)
betti C
CR = constantStrand(C, RR_53, 3)
CR.dd_2
CR2 = constantStrand(C, RR_1000, 3)
CR2.dd_2
kk1 = ZZ/32003
kk2 = ZZ/1073741909
Cp1 = constantStrand(C, kk1, 3)
Cp2 = constantStrand(C, kk2, 3)
netList {{CR.dd_4, CR2.dd_4}, {Cp1.dd_4, Cp2.dd_4}}
(clean(1e-14,CR)).dd_4
netList {(clean(1e-14,CR)).dd_4}==netList {(clean(1e-299,CR2)).dd_4}
Text
Setting the input ring to be the integers, although a hack, sets each entry to the
number of multiplications used to create this number. Warning: the result is almost certainly
not a complex! This part of this function is experimental, and will likely change
in later versions.
Example
CZ = constantStrand(C, ZZ, 8)
CZ.dd_4
Caveat
This function should be defined for any graded chain complex, not just ones created
using {\tt res(I, Strategy=>4.1)}. Currently, it is used to extract information
from the not yet implemented ring QQhybrid, whose elements, coming from QQ, are stored as real number
approximations (as doubles, and as 1000 bit floating numbers), together with its remainders under a couple of primes,
together with information about how many multiplications were performed to obtain this number.
SeeAlso
constantStrands
///
doc ///
Key
constantStrands
(constantStrands, ChainComplex, Ring)
Headline
all constant strands of a chain complex
Usage
Cs = constantStrands(C, kk)
Inputs
C:ChainComplex
A chain complex created using {\tt res(I, Strategy=>4.1)}
kk:Ring
if the coefficient ring of the ring of C is QQ, then this should be either:
RR_{53}, RR_{1000}, ZZ/1073741891, or ZZ/1073741909.
Outputs
Cs:List
the list of chain complex over {\tt kk}, which for each degree degree {\tt deg}, consisting of the submatrices of {\tt C} of degree {\tt deg}
Description
Text
Warning! This function is very rough currently. It works if one uses it in the intended manner,
as in the example below. But it should be much more general, handling other rings with grace,
and also it should handle arbitrary (graded) chain complexes.
Example
R = QQ[a..d]
I = ideal(a^3, b^3, c^3, d^3, (a+3*b+7*c-4*d)^3)
C = res(ideal gens gb I, Strategy=>4.1)
betti C
Cs = constantStrands(C, RR_53)
CR=Cs#8
SVDBetti C, betti C
Caveat
This function should be defined for any graded chain complex, not just ones created
using {\tt res(I, Strategy=>4.1)}. Currently, it is used to extract information
from the not yet implemented ring QQhybrid, whose elements, coming from QQ, are stored as real number
approximations (as doubles, and as 1000 bit floating numbers), together with its remainders under a couple of primes,
together with information about how many multiplications were performed to obtain this number.
SeeAlso
constantStrand
///
doc ///
Key
SVDBetti
(SVDBetti, ChainComplex)
Headline
the Betti table computed with SVD methods
Usage
SVDBetti C
Inputs
C:ChainComplex
A chain complex created using {\tt res(I, Strategy=>4.1)}
if the coefficient ring of the ring of C is QQ, then this should be either:
RR_{53}, RR_{1000}, ZZ/1073741891, or ZZ/1073741909.
Outputs
:BettiTally
the betti table of the minimal resolution using SVD of complexes and the numerical data
Description
Text
Warning! This function is very rough currently. It works if one uses it in the intended manner,
as in the example below. But it should be much more general, handling other rings with grace,
and also it should handle arbitrary (graded) chain complexes.
