1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677
|
-- test 0
TEST ///
X = affineSpace 1;
assert isWellDefined X
assert (rays X == {{1}})
assert (max X == {{0}})
assert (dim X == 1)
assert (orbits (X,0) === max X)
assert (orbits (X,1) === {{}})
assert not isDegenerate X
assert isSmooth X
assert not isComplete X
assert not isFano X
assert (weilDivisorGroup X == ZZ^1)
assert (fromWDivToCl X == 0)
assert (classGroup X == ZZ^0)
assert (cartierDivisorGroup X == ZZ^1)
assert (fromCDivToWDiv X == id_(ZZ^1))
assert (fromCDivToPic X == 0)
assert (picardGroup X == ZZ^0)
assert (fromPicToCl X == 0)
assert (nefGenerators X == 0)
assert isEffective X_0
assert try (monomials X_0; false) else true
assert not isEffective (-X_0)
assert isCartier X_0
assert not isNef X_0
assert (OO X_0 === OO_X^1)
assert (degrees ring X === {{}})
assert (ideal X == 1)
assert (cotangentSheaf X === OO_X^1)
assert (makeSimplicial X === X)
assert (makeSmooth X === X)
assert (null == try affineSpace 0)
///
-- test 1
TEST ///
X = toricProjectiveSpace 1;
assert isWellDefined X
assert (set rays X === set ({-1},{1}))
assert (max X == sort subsets (2,1))
assert (dim X === 1)
assert (orbits (X,0) === max X)
assert (orbits (X,1) === {{}})
assert not isDegenerate X
assert isSmooth X
assert isProjective X
assert isFano X
assert (weilDivisorGroup X == ZZ^2)
assert (fromWDivToCl X == map (ZZ^1,ZZ^2, i -> 1_ZZ))
assert (classGroup X == ZZ^1)
assert (cartierDivisorGroup X == ZZ^2)
assert (fromCDivToWDiv X == id_(ZZ^2))
assert (fromCDivToPic X == map (ZZ^1,ZZ^2, i -> 1_ZZ))
assert (picardGroup X == ZZ^1)
assert (fromPicToCl X == id_(ZZ^1))
assert (nefGenerators X == 1)
assert (isNef toricDivisor (flatten entries ( (fromCDivToWDiv X) * (nefGenerators X // fromCDivToPic X)), X))
assert isEffective X_0
assert (monomials (4*X_0) == sort first entries basis (degree (4*X_0), ring variety X_0))
assert (X_0 + X_1 === toricDivisor ({1,1},X))
assert (2*X_0 === X_0 + X_0)
assert isVeryAmple X_0
assert (vertices (2*X_0) == matrix {{0,2}})
assert (latticePoints (2*X_0) == matrix {{0,1,2}})
assert (degrees ring X === {{1},{1}})
assert (ideal X == ideal gens ring X)
assert (cotangentSheaf X === OO_X(-2))
assert (all (5, i -> rank HH^0(X,OO_X(i)) == binomial(1+i,i)))
assert (makeSimplicial X === X)
assert (makeSmooth X === X)
assert (null == try toricProjectiveSpace 0)
///
-- test 2
TEST ///
n = 4;
X = toricProjectiveSpace n;
assert isWellDefined X
assert (rays X === {toList (n:-1)} | entries id_(ZZ^n))
assert (max X === subsets (n+1,n))
assert (dim X === n)
assert (orbits (X,1) === sort subsets (n+1,n-1))
assert (orbits (X,2) === sort subsets (n+1,n-2))
assert (orbits (X,4) === {{}})
