1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449
|
------------------------------------------------------------------------------
-- Total Coordinate Rings and Coherent Sheaves (Documentation)
------------------------------------------------------------------------------
doc ///
Key
"working with sheaves"
Headline
information about coherent sheaves and total coordinate rings (a.k.a. Cox rings)
Description
Text
@HREF("http://www3.amherst.edu/~dacox/", "David A. Cox")@
introduced the total coordinate ring $S$ of a normal toric variety
$X$ and the irrelevant ideal $B$. The polynomial ring $S$ has one
variable for each ray in the associated fan and a natural grading
by the class group. The monomial ideal $B$ encodes the maximal
cones. The following results of Cox indicate the significance of
the pair $(S,B)$.
Text
@UL {
{"The variety ", EM "X", " is a good categorical ",
"quotient of Spec(", EM "S", ") - V(", EM "B",
") by a suitable group action."},
{"The category of coherent sheaves on ", EM "X", " is
equivalent to the quotient of the category of finitely
generated graded ", EM "S", "-modules by the full
subcategory of ", EM "B", "-torsion modules."}
}@
Text
In particular, we may represent any coherent sheaf on $X$ by
giving a finitely generated graded $S$-module.
Text
The following methods allow one to make and manipulate coherent
sheaves on normal toric varieties.
Text
@SUBSECTION "Sheaf-theoretic methods"@
Text
@UL {
TO (ring, NormalToricVariety),
TO (ideal, NormalToricVariety),
TO (sheaf, NormalToricVariety, Ring),
TO (sheaf ,NormalToricVariety, Module),
TO (symbol SPACE, OO, ToricDivisor),
TO (cotangentSheaf, NormalToricVariety),
TO (cohomology, ZZ, NormalToricVariety, CoherentSheaf),
TO (intersectionRing, NormalToricVariety),
TO (chern, CoherentSheaf),
TO (ctop, CoherentSheaf),
TO (ch, CoherentSheaf),
TO (chi, CoherentSheaf),
TO (todd, CoherentSheaf),
TO (hilbertPolynomial, NormalToricVariety, CoherentSheaf)
}@
SeeAlso
"making normal toric varieties"
"finding attributes and properties"
"resolving singularities"
"working with toric maps"
"working with divisors"
///
doc ///
Key
(ring, NormalToricVariety)
"Cox ring"
Headline
make the total coordinate ring (a.k.a. Cox ring)
Usage
ring X
Inputs
X : NormalToricVariety
Outputs
: PolynomialRing
the total coordinate ring
Description
Text
The total coordinate ring, which is also known as the Cox ring, of
a normal toric variety is a polynomial ring in which the variables
correspond to the rays in the fan. The map from the group of
torus-invariant Weil divisors to the class group endows this ring
with a grading by the @TO2(classGroup,"class group")@. For more
information, see Subsection 5.2 in Cox-Little-Schenck's
{\em Toric Varieties}.
Text
The total coordinate ring for
@TO2(toricProjectiveSpace, "projective space")@ is the standard
graded polynomial ring.
Example
PP3 = toricProjectiveSpace 3;
S = ring PP3;
assert (isPolynomialRing S and isCommutative S)
gens S
degrees S
assert (numgens S == #rays PP3)
coefficientRing S
Text
For a @TO2((symbol **, NormalToricVariety, NormalToricVariety),
"product")@ of projective spaces, the total coordinate ring has a
bigrading.
Example
X = toricProjectiveSpace(2) ** toricProjectiveSpace(3);
gens ring X
degrees ring X
Text
A @TO2(hirzebruchSurface, "Hirzebruch surface")@ also has a
$\ZZ^2$-grading.
Example
FF3 = hirzebruchSurface 3;
gens ring FF3
degrees ring FF3
Text
To avoid duplicate computations, the attribute is cached in the
normal toric variety. The variety is also cached in the ring.