Example
R = QQ[a..d]
I = ideal(a^3, b^3, c^3, d^3, (a+3*b+7*c-4*d)^3)
C = res(ideal gens gb I, Strategy=>4.1)
SVDBetti C, betti C
Rp=ZZ/32003[gens R]
betti res sub(I,Rp)
Caveat
This function should be defined for any graded chain complex, not just ones created
using {\tt res(I, Strategy=>4.1)}. Currently, it is used to extract information
from the not yet implemented ring QQhybrid, whose elements, coming from QQ, are stored as real number
approximations (as doubles, and as 1000 bit floating numbers), together with its remainders under a couple of primes,
together with information about how many multiplications were performed to obtain this number.
SeeAlso
constantStrands
///
TEST ///
R = QQ[a..d]
I = ideal(a^3, b^3, c^3, d^3, (a+3*b+7*c-4*d)^3)
C = res(ideal gens gb I,Strategy=>4.1)
betti C
betti'deg8 = new BettiTally from {(3,{},0) => 13, (4,{},0) => 4}
CR = constantStrand(C, RR_53, 8)
CR2 = constantStrand(C, RR_1000, 8)
kk1 = ZZ/32003
kk2 = ZZ/1073741909
Cp1 = constantStrand(C, kk1, 8)
Cp2 = constantStrand(C, kk2, 8)
assert(betti'deg8 == betti CR)
assert(betti'deg8 == betti CR2)
assert(betti'deg8 == betti Cp1)
assert(betti'deg8 == betti Cp2)
(CR.dd_4, CR2.dd_4, Cp1.dd_4, Cp2.dd_4)
(clean(1e-14,CR)).dd_4
(clean(1e-299,CR2)).dd_4
///
TEST ///
kk = QQ
R = kk[a..d]
I = ideal(a^3, b^3, c^3, d^3, (a+3*b+7*c-4*d)^3)
C = res(ideal gens gb I, Strategy=>4.1)
betti C
constantStrand(C, RR_53, 8)
-- fails, as it doesn't even make it to that code
///
TEST ///
-- Test of computing non-minimal resolutions, modules
-- XXX
-*
restart
*-
debug Core -- for the key resolutionNonminimal
kk = ZZ/32003
R = kk[a..d]
m = map(R^2,,{{a,b^2},{c,d^2}})
m = map(R^{0,1},,{{a,b^2},{c^2,d^3}})
M = coker m
res(M, FastNonminimal=>true) -- non-compatible monomial order...
debug Core -- for the key resolutionNonminimal
kk = ZZ/32003
R = kk[a..d, MonomialOrder=>{4,Position=>Up}]
m = map(R^{0,1},,{{a,b^2},{c^2,d^3}})
M = coker m
res(M, FastNonminimal=>true) -- non-compatible monomial order...
debug Core -- for the key resolutionNonminimal
kk = ZZ/32003
R = kk[a..d, MonomialOrder=>{4,Position=>Down}]
m = map(R^{0,1},,{{a,b^2},{c^2,d^3}})
M = coker m
res(M, FastNonminimal=>true) -- non-compatible monomial order...
debug Core -- for the key resolutionNonminimal
kk = ZZ/32003
R = kk[a..d, MonomialOrder=>{Position=>Down,4}]
m = map(R^{0,1},,{{a,b^2},{c^2,d^3}})
M = coker m
res(M, FastNonminimal=>true) -- WORKS!!
debug Core -- for the key resolutionNonminimal
kk = ZZ/32003
R = kk[a..d, MonomialOrder=>{Position=>Up,4}]
m = map(R^{0,1},,{{a,b^2},{c^2,d^3}})
M = coker m
res(M, FastNonminimal=>true) -- non-compatible monomial order...
debug Core -- for the key resolutionNonminimal
kk = ZZ/32003
R = kk[a..d, MonomialOrder=>{Position=>Down,4}]
m = map(R^{1,0},,{{c^2,d^3},{a,b^2}})
M = coker m
res(M, FastNonminimal=>true) -- doesn't work
debug Core -- for the key resolutionNonminimal
kk = ZZ/32003
R = kk[a..d, MonomialOrder=>{Position=>Up,4}]
m = map(R^{1,0},,{{c^2,d^3},{a,b^2}})
M = coker m
res(M, FastNonminimal=>true) -- works!