assert not isDegenerate X
assert isSmooth X
assert isProjective X
assert isFano X
assert (weilDivisorGroup X == ZZ^(n+1))
assert (fromWDivToCl X == map (ZZ^1,ZZ^(n+1), i -> 1_ZZ))
assert (classGroup X == ZZ^1)
assert (cartierDivisorGroup X == ZZ^(n+1))
assert (fromCDivToWDiv X == id_(ZZ^(n+1)))
assert (fromCDivToPic X == map (ZZ^1,ZZ^(n+1), i -> 1_ZZ))
assert (picardGroup X == ZZ^1)
assert (fromPicToCl X == id_(ZZ^1))
assert (nefGenerators X == 1)
assert (isNef toricDivisor (flatten entries ( (fromCDivToWDiv X) * (nefGenerators X // fromCDivToPic X)), X))
assert (isEffective X_0 === true)
assert (monomials (2*X_0) == sort first entries basis(degree (2*X_0), ring variety X_0))
assert (X_0 + X_1 === toricDivisor ({1,1} | toList (n-1:0),X))
assert (2*X_0 === X_0 + X_0)
assert isVeryAmple X_0
assert (degree X_0 === {sum entries X_0})
assert (degree (2*X_0+X_3) === {sum entries (2*X_0+X_3)})
assert (vertices (2*X_0) == map (ZZ^n,ZZ^1,i -> 0) | 2*id_(ZZ^n))
assert (degrees ring X === toList (n+1 : {1}))
assert (ideal X == ideal gens ring X)
assert (cotangentSheaf (X, Minimize => true) === prune sheaf (X,
homology (vars ring X,jacobian ring X)))
assert ({degree (-X_0+3*X_2)} === - degrees OO (-X_0+3*X_2))
assert (all (5, i -> rank HH^0(X,OO_X(i)) == binomial(n+i,i)))
assert (all (5, i -> HH^1(X,OO_X(i)) == 0))
assert (all (5, i -> rank HH^n(X,OO_X(-i-n-1)) == binomial(n+i,i)))
assert (makeSimplicial X === X)
assert (makeSmooth X === X)
///
-- test 3
TEST ///
X = hirzebruchSurface 2;
assert isWellDefined X
assert (rays X == {{1,0},{0,1},{-1,2},{0,-1}})
assert (max X == {{0,1},{0,3},{1,2},{2,3}})
assert (dim X == 2)
assert (orbits (X,0) === max X)
assert (orbits (X,1) === apply (4, i -> {i}))
assert (orbits (X,2) === {{}})
assert not isDegenerate X
assert isSmooth X
assert isProjective X
assert not isFano X
assert (weilDivisorGroup X == ZZ^4)
assert (fromWDivToCl X == map (ZZ^2,ZZ^4, matrix{{1,-2,1,0},{0,1,0,1}}))
assert (classGroup X == ZZ^2)
assert (cartierDivisorGroup X == ZZ^4)
assert (fromCDivToWDiv X == id_(ZZ^4))
assert (fromCDivToPic X == map (ZZ^2,ZZ^4, matrix{{1,-2,1,0},{0,1,0,1}}))
assert (picardGroup X == ZZ^2)
assert (fromPicToCl X == id_(ZZ^2))
assert (nefGenerators X == 1)
assert all (entries transpose ( (fromCDivToWDiv X) * (nefGenerators X // fromCDivToPic X)),
coeffs -> isNef toricDivisor (coeffs, X))
assert isEffective X_0
assert (monomials (2*X_0 + X_1) == sort first entries basis (degree (2*X_0 + X_1), ring variety X_0))
assert isWellDefined X_0
assert (X_0 + X_1 === toricDivisor ({1,1,0,0},X))
assert (2*X_0 === X_0 + X_0)
assert (degree (-3*X_0 + 7*X_1) === - first degrees OO (-3*X_0 + 7*X_1))
assert isNef X_0
