1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399
|
trackProjectiveCertified = method()
trackProjectiveCertified (List,List,List) := List => (S,T,solsS) -> (
-- tracks solutions from start system to target system (robust certified)
-- IN: S = list of polynomials in start system
-- T = list of polynomials in target system
-- solsS = list of solutions to S
-- OUT: solsT = list of target solutions corresponding to solsS
HISTORY := DBG>1;
if #T > 0 then R := commonRing T else error "expected nonempty target system";
if #S != #T then
error "expected same number of polynomials in start and target systems";
if any(S, f->ring f =!= R) or any(T, f->ring f =!= R)
then error "expected all polynomials in the same ring";
n := numgens R;
if not(n == #T+1
-- and all(T, isHomogeneous) and all(S, isHomogeneous) -- bug in isHomogeneous!!!
)
then error "expected n equations in n+1 variables";
deg := T/first@@degree;
if S/first@@degree != deg then error "degrees of start and target systems do not match";
-- M2 (main code) --------------------------------------------------------
setupStartTime := currentTime();
-- thresholds and other tuning parameters (should include most of them as options)
theSmallestNumber := 1e-12;
K := coefficientRing R;
if class K === InexactFieldFamily then error "QQ or Gaussian rationals expected";
if K === QQ then (
I := symbol I;
K = makeQI(); -- THE coefficient ring
R = K[gens R];
S = apply(S,f->sub(f,R));
T = apply(T,f->sub(f,R));
);
solsS = solsS / (s->sub(transpose matrix {toList s}, K)); -- convert to vectors
-- affine patch functions ???
pointToPatch := (x0,p)-> (1/(p*x0)_(0,0))*x0; -- representative for point x0 in patch p
patchEquation := p -> p * transpose vars R - 1;
--dPatch := true; -- not null ???
dPatch := null; -- for now !!!
-- create homotopy
t := local t;
Rt := K(monoid[gens R, t]);
t = last gens Rt;
RtoRt := map(Rt,R,matrix{drop(gens Rt,-1)});
H := matrix {apply(#S, i->(1-t)*(RtoRt S#i)+t*(RtoRt T#i))};
JH := transpose jacobian H;
Hx := JH_(toList(0..n-1));
Ht := JH_{n};
-- here come things we have to compute only once
norm2T := BombieriWeylNormSquaredQI T; -- n1
norm2S := BombieriWeylNormSquaredQI S; -- n2
max'deg := max deg;
W0 := 17/(50000*max'deg^3);
u0 := 17586/100000;
epsilon0 := u0^2/((4*max'deg)^3*(1+9*u0/8)^2);
-- evaluation times
etH := 0;
etHx := 0;
etHt := 0;
specH := t0 -> flatten entries sub(H, vars R | matrix {{t0}});
-- evaluation functions
evalH := (x0,t0)-> (
tr := timing (
r := lift(sub(transpose H, transpose x0 | matrix {{t0}}), K);
if dPatch === null then r
else r || matrix{{0}} -- zero is appended
);
etH = etH + tr#0;
tr#1
);
evalHx := (x0,t0)->(
tr := timing (
r := lift(sub(Hx, transpose x0 | matrix {{t0}}), K);
if dPatch === null then r
else r || matrix { flatten entries dPatch }
);
etHx = etHx + tr#0;
tr#1
);
evalHt := (x0,t0)->(
tr := timing (
r := lift(sub(Ht, transpose x0 | matrix {{t0}}), K);
if dPatch === null then r
else r || matrix {{0_K}}
);
etHt = etHt + tr#0;
tr#1
);
local log'denominator't0; -- stores log_2 denominator t0
compute'dt'epsilon := ( -- local subroutine (relies on evaluation functions)
x0,--z_i
t0 --s_i
) ->
(
H't0 := specH t0; --g_i
H0 := evalH(x0,t0); --v2
norm2H := BombieriWeylNormSquaredQI H't0; --n4
invM := inverse evalHx(x0,t0); --M
cols'invM := entries transpose invM;
norm2x0 := normSquareQI x0;
chiTildeSquare1 := sum(#deg,
i->(normSquareQI cols'invM#i)*(deg#i)*norm2H*norm2x0^(deg#i-1)
) + (normSquareQI last cols'invM)*norm2x0; --a
ReScalarProductTandH't0 := Re