///
TEST ///
-- Test of computing non-minimal resolutions
-- XXX
-*
restart
*-
debug Core -- for the key resolutionNonminimal
kk = ZZ/32003
R = kk[a..d]
hasFastNonminimal = method()
hasFastNonminimal Module := Boolean => M -> M.cache.?resolutionNonminimal
hasFastNonminimal Ideal := Boolean => I -> hasFastNonminimal comodule I
nonminimalResolutionComputation = method()
nonminimalResolutionComputation Module := RawComputation => (M) -> M.cache.resolutionNonminimal.Resolution.RawComputation
nonminimalResolutionComputation Ideal := RawComputation => (I) -> nonminimalResolutionComputation comodule I
I = ideal"ab-cd,a3+c3,a2c+b2c"
M = comodule I
C = res(M, Strategy=>4)
assert hasFastNonminimal M
assert hasFastNonminimal I
D = nonminimalResolutionComputation I
getfree = (I,i) -> new Module from (ring I,rawResolutionGetFree(nonminimalResolutionComputation I,i))
getfree(I,0)
getfree(I,1)
getmat = (I,i) -> (
D := nonminimalResolutionComputation I;
src := getfree(I,i);
tar := getfree(I,i-1);
map(tar, src, rawResolutionGetMatrix(D,i))
)
getmat(I,1)
getmat(I,2)
I = ideal"ab-cd,a3+c3,a2c+b2c"
C = res(I, Strategy=>4)
assert hasFastNonminimal I
I = ideal"ab-cd,a3+c3,a2c+b2c"
C = res(I, FastNonminimal=>true, Strategy=>4)
assert hasFastNonminimal I
I = ideal"ab-cd,a3+c3,a2c+b2c"
C = res(I, FastNonminimal=>true)
assert hasFastNonminimal I
I = ideal"ab-cd,a3+c3,a2c+b2c"
C = res I
assert not hasFastNonminimal I
M.cache.resolutionNonminimal.Resolution.RawComputation
///
///
-- Test of computing non-minimal resolutions
-- XXX
-- Try a non homogeneous ideal:
restart
debug Core -- for the key resolutionNonminimal
kk = ZZ/32003
R = kk[a..d]
hasFastNonminimal = method()
hasFastNonminimal Module := M -> M.cache.?resolutionNonminimal
hasFastNonminimal Ideal := I -> hasFastNonminimal comodule I
I = ideal"ab-1,c2-c-a"
M = comodule I
C = res(I, Strategy=>5) -- currently gives an error: cannot use res(...,FastNonminimal=>true) with inhomogeneous input
assert hasFastNonminimal M
assert hasFastNonminimal I
R = kk[a..d,DegreeRank=>4]
degree a
I = ideal(a^2, a*b, b^2)
C = res(I, Strategy=>4) -- currently gives an error: expected singly graded with positive degrees for the variables
C = res I
C.dd
peek C.Resolution
debug Core
C.Resolution.RawComputation
J = ideal"ab-cd,a3+c3,a2c+b2c"
CJ = res(J, FastNonminimal=>true)
CJ.dd
peek CJ.Resolution
debug Core
CJ.Resolution.RawComputation
-- where are these stashed?