assert not isNef X_1
assert isVeryAmple (X_2+X_3)
assert (vertices (X_2+X_3) === matrix{{0,1,0,3},{0,0,1,1}})
assert (latticePoints (X_2+X_3) === matrix {{0, 1, 0, 1, 2, 3}, {0, 0, 1, 1, 1, 1}})
assert (degrees ring X === {{1,0},{-2,1},{1,0},{0,1}})
S = ring X;
assert (ideal X == intersect (ideal (S_0,S_2),ideal (S_1,S_3)))
assert (makeSimplicial X === X)
assert (makeSmooth X === X)
///
-- test 4
TEST ///
X = weightedProjectiveSpace {1,2,3};
assert isWellDefined X
assert (rays X == {{-2,-3},{1,0},{0,1}})
assert (max X == {{0,1},{0,2},{1,2}})
assert (dim X == 2)
assert (orbits (X,0) === max X)
assert (orbits (X,1) === apply (3, i -> {i}))
assert (orbits (X,2) === {{}})
assert not isDegenerate X
assert isSimplicial X
assert not isSmooth X
assert isProjective X
assert isFano X
assert (weilDivisorGroup X == ZZ^3)
assert (fromWDivToCl X == map (ZZ^1,ZZ^3, matrix{{1,2,3}}))
assert (classGroup X == ZZ^1)
assert (cartierDivisorGroup X == ZZ^3)
assert (rank fromCDivToPic X === 1)
assert (picardGroup X == ZZ^1)
assert (fromPicToCl X == map (ZZ^1,ZZ^1, {{6}}))
assert (nefGenerators X == 1)
assert all (entries transpose ( (fromCDivToWDiv X) * (nefGenerators X // fromCDivToPic X)),
coeffs -> isNef toricDivisor (coeffs, X))
assert isEffective X_0
assert (X_0 + X_1 === toricDivisor ({1,1,0},X))
assert (2*X_0 === X_0 + X_0)
assert isNef X_0
assert not isCartier X_0
assert isQQCartier X_0
assert not isAmple X_1
assert isAmple (3*X_1)
assert isVeryAmple (3*X_1)
assert (vertices (6*X_0) === matrix{{0,3,0},{0,0,2}})
assert (OO (6*X_0) === OO (3*X_1))
assert (degrees ring X === apply (3, i -> {i+1}))
assert (ideal X == ideal gens ring X)
Y = makeSmooth X;
assert isWellDefined Y
assert isSmooth Y
assert (set rays Y === set {{-2,-3},{1,0},{0,1},{-1,-2},{-1,-1},{0,-1}})
assert (sort max Y === sort {{0,5},{0,4},{1,2},{1,3},{2,4},{3,5}})
///
-- test 5
TEST ///
X = kleinschmidt (9,{1,2,3});
assert (orbits (X, dim X) === {{}})
assert isWellDefined X
assert isFano X
assert isSmooth X
assert (picardGroup X === ZZ^2)
assert (nefGenerators X == 1)
assert all (entries transpose ( (fromCDivToWDiv X) * (nefGenerators X // fromCDivToPic X)),
coeffs -> isNef toricDivisor (coeffs, X))
///
-- test 6
TEST ///
assert (all (5, i -> (
X := smoothFanoToricVariety (2,i);
isWellDefined X and isSmooth X and isFano X)))
assert (all (18, i -> (
X := smoothFanoToricVariety (3,i);
isWellDefined X and isSmooth X and isFano X)))
X = smoothFanoToricVariety (2,4);
assert (HH^1 (X,OO_X (-2,1,1,-2)) == QQ^2)
///
-- test 7
TEST ///
rayList = {{1,0,0},{0,1,0},{0,0,1},{0,-1,-1},{-1,0,-1},{-2,-1,0}};
coneList = {{0,1,2},{0,1,3},{1,3,4},{1,2,4},{2,4,5},{0,2,5},{0,3,5},{3,4,5}};