Caveat
The total coordinate ring is not yet implemented when the toric
variety is degenerate, and is experimental when the class group has torsion.
SeeAlso
"working with sheaves"
(rays, NormalToricVariety)
classGroup
WeilToClass
(fromWDivToCl, NormalToricVariety)
(ideal, NormalToricVariety)
(sheaf, NormalToricVariety, Module)
///
doc ///
Key
(normalToricVariety, Ring)
Headline
get the associated normal toric variety
Usage
normalToricVariety S
Inputs
S : Ring
CoefficientRing => Ring
not used
MinimalGenerators => Boolean
not used
Variable => Symbol
not used
WeilToClass => Matrix
not used
Outputs
: NormalToricVariety
Description
Text
If a polynomial ring is constructed as the
@TO2((ring, NormalToricVariety), "total coordinate ring")@ of
normal toric variety, then this method returns the associated
variety.
Example
PP3 = toricProjectiveSpace 3;
S = ring PP3
gens S
degrees S
normalToricVariety S
assert (PP3 === normalToricVariety S)
variety S
assert (PP3 === variety S)
Text
If the polynomial ring is not constructed from a variety, then
this method produces an error: "no variety associated with ring".
Example
S = QQ[x_0..x_2];
gens S
degrees S
assert (try (normalToricVariety S; false) else true)
assert (try (variety S; false) else true)
Caveat
This methods does {\em not} determine if a ring could be realized as
the total coordinate ring of a normal toric variety.
SeeAlso
"working with sheaves"
(ring, NormalToricVariety)
///
doc ///
Key
(ideal, NormalToricVariety)
(monomialIdeal, NormalToricVariety)
Headline
make the irrelevant ideal
Usage
ideal X
monomialIdeal X
Inputs
X : NormalToricVariety
Outputs
: Ideal
that is homogeneous in the total coordinate ring of $X$
Description
Text
The irrelevant ideal is a reduced monomial ideal in the
@TO2((ring, NormalToricVariety), "total coordinate ring")@ that
encodes the combinatorics of the fan. For each maximal cone in
the fan, it has a minimal generator, namely the product of the
variables not indexed by elements of the list corresponding to the
maximal cone. For more information, see Subsection 5.3 in
Cox-Little-Schenck's {\em Toric Varieties}.
Text
For @TO2(toricProjectiveSpace, "projective space")@, the
irrelevant ideal is generated by the variables.
Example
PP4 = toricProjectiveSpace 4;
B = ideal PP4
assert (isMonomialIdeal B and B == radical B)
monomialIdeal PP4
assert (B == monomialIdeal PP4)
Text
For an affine toric variety, the irrelevant ideal is the unit
ideal.
Example
C = normalToricVariety ({{1,0,0},{0,1,0},{0,0,1},{1,1,-1}}, {{0,1,2,3}});
ideal C
assert (monomialIdeal C == 1)
monomialIdeal affineSpace 3
assert (ideal affineSpace 3 == 1)
Text
The irrelevant ideal for a @TO2((symbol **, NormalToricVariety,
NormalToricVariety), "product")@ of toric varieties is
intersection of the irrelevant ideal of the factors.
Example
X = toricProjectiveSpace (2) ** toricProjectiveSpace (3);
S = ring X;
B = ideal X
primaryDecomposition B
dual monomialIdeal B
Text
For a @TO2(isComplete, "complete")@
@TO2(isSimplicial, "simplicial")@ toric variety, the irrelevant
ideal is the Alexander dual of the Stanley-Reisner ideal of the
fan.
Example
Y = smoothFanoToricVariety (2,3);
dual monomialIdeal Y
sort apply (max Y, s -> select (# rays Y, i -> not member (i,s)))
primaryDecomposition dual monomialIdeal Y
Text
Since the irrelevant ideal is a monomial ideal, the command
@TO monomialIdeal@ also produces the irrelevant ideal.