MI = comodule I
MI.cache.resolution === C
MJ = comodule J
MJ.cache.resolution === CJ
gbTrace=3
minimalBetti J
minimalBetti I
///
end--
-*
///
-- test for computing ranks of matrices concurrently
restart
allowableThreads = 10
kk = ZZ/101
sizes = for i from 1 to 5 list (1000*i, 1000*i)
mats = for i from 0 to 30 list (
fillMatrix mutableMatrix(kk,sizes#(i % 5)#0, sizes#(i % 5)#1)
);
fcn = (i) -> () -> (
<< "[" << i << "]" << endl;
t := elapsedTiming rank mats#i;
<< "time for rank #" << i << " = " << t#0 << endl;
t#1
)
donetask = createTask(()->(<< "all computations are done!" << endl; "done!"))
tsks = for i from 0 to 30 list createTask (fcn i)
for i from 0 to 30 do addDependencyTask(donetask, tsks#i)
elapsedTime(schedule donetask; tsks/schedule; while not isReady donetask do sleep 1;)
tsks/taskResult
elapsedTime for i from 0 to 30 list (fcn i)()
m1 = mutableMatrix(kk,5000,5000); fillMatrix m1;
m2 = mutableMatrix(kk,4000,5000); fillMatrix m2;
m3 = mutableMatrix(kk,3000,3000); fillMatrix m3;
-- our goal: do these simultaneously
f1 = () -> (<< "[f1]" << endl; t := elapsedTiming rank m1; << "time for rank m1: " << t#0 << endl; t#1)
f2 = () -> (<< "[f2]" << endl; t := elapsedTiming rank m2; << "time for rank m2: " << t#0 << endl; t#1)
f3 = () -> (<< "[f3]" << endl; t := elapsedTiming rank m3; << "time for rank m3: " << t#0 << endl; t#1)
t4 = createTask(()->(<< "all computations are done!" << endl; "done!"))
t1 = createTask f1
t2 = createTask f2
t3 = createTask f3
addDependencyTask(t4, t1)
addDependencyTask(t4, t2)
addDependencyTask(t4, t3)
elapsedTime({t1,t2,t3,t4}/schedule; while not isReady t4 do sleep 1)
taskResult t4
{t1,t2,t3}/taskResult
schedule t4
schedule t1
schedule t2
schedule t3
schedule t4
///
-*
Cs2 = (constantStrands(C, RR_1000))#8
kk1 = ZZ/32003
kk2 = ZZ/1073741909
Cp1 = (constantStrands(C, kk1))#8
Cp2 =(constantStrands(C, kk2))#8
CR.dd_4, CR2.dd_4
Cp1.dd_4, Cp2.dd_4
netList {{CR.dd_4, CR2.dd_4}, {Cp1.dd_4, Cp2.dd_4}}
netList{(clean(1e-14,CR)).dd_4,(clean(1e-299,CR2)).dd_4}
netList {(clean(1e-14,CR)).dd_4} == netList{(clean(1e-299,CR2)).dd_4}
*-
restart
uninstallPackage "NonminimalComplexes"
restart
installPackage "NonminimalComplexes"
viewHelp "NonminimalComplexes"
restart
check "NonminimalComplexes"
restart
needsPackage "NonminimalComplexes"
///
needsPackage "RandomComplexes"
needsPackage "SVDComplexes"
needsPackage "AGRExamples"
R=QQ[a..h]
Rp=(ZZ/32003)(monoid R)
Rp1=(ZZ/1073741891)(monoid R)
R0=(RR_53)(monoid R)
deg=4
nextra=10
setRandomSeed "1"
F=sum(gens R,x->x^deg)+sum(nextra,i->(random(1,R))^deg);
elapsedTime I=ideal fromDual matrix{{F}};
elapsedTime C=res(I,FastNonminimal =>true);
C0 = getNonminimalRes(C, R0);
betti C
elapsedTime minimalBetti sub(I,Rp)
elapsedTime SVDBetti C
0 1 2 3 4 5 6 7 8
o14 = total: 1 28 105 288 420 288 104 30 4
0: 1 . . . . . . . .
1: . 18 42 . . . . . .