X = normalToricVariety (rayList,coneList);
assert isWellDefined X
assert (dim X === 3)
assert (orbits (X,0) === max X)
assert (orbits (X,2) === apply (6, i -> {i}))
assert not isDegenerate X
assert isSimplicial X
assert not isSmooth X
assert isComplete X
assert not isProjective X
assert not isFano X
assert (weilDivisorGroup X == ZZ^6)
assert (classGroup X === ZZ^3)
assert (picardGroup X === ZZ^3)
assert (nefGenerators X == 0)
assert all (entries transpose ( (fromCDivToWDiv X) * (nefGenerators X // fromCDivToPic X)),
coeffs -> isNef toricDivisor (coeffs, X))
assert isNef (0*X_0)
assert all (6, i -> not isAmple (X_i))
Y = makeSmooth X;
assert isWellDefined Y
assert isSmooth Y
///
-- test 8
TEST ///
X = normalToricVariety (id_(ZZ^3) | -id_(ZZ^3));
assert isWellDefined X
assert (set rays X === set entries matrix{{1,1,1},{-1,1,1},{1,-1,1},{-1,-1,1},
{1,1,-1},{-1,1,-1},{1,-1,-1},{-1,-1,-1}})
assert (dim X === 3)
assert (orbits (X,0) === max X)
assert (orbits (X,2) === apply (8, i -> {i}))
assert not isDegenerate X
assert not isSimplicial X
assert not isSmooth X
assert isProjective X
assert isFano X
assert (weilDivisorGroup X == ZZ^8)
assert (classGroup X == (cokernel matrix{{2}})^2 ++ ZZ^5)
assert (picardGroup X == ZZ^1)
assert (fromWDivToCl X * fromCDivToWDiv X == fromPicToCl X * fromCDivToPic X)
assert (nefGenerators X == 1)
assert all (entries transpose ( (fromCDivToWDiv X) * (nefGenerators X // fromCDivToPic X)),
coeffs -> isNef toricDivisor (coeffs, X))
assert isEffective X_0
assert not isCartier X_0
K = toricDivisor X;
assert(set monomials(-K) === set first entries basis(degree(-K), ring X))
assert isCartier K
assert not isNef K
Y = makeSimplicial X;
assert isWellDefined Y
assert isSimplicial Y
assert not isSmooth Y
Y = makeSimplicial (X, Strategy => 1);
assert isWellDefined Y
assert isSimplicial Y
assert not isSmooth Y
Z = makeSmooth X;
assert isWellDefined Z
assert isSmooth Z
///
-- test 9
TEST ///
X = normalToricVariety ({{1,0,0,0},{0,1,0,0},{0,0,1,0},{1,-1,1,0},{1,0,-2,0}},
{{0,1,2,3},{0,4}});
assert isWellDefined X
assert (dim X === 4)
assert (orbits (X,0) === {})
assert (orbits (X,1) === {{0,1,2,3}})
assert (orbits (X,2) === {{0,1},{0,3},{0,4},{1,2},{2,3}})
assert (orbits (X,3) === apply (5, i -> {i}))
assert isDegenerate X
assert not isSimplicial X
assert not isSmooth X
assert not isComplete X
assert (weilDivisorGroup X == ZZ^5)
assert (classGroup X == ZZ^2)
assert (picardGroup X == ZZ^1)
assert isEffective X_0
Y = makeSimplicial X;
assert isWellDefined Y
assert isSimplicial Y
assert not isSmooth Y
Y = makeSimplicial (X, Strategy => 0);
assert isWellDefined Y
assert isSimplicial Y
assert not isSmooth Y
Z = makeSmooth X;
assert isWellDefined Z