Example
code (monomialIdeal, NormalToricVariety)
SeeAlso
"working with sheaves"
(max, NormalToricVariety)
(ring, NormalToricVariety)
///
------------------------------------------------------------------------------
-- sheaves
------------------------------------------------------------------------------
doc ///
Key
(sheaf, NormalToricVariety, Module)
Headline
make a coherent sheaf
Usage
sheaf (X, M)
Inputs
X : NormalToricVariety
M : Module
a graded module over the total coordinate ring
Outputs
: CoherentSheaf
the coherent sheaf on {\tt X} corresponding to {\tt M}
Description
Text
The category of coherent sheaves on a normal toric variety is
equivalent to the quotient category of finitely generated modules
over the @TO2((ring, NormalToricVariety), "total coordinate ring")@
by the full subcategory of torsion modules with respect to the
@TO2((ideal, NormalToricVariety), "irrelevant ideal")@. In
particular, each finitely generated module over the total
coordinate ring corresponds to coherent sheaf on the normal toric
variety and every coherent sheaf arises in this manner. For more
information, see Subsection 5.3 in Cox-Little-Schenck's
{\em Toric Varieties}.
Text
Free modules correspond to reflexive sheaves.
Example
PP3 = toricProjectiveSpace 3;
F = sheaf (PP3, (ring PP3)^{{1},{2},{3}})
FF7 = hirzebruchSurface 7;
G = sheaf (FF7, (ring FF7)^{{1,0},{0,1}})
SeeAlso
"working with sheaves"
(ring, NormalToricVariety)
(ideal, NormalToricVariety)
(sheaf, NormalToricVariety)
///
doc ///
Key
(sheaf, NormalToricVariety, Ring)
(symbol _, OO, NormalToricVariety)
(sheaf, NormalToricVariety)
Headline
make a coherent sheaf of rings
Usage
sheaf (X, S)
Inputs
X : NormalToricVariety
S : Ring
the total coordinate ring of {\tt X}
Outputs
: SheafOfRings
the structure sheaf on {\tt X}
Description
Text
The category of coherent sheaves on a normal toric variety is
equivalent to the quotient category of finitely generated modules
over the total coordinate ring by the full subcategory of torsion
modules with respect to the irrelevant ideal. In particular, the
total coordinate ring corresponds to the structure sheaf. For more
information, see Subsection 5.3 in Cox-Little-Schenck's
{\em Toric Varieties}.
Text
On @TO2(toricProjectiveSpace, "projective space")@, we can make
the structure sheaf in a few ways.
Example
PP3 = toricProjectiveSpace 3;
F = sheaf (PP3, ring PP3)
G = sheaf PP3
assert (F === G)
H = OO_PP3
assert (F === H)
SeeAlso
"working with sheaves"
(ring, NormalToricVariety)
(sheaf, NormalToricVariety, Module)
///
doc ///
Key
(cotangentSheaf, NormalToricVariety)
(cotangentSheaf, ZZ, NormalToricVariety)
(cotangentSheaf, List, NormalToricVariety)
Headline
make the sheaf of Zariski 1-forms
Usage
cotangentSheaf X
Inputs
X : NormalToricVariety
Minimize => Boolean
that specifies whether to apply @TO minimalPresentation@ to the
result before returning it
Outputs
: CoherentSheaf
the sheaf of Zariski 1-forms on {\tt X}
Description
Text
For a normal variety, the sheaf of Zariski 1-forms is defined to
be the double dual of the cotangent bundle or equivalently the
extension of the sheaf of 1-forms on the smooth locus to the
entire variety (the complement of the smooth locus has codimension
at least two because the variety is normal). By construction,
this sheaf is reflexive with rank equal to the dimension of the
variety. When the underlying variety is smooth, this is simple
the sheaf of 1-forms or the cotangent bundle. For more
information, see Theorem 8.1.5 in Cox-Little-Schenck's
{\em Toric Varieties}.