2: . 10 63 288 420 288 63 9 1
3: . . . . . . 41 19 2
4: . . . . . . . 2 1
=> does not gives correct values for any choice off the cut off value.
the value here is 1.5e1
debug Core
rawResolutionGetMutableMatrixB(C.Resolution.RawComputation, raw R0, 3);
rawResolutionGetMutableMatrix2B(C.Resolution.RawComputation, raw(ZZ/32003), 3,2)
rawResolutionGetMutableMatrix2B(C.Resolution.RawComputation, raw(RR_53), 3,2)
rawResolutionGetMutableMatrix2B(C.Resolution.RawComputation, raw(ZZ), 9,7)
rawResolutionGetMutableMatrix2B(C.Resolution.RawComputation, raw(RR_53), 9,7)
for i from 1 to 5 list for j from 1 to 5 list
rawResolutionGetMutableMatrix2B(C.Resolution.RawComputation, raw(RR_53), i,j)
Ls = constantStrands(C, RR_53)
Ls1 = constantStrands(C, RR_1000)
m1 = Ls#9 .dd_6;
m2 = Ls1#9 .dd_6;
elapsedTime SVDHomology Ls#9
elapsedTime SVDHomology(Ls1#9**RR_53,Ls#9)
elapsedTime SVDHomology (Ls1#9**RR_53,Strategy=>Laplacian,Threshold=>1e-2)
first SVD m1, first SVD m2
m1 = Ls#9 .dd_7;
m2 = Ls1#9 .dd_7;
clean(1e-7, m1-m2)
ratios = (L) -> prepend(L#0, for i from 0 to #L-2 list L#i/L#(i+1)) -- L is a sorted list of singular values
ratios first o20
ratios first SVD Ls#11 .dd_8
ratios first SVD Ls#10 .dd_7
ratios first SVD Ls#10 .dd_8
ratios first SVD Ls#9 .dd_6
(a1,a2,a3) = SVDComplex Ls#9;
first SVD Ls#9 .dd_6
first SVD Ls#9 .dd_7
a3
a2
target a1
(source a1).dd_8
(target a1).dd_8
a1_8
Ls#10 .dd_8
laps = laplacians Ls#9;
laps = laplacians Ls#3;
#laps
evs = laps/(m -> rsort eigenvalues(m, Hermitian=>true))
laps1 = laplacians Ls1#9;
evs1 = laps1/(m -> rsort eigenvalues(m, Hermitian=>true))
(M1, M2) = uniquify(evs_0, evs_1, 1e-3);
(M2', M3) = uniquify(M2, evs_2, 1e-3);
#M1
#M2'
#M3
(M1, M2) = uniquify(evs1_0, evs1_1, 1e-3);
(M2', M3) = uniquify(M2, evs1_2, 1e-3);
(M1, M2) = (VerticalList M1, VerticalList M2)
(VerticalList M2', VerticalList M3)
(M1',M2')=uniquify(M1,M2,1e-1)
(#M1', #M2')
sings = (first SVD laps_0, first SVD laps_1, first SVD laps_2)
rsort join(evs_0, evs_2), rsort evs_1
sings = (eigenvalues( laps_0, first SVD laps_1, first SVD laps_2)
rsort join(sings_0, sings_1)
R32009=(ZZ/32009)(monoid R)
minimalBetti sub(I, R32009)
///
TEST ///
-- warning: this currently requires test code on res2017 branch.
-- XXXX
restart
needsPackage "SVDComplexes"
needsPackage "AGRExamples"
R = QQ[a..d]
F = randomForm(3, R)
I = ideal fromDual matrix{{F}}
C = res(I, FastNonminimal=>true)
C.dd -- want this to currently give an error, or make a ring out of this type...
Rp = (ZZ/32003)(monoid R)
R0 = (RR_53) (monoid R)
Ls = constantStrands(C,RR_53)
L = Ls#3
Lp = laplacians L
Lp/eigenvalues
Lp/SVD/first
Cp = getNonminimalRes(C, Rp)
C0 = getNonminimalRes(C, R0)
Cp.dd^2
C0.dd^2
-- lcm of lead term entries: 8902598454
-- want to solve x = y/8902598454^2, where y is an integer, and we know x to double precision
-- and we know x mod 32003.