assert isSmooth Z
///
-- test 10
TEST ///
C = normalToricVariety ({{1,0,0},{1,1,0},{1,0,1},{1,1,1}},{{0,1,2,3}});
Bl1 = toricBlowup ({0,1,2,3},C);
assert (rays Bl1 === {{1,0,0},{1,1,0},{1,0,1},{1,1,1},{2,1,1}})
assert (max Bl1 === {{0,1,4},{0,2,4},{1,3,4},{2,3,4}})
Bl2 = toricBlowup ({0,1},C);
assert (rays Bl2 === {{1,0,0},{1,1,0},{1,0,1},{1,1,1},{2,1,0}})
assert (max Bl2 === {{0,2,4},{1,3,4},{2,3,4}})
Bl3 = toricBlowup ({0,1,2,3},C,{5,3,4});
assert (rays Bl3 === {{1,0,0},{1,1,0},{1,0,1},{1,1,1},{5,3,4}})
assert (max Bl3 === {{0,1,4},{0,2,4},{1,3,4},{2,3,4}})
Bl4 = toricBlowup ({0},C);
assert isSimplicial Bl4
assert (rays Bl4 === {{1,0,0},{1,1,0},{1,0,1},{1,1,1}})
assert (max Bl4 === {{0,1,3},{0,2,3}})
X = normalToricVariety (id_(ZZ^3) | (-id_(ZZ^3)));
Bl5 = toricBlowup ({0,2},X);
assert (rays Bl5 === rays X | {{1,0,1}})
assert not isSimplicial Bl5
assert isProjective Bl5
assert isWellDefined Bl5
Bl6 = toricBlowup ({0},X);
assert (rays Bl6 === rays X)
assert not isSimplicial Bl6
assert isProjective Bl6
Bl7 = toricBlowup ({7},Bl6);
assert (rays Bl7 === rays X)
assert isSimplicial Bl7
assert isProjective Bl7
assert isWellDefined Bl7
///
-- test 11
TEST ///
rayList = {{1,0,0,0},{0,1,0,0},{0,0,1,0},{0,0,0,1},{0,1,1,1},{1,0,1,-1},
{1,-1,0,1},{1,1,-1,0},{0,0,0,-1},{-1,0,-1,1},{0,-1,0,0},{-1,1,0,-1},
{0,0,-1,0},{-1,-1,1,0}};
coneList = {{0,5},{0,6},{0,7},{1,4},{1,7},{1,11},{2,4},{2,5},{2,13},{3,4},{3,6},
{3,9},{5,8},{6,10},{7,12},{8,9},{10,11},{12,13}};
X = normalToricVariety (rayList,coneList);
assert not isComplete X
///
-- test 12
TEST ///
-- examples provided by Claudiu Raicu, Mike Stillman, and me to illustrate an
-- earlier bug in 'isProjective'
X = normalToricVariety ({{1,2,3},{-1,1,1},{1,-1,1},{-1,-1,1},{1,1,-1},{-1,1,-1},
{1,-1,-1},{-1,-1,-1}},{{0,1,2,3},{0,1,4,5},{0,2,4,6},{1,3,5,7},
{2,3,6,7},{4,5,6,7}});
assert isWellDefined X
assert not isSmooth X
assert not isSimplicial X
assert not isProjective X
assert (nefGenerators X == 0)
Y = normalToricVariety ({{-1,-1,-1,-1},{-1,-1,-1,0},{-1,-1,0,2},{-1,0,-1,-1},
{0,-1,-1,-1},{1,-1,0,-1},{1,2,2,2}},{{0,1,2,5},{0,1,2,6},{0,1,3,5},
{0,1,3,6},{0,2,5,6},{0,3,5,6},{1,2,4,5},{1,2,4,6},{1,3,4,5},
{1,3,4,6},{2,4,5,6},{3,4,5,6}});
assert isWellDefined Y
assert not isSmooth Y
assert isSimplicial Y
assert not isProjective Y
Z = normalToricVariety ({{-1,-1,1},{3,-1,1},{0,0,1},{1,0,1},{0,1,1},{-1,3,1},
{0,0,-1}},{{0,1,3},{0,1,6},{0,2,3},{0,2,5},{0,5,6},{1,3,4},{1,4,5},
{1,5,6},{2,3,4},{2,4,5}});
assert isWellDefined Z
assert isComplete Z
assert isSimplicial Z
assert not isProjective Z
///
-- test 13
TEST ///
-- examples provided by Mike Stillman to illustrate an earlier bug in
-- 'cartierDivisorGroup'