Text
On a non-degenerate normal toric variety, the sheaf of Zariski
1-forms is associated to the kernel of a map from the character
lattice tensor the total coordinate ring to the direct sum over
the rays of the quotient of the
@TO2((ring, NormalToricVariety), "total coordinate ring")@ by the
ideal generated by the corresponding variable.
Example
PP3 = toricProjectiveSpace 3;
OmegaPP3 = cotangentSheaf PP3
assert (prune cotangentSheaf PP3 === cotangentSheaf (PP3, Minimize => true))
L = prune exteriorPower (3, OmegaPP3)
assert (L === OO toricDivisor PP3)
assert (L === prune cotangentSheaf (dim PP3, PP3))
Example
X = hirzebruchSurface 2;
OmegaX = cotangentSheaf X
L = prune exteriorPower(dim X, OmegaX)
assert (L === OO toricDivisor X)
assert (L === prune cotangentSheaf(dim X, X))
Example
Y = normalToricVariety ({{1,0,0},{0,1,0},{0,0,1},{0,-1,-1},{-1,0,-1},{-2,-1,0}}, {{0,1,2},{0,1,3},{1,3,4},{1,2,4},{2,4,5},{0,2,5},{0,3,5},{3,4,5}});
assert (not isSmooth Y and not isProjective Y)
OmegaY = cotangentSheaf Y
prune exteriorPower(dim Y, OmegaY)
assert (prune exteriorPower(dim Y, OmegaY) === OO toricDivisor Y)
SeeAlso
"working with sheaves"
(sheaf, NormalToricVariety, Module)
///
doc ///
Key
(cohomology, ZZ, NormalToricVariety, CoherentSheaf)
(cohomology, ZZ, NormalToricVariety, SheafOfRings)
Headline
compute the cohomology of a coherent sheaf
Usage
HH^i (X, F)
Inputs
i : ZZ
X : NormalToricVariety
F : CoherentSheaf
on {\tt X}
Outputs
: Module
the {\tt i}-th cohomology group of {\tt F}
Description
Text
The cohomology functor $HH^i (X,-)$ from the category of sheaves
of abelian groups to the category of abelian groups is the right
derived functor of the global sections functor.
Text
As a simple example, we compute the dimensions of the cohomology
groups for some line bundles on the projective plane.
Example
PP2 = toricProjectiveSpace 2;
HH^0 (PP2, OO_PP2(1))
matrix table (reverse toList (0..2), toList (-10..5), (i,j) -> rank HH^i (PP2, OO_PP2(j-i)))
Text
For a second example, we compute the dimensions of the cohomology
groups for some line bundles on a Hirzebruch surface.
Example
FF2 = hirzebruchSurface 2;
HH^0 (FF2, OO_FF2(1,1))
matrix table (reverse toList (-7..7), toList (-7..7), (i,j) -> rank HH^0 (FF2, OO_FF2(j,i)))
matrix table (reverse toList (-7..7), toList (-7..7), (i,j) -> rank HH^1 (FF2, OO_FF2(j,i)))
matrix table (reverse toList (-7..7), toList (-7..7), (i,j) -> rank HH^2 (FF2, OO_FF2(j,i)))
Text
When {\it F} is free, the algorithm based on [Diane Maclagan and
Gregory G. Smith,
@HREF("http://arxiv.org/abs/math.AC/0305214", "Multigraded Castelnuovo-Mumford regularity")@,
{\it J. Reine Angew. Math.} {\bf 571} (2004), 179-212]. The
general case uses the methods described in [David Eisenbud, Mircea
Mustata, and Mike Stillman,
@HREF("http://arxiv.org/abs/math.AG/0001159", "Cohomology on toric varieties and local cohomology with monomial supports")@,
{\it J. Symbolic Comput.} {\bf 29} (2000), 583-600].
SeeAlso
"working with sheaves"
(sheaf, NormalToricVariety, Module)
(sheaf, NormalToricVariety, Ring)
///
|