-- example:
cf = leadCoefficient ((C0.dd_2)_(9,8))
-- .293215710985088
leadCoefficient ((Cp.dd_2)_(9,8))
-- -10338
-- what is y? (x mod p) = (y mod p)/(lcm mod p)^2
kk = coefficientRing Rp
(-10338_kk) / (8902598454_kk)^2
-- -391...
(-391 + 32003*k) / 8902598454^2 == .293215710985088
(cf * 8902598454^2 + 391)/32003.0
y = 726156310379351
(y+0.0)/8902598454^2
oo * 1_kk
///
TEST ///
-- warning: this currently requires test code on res2017 branch.
restart
-- YYYYY
needsPackage "RandomComplexes"
needsPackage "SVDComplexes"
needsPackage "AGRExamples"
R = QQ[a..f]
deg = 6
nextra = 10
nextra = 20
nextra = 30
--F = randomForm(deg, R)
setRandomSeed "1000"
F = sum(gens R, x -> x^deg) + sum(nextra, i -> (randomForm(1,R))^deg);
elapsedTime I = ideal fromDual matrix{{F}};
C = res(I, FastNonminimal=>true)
Rp = (ZZ/32003)(monoid R)
betti res substitute(I,Rp)
R0 = (RR_53) (monoid R)
minimalBetti sub(I, Rp)
SVDBetti C
betti C
Ls = constantStrands(C,RR_53)
-- Lp = constantStrands(C,ZZ/32003)
D = Ls#8
Ls
-- (F, hs, minsing) =
U=SVDComplex D;
(hs, minsing) = SVDHomology D;
hs, minsing
numericRank D.dd_4
maximalEntry D
elapsedTime first SVDComplex D
elapsedTime SVDHomology( D,Strategy=>Laplacian)
elapsedTime SVDComplex Ls_5;
last oo
hashTable for k in keys Ls list (k => betti Ls#k)
sumBetti = method()
sumBetti HashTable := H -> (
for k in keys H list (betti H#k)(-k)
)
elapsedTime hashTable for i in keys Ls list i => SVDComplex Ls#i;
elapsedTime hashTable for i in keys Ls list i => toBetti(i, first SVDHomology Ls#i);
for i from 0 to #Ls-1 list
max flatten checkSVDComplex(Ls_i, SVDComplex Ls_i)
hashTable for i from 0 to #Ls-1 list
i => last SVDComplex Ls_i
------ end of example above
debug Core
kk = ZZp(32003, Strategy=>"Flint")
Rp = kk(monoid R)
R0 = (RR_53) (monoid R)
Cp = getNonminimalRes(C,Rp)
C0 = getNonminimalRes(C,R0)
minimizeBetti(C, kk)
minimizeBetti(C, RR_53)
Ip = sub(I,Rp);
minimalBetti Ip
Lps = constantStrands(C,kk)
netList oo
L = Ls_3
Lp = laplacians L;
--Lp/eigenvalues
SVDComplex L
-- compute using projection method the SVD of the complex L
L.dd_2
(sigma, U1, V1t) = SVD mutableMatrix L.dd_2
sigma
betti U1
betti V1t
M = mutableMatrix L.dd_2
sigma1 = mutableMatrix diagonalMatrix matrix sigma
sigma1 = flatten entries sigma
sigmaplus = mutableMatrix(RR_53, 75, 5)
for i from 0 to 4 do sigmaplus_(i,i) = 1/sigma1#i