X = normalToricVariety ({{-1,7,-5,-4},{-1,-1,1,1},{-1,-1,3,1},{-1,-1,1,2},
{1,-1,0,0},{-1,3,-2,-1},{-1,-1,2,1},{-1,1,0,0}},{{0,1,4,5},{0,1,4,6},
{0,1,5,7},{0,1,6,7},{0,2,4,5},{0,2,4,6},{0,2,5,7},{0,2,6,7},{1,3,4,5},
{1,3,4,6},{1,3,5,7},{1,3,6,7},{2,3,4,5},{2,3,4,6},{2,3,5,7},{2,3,6,7}});
assert isWellDefined X
assert isSimplicial X
assert (cartierDivisorGroup X == ZZ^8)
assert (weilDivisorGroup X == ZZ^8)
assert isCartier toricDivisor X
assert all (# rays X, i -> isCartier (2*X_i))
assert all (# rays X, i -> not isCartier X_i)
assert all (entries transpose ( (fromCDivToWDiv X) * (nefGenerators X // fromCDivToPic X)),
coeffs -> isNef toricDivisor (coeffs, X))
///
-- test 14
TEST ///
-- first example provided by Chris Eur to illustrate an earlier bug in
-- 'normalToricVariety'
P = convexHull transpose matrix unique permutations {1,1,0,0};
X = normalToricVariety P;
assert isWellDefined X
assert (8 === #rays X)
assert (dim P === dim X)
assert (1 === rank picardGroup X)
Q = convexHull ((transpose matrix unique permutations {1,1,0,0}) || matrix {toList{6:1}});
Y = normalToricVariety Q;
assert isWellDefined Y
assert (dim Q === dim Y)
assert (1 === rank picardGroup Y)
assert (rays X == rays Y)
assert (max X == max X)
///
-- test 15
-- testing toric maps
TEST ///
-- not all lattice maps yield toric maps
X = normalToricVariety({{1,0,0},{0,0,1},{0,0,-1}}, {{0,1},{0,2}});
assert isWellDefined X
Y = normalToricVariety({{0,-1}}, {{0}});
assert isWellDefined Y
f = map(Y, X, matrix{{1,0,0}, {0,1,0}})
assert not isWellDefined f
-- the source not proper but the target is so the map is not proper
FF2 = hirzebruchSurface 2;
PP1 = toricProjectiveSpace 1;
Y = normalToricVariety(rays FF2, drop(max FF2, -1));
assert isWellDefined Y
assert not isComplete Y
f = map(PP1, Y, matrix{{1,0}})
assert isWellDefined f
assert not isProper f
g = map(Y, PP1, matrix{{0},{1}})
assert isWellDefined g
assert isProper g
-- the source and target are both not proper but the map is proper
P1A1 = (affineSpace 1) ** (toricProjectiveSpace 1);
assert isWellDefined P1A1
A1 = affineSpace 1;
h = map(A1, P1A1, matrix{{1,0}})
assert isWellDefined h
assert isProper h
--
X = normalToricVariety({{1,0,0},{0,1,0},{0,0,1},{-1,0,0},{0,0,-1}},{{0,1},{1,2,3},{1,3,4}});
assert isWellDefined X
Y = (toricProjectiveSpace 1) ** (affineSpace 1);
f = map(Y,X,matrix{{1,0,0},{0,1,0}})
assert isWellDefined f
--
X = normalToricVariety({{0,1},{1,0},{0,-1}},{{0,1},{1,2}})
assert isWellDefined X
Y = normalToricVariety({{-1,-1},{1,0},{0,1}},{{0,1},{1,2}})
assert isWellDefined Y
A = id_(ZZ^2)
f = map(Y,X,A)
assert isWellDefined f
assert not isProper f
assert (f == map(Y,X,1))
--