sigmaplus
Mplus = (transpose V1t) * sigmaplus * (transpose U1)
pkerM = submatrix(V1t, 5..74,);
M2 = pkerM * mutableMatrix(L.dd_3);
(sigma2,U2,V2t) = SVD M2
sigma2 = flatten entries sigma2
nonzerosing = position(0..#sigma2-2, i -> (sigma2#(i+1)/sigma2#i < 1.0e-10))
pkerM2 = submatrix(V2t, nonzerosing+1 .. numRows V2t-1,)
sigma2_{0..49}
sigma2_50
M3 = pkerM2 * mutableMatrix(L.dd_4) ;
(sigma3,U3,V3t) = SVD M3
sigma3 = flatten entries sigma3
nonzerosing3 = position(0..#sigma3-2, i -> (sigma3#(i+1)/sigma3#i < 1.0e-10))
sigma3#-1 / sigma3#-2 < 1.0e-10
evs = Lp/SVD/first
loc = 2
vals = sort join(for a in evs#loc list (a,loc), for a in evs#(loc+1) list (a,loc+1))
for i from 0 to #vals-2 list (
if vals_i_1 != vals_(i+1)_1 then (
abs(vals_i_0 - vals_(i+1)_0) / (vals_i_0 + vals_(i+1)_0), vals_i, vals_(i+1)
)
else null
)
errs = select(oo, x -> x =!= null)
netList oo
select(errs, x -> x#0 < .1) -- 66
select(errs, x -> x#0 < .01) -- 50
select(errs, x -> x#0 < .001) -- 47
Cp = getNonminimalRes(C, Rp)
C0 = getNonminimalRes(C, R0)
Cp.dd^2
C0.dd^2 -- TODO: make it so we can "clean" the results here.
///
TEST ///
restart
needsPackage "SVDComplexes"
needsPackage "AGRExamples"
I = getAGR(6,9,50,0);
R = ring I
elapsedTime C = res(I, FastNonminimal=>true)
betti C
elapsedTime SVDBetti C
Rp = (ZZ/32003)(monoid R)
Ip = ideal sub(gens I, Rp);
elapsedTime minimalBetti Ip
elapsedTime Cp = res(Ip, FastNonminimal=>true)
///
TEST ///
restart
-- ZZZZ
needsPackage "SVDComplexes"
needsPackage "AGRExamples"
I = value get "agr-6-7-37-0.m2";
makeAGR(6,7,50,0)
I = getAGR(6,7,50,0);
-*
R = QQ[a..h]
deg = 6
nextra = 30
F = sum(gens R, x -> x^deg) + sum(nextra, i -> (randomForm(1,R))^deg);
elapsedTime I = ideal fromDual matrix{{F}};
*-
elapsedTime C = res(I, FastNonminimal=>true)
betti C
elapsedTime SVDBetti C
Rp = (ZZ/32003)(monoid R)
Ip = ideal sub(gens I, Rp);
elapsedTime minimalBetti Ip
D = constantStrand(C, RR_53, 7)
SVDComplex D;
E = target first oo
for i from 2 to 5 list sort flatten entries compress flatten E.dd_i
Ls = constantStrands(C, RR_53)
///
TEST ///
restart
needsPackage "SVDComplexes"
needsPackage "AGRExamples"
elapsedTime makeAGR(7,7,100,32003)
I = getAGR(7,7,100,32003);
elapsedTime minimalBetti I
///
TEST ///
-- warning: this currently requires test code on res2017 branch.