X = normalToricVariety({{0,1},{1,0},{0,-1},{-1,-1}},{{0,1},{1,2},{2,3}})
assert isWellDefined X
Y = normalToricVariety({{-1,-1},{1,0},{0,1}},{{0,1},{1,2}})
assert isWellDefined Y
A = id_(ZZ^2)
f = map(Y,X,A)
assert isWellDefined f
assert isProper f
assert (f == map(Y,X,1))
--
X = normalToricVariety({{1,0,0},{0,1,0},{-1,0,0},{0,0,1},{0,0,-1}},{{0,3},{1,2,3},{1,2,4}})
assert isWellDefined X
Y = normalToricVariety({{1,0},{0,1},{-1,0}},{{0},{1,2}})
assert isWellDefined Y
A = matrix{{1,0,0},{0,1,0}}
f = map(Y,X,A)
assert isWellDefined f
assert not isProper f
--
X = normalToricVariety({{0,-1,0},{1,0,0},{0,1,0},{-1,0,0},{0,0,1},{0,0,-1}},{{0},{1,4},{1,5},{2,3,4},{2,3,5}})
assert isWellDefined X
Y = normalToricVariety({{0,-1},{1,0},{0,1},{-1,0}},{{0},{1},{2,3}})
assert isWellDefined Y
A = matrix{{1,0,0},{0,1,0}}
f = map(Y,X,A)
assert isWellDefined f
assert not isProper f
--
X'' = normalToricVariety({{1,0,0},{0,1,0},{-1,0,0},{0,0,1},{0,0,-1}},{{0,3},{0,4},{1,2,3},{1,2,4}})
assert isWellDefined X
Y' = normalToricVariety({{1,0},{0,1},{-1,0}},{{0},{1,2}})
assert isWellDefined Y
A = matrix{{1,0,0},{0,1,0}}
f = map(Y',X'',A)
assert isWellDefined f
assert isProper f
--
X = normalToricVariety({{-1,1,0},{0,0,1},{0,0,-1}},{{0,1},{0,2}})
Y = normalToricVariety({{0,1},{1,0}},{{0,1}})
A = matrix{{1,1,0},{1,1,0}}
f = map(Y,X,A)
assert isWellDefined f
assert not isProper f
--
X = normalToricVariety({{1,-1,0},{1,1,0},{-1,1,0},{0,0,1}},{{0,1,3},{1,2,3}})
Y = normalToricVariety({{0,1},{1,0}},{{0,1}})
A = matrix{{1,1,0},{1,1,0}}
f = map(Y,X,A)
assert isWellDefined f
assert not isProper f
--
X = normalToricVariety({{1,-1,0},{1,1,0},{-1,1,0},{0,0,1},{0,0,-1}},{{0,1,3},{1,2,3},{0,1,4},{1,2,4}})
Y = normalToricVariety({{0,1},{1,0}},{{0,1}})
A = matrix{{1,1,0},{1,1,0}}
f = map(Y,X,A)
assert isWellDefined f
assert isProper f
///
-- test 16
-- more testing of toric maps
TEST ///
X = normalToricVariety({{1,0}, {0,1}, {-1,-1}}, {{0,1}})
Y = toricProjectiveSpace 1
f = map(Y,X, matrix{{1,0}})
D = toricDivisor({-2,3}, Y)
assert (pullback(f,D) == toricDivisor({3,0,-2},X))
assert (pullback(f,OO D) === OO toricDivisor({3,0,-2},X))
--
PP1 = toricProjectiveSpace 1
X = PP1 ** PP1
f = map(PP1, X, matrix{{1, 0}})
DPP1=toricDivisor({1, 1}, PP1)
assert (pullback(f, DPP1) == toricDivisor({1,1,0,0}, X))
--
AA2 = affineSpace 2;
BlO = toricBlowup({0,1}, AA2)
f = map(AA2, BlO, 1)
DAA2=toricDivisor({1,0},AA2)
assert (pullback(f, DAA2) == toricDivisor({1,0,1},BlO))
assert (pullback(f,OO DAA2) === OO toricDivisor({1,0,1},BlO))
--
Y = weightedProjectiveSpace({1,1,2})
X = normalToricVariety({{1,0},{0,-1},{-1,-2},{-1,0},{0,1}}, {{0,1},{1,2},{2,3},{3,4},{4,0}})
f = map(Y,X, 1)
assert (null == try pullback(f,Y_1))
--
Y = toricProjectiveSpace 2;
X = toricProjectiveSpace 1;
f = map(Y, X, matrix{{1},{1}})
assert (pullback(f,Y_0) == toricDivisor({1,0},X))
g = map(Y, X, matrix{{2},{1}})
assert isWellDefined g
assert (pullback(g, toricDivisor({1,0,1},Y)) == toricDivisor({3,1},X))
--
X = hirzebruchSurface 1;
R = ring X;
PP2 = toricProjectiveSpace 2;
f = map(PP2, X, matrix{{1,0},{0,-1}})
assert isWellDefined f
assert (matrix inducedMap f == matrix{{R_1*R_2, R_0*R_1, R_3}})
D = toricDivisor({1,2,3}, PP2)
assert(pullback(f, OO D) === OO pullback(f, D))
--
AA2 = affineSpace 2;
R = ring AA2;
PP2 = toricProjectiveSpace 2;
f = map(PP2, AA2, 1)
assert isWellDefined f
assert (matrix inducedMap f == matrix{{1,R_0,R_1}})
D = toricDivisor({1,2,3}, PP2);
-- there is only one line bundle on AA2, so there's only one place to go
assert(pullback(f, OO D) === OO pullback(f, D))
///
-- test 17
TEST ///
Y = toricProjectiveSpace 2;
X = hirzebruchSurface 1;
f = map(Y, X, matrix{{1,0},{0,-1}})
assert isWellDefined f
assert isDominant f
assert isSurjective f
--
Y = toricProjectiveSpace 3;
X = affineSpace 3;
f = map(Y, X, matrix{{2,0,0},{1,1,0},{3,1,0}})
assert isWellDefined f
assert not isDominant f
assert not isSurjective f
assert isWellDefined id_Y
assert isDominant id_Y
assert isSurjective id_Y
--
X = affineSpace 2;
Y = normalToricVariety({{1,0,0},{0,1,0}},{{0,1}});
assert isWellDefined Y
f1 = map(X,Y,matrix{{1,0,0},{0,1,0}})
f2 = map(Y,X,matrix{{1,0},{0,1},{0,0}})
assert isWellDefined f1
assert isWellDefined f2
assert isSurjective f1
assert not isSurjective f2
Y = toricProjectiveSpace 2;
f = map(Y,X,matrix{{1,0},{0,1}})
assert isWellDefined f
assert not isSurjective f
--
X = toricProjectiveSpace 1;
Y = toricProjectiveSpace 2;
f = map(Y,X,matrix{{1},{1}});
g = map(Y,X,matrix{{2},{1}});
assert isWellDefined f
assert isWellDefined g
R = ring Y;
assert(ideal f == ideal(R_1-R_2))
assert(ideal g == ideal(R_0*R_1-R_2^2))
--
X = toricProjectiveSpace 1;
Y = hirzebruchSurface 2;
f = map(X,Y,matrix{{1,0}});
fCD = cartierDivisorGroup f;
fPic = picardGroup f;
assert(source fPic == picardGroup target f);
assert(target fPic == picardGroup source f);
assert(source fCD == cartierDivisorGroup target f);
assert(target fCD == cartierDivisorGroup source f);
assert(fPic * fromCDivToPic(X) == fromCDivToPic(Y) * fCD)
--
X = toricProjectiveSpace 2;
Y = hirzebruchSurface (-1);
code (hirzebruchSurface, ZZ)
-- Y is a blowup of X
E = Y_3;
f = map(X,Y,1);
fCD = cartierDivisorGroup f;
assert(fCD*(vector X_0) == vector (Y_2+E))
assert(fCD*(vector X_1) == vector (Y_0+E))
--
n = 3
P = toricProjectiveSpace 3;
f = diagonalToricMap (P,2)
assert isWellDefined f
assert (codim ideal f == n)
///
|