-- XXXX
restart
needsPackage "SVDComplexes"
R = QQ[a..g]
deg = 6
nextra = 10
nextra = 30
--F = randomForm(deg, R)
F = sum(gens R, x -> x^deg) + sum(nextra, i -> (randomForm(1,R))^deg);
elapsedTime I = ideal fromDual matrix{{F}};
elapsedTime C = res(I, FastNonminimal=>true)
kk = ZZ/32003
Rp = kk(monoid R)
Ip = sub(I,Rp);
elapsedTime minimalBetti Ip
R0 = (RR_53) (monoid R)
Ls = constantStrands(C,RR_53)
netList oo
Lps = constantStrands(C,kk)
debug Core
kkflint = ZZp(32003, Strategy=>"Ffpack")
Lps = constantStrands(C,kkflint)
Lp = Lps_5
L = Ls_5
for i from 3 to 6 list elapsedTime first SVD L.dd_i
for i from 3 to 6 list rank mutableMatrix Lp.dd_i
Lp = laplacians L;
--Lp/eigenvalues
evs = Lp/SVD/first
loc = 2
vals = sort join(for a in evs#loc list (a,loc), for a in evs#(loc+1) list (a,loc+1))
for i from 0 to #vals-2 list (
if vals_i_1 != vals_(i+1)_1 then (
abs(vals_i_0 - vals_(i+1)_0) / (vals_i_0 + vals_(i+1)_0), vals_i, vals_(i+1)
)
else null
)
errs = select(oo, x -> x =!= null)
netList oo
select(errs, x -> x#0 < .1) -- 66
select(errs, x -> x#0 < .01) -- 50
select(errs, x -> x#0 < .001) -- 47
Cp = getNonminimalRes(C, Rp)
C0 = getNonminimalRes(C, R0)
Cp.dd^2
C0.dd^2 -- TODO: make it so we can "clean" the results here.
///
TEST ///
-- warning: this currently requires test code on res2017 branch.
-- XXXX
restart
needsPackage "SVDComplexes"
needsPackage "AGRExamples"
deg = 6
nv = 7
nextra = binomial(nv + 1, 2) - nv - 10
R = QQ[vars(0..nv-1)]
--F = randomForm(deg, R)
F = sum(gens R, x -> x^deg) + sum(nextra, i -> (randomForm(1,R))^deg);
elapsedTime I = ideal fromDual matrix{{F}};
elapsedTime C = res(I, FastNonminimal=>true)
kk = ZZ/32003
Rp = kk(monoid R)
Ip = sub(I,Rp);
elapsedTime Cp = res(Ip, FastNonminimal=>true)
elapsedTime minimalBetti Ip
R0 = (RR_53) (monoid R)
SVDBetti C
Ls = constantStrands(C,RR_53)
mats = flatten for L in Ls list (
kf := keys L.dd;
nonzeros := select(kf, k -> instance(k,ZZ) and L.dd_k != 0);
nonzeros/(i -> L.dd_i)
);
elapsedTime(mats/(m -> first SVD m))
netList oo
Lps = constantStrands(C,kk)
debug Core
kkflint = ZZp(32003, Strategy=>"Ffpack")
Lps = constantStrands(C,kkflint)
Lp = Lps_5
L = Ls_5
for i from 3 to 6 list rank mutableMatrix Lp.dd_i
Lp = laplacians L;
--Lp/eigenvalues
evs = Lp/SVD/first
loc = 2
vals = sort join(for a in evs#loc list (a,loc), for a in evs#(loc+1) list (a,loc+1))
for i from 0 to #vals-2 list (
if vals_i_1 != vals_(i+1)_1 then (
abs(vals_i_0 - vals_(i+1)_0) / (vals_i_0 + vals_(i+1)_0), vals_i, vals_(i+1)
)
else null
)
errs = select(oo, x -> x =!= null)
netList oo
select(errs, x -> x#0 < .1) -- 66
select(errs, x -> x#0 < .01) -- 50
select(errs, x -> x#0 < .001) -- 47
Cp = getNonminimalRes(C, Rp)
C0 = getNonminimalRes(C, R0)
Cp.dd^2
C0.dd^2 -- TODO: make it so we can "clean" the results here.
///
doc ///
Key
SVDComplexes
Headline
Description
Text
Example
Caveat
SeeAlso
///
doc ///
Key
Headline
Usage
Inputs
Outputs
Consequences
Description
Text
Example
Code
Pre
Caveat
SeeAlso
///
TEST ///
-- test code and assertions here
-- may have as many TEST sections as needed
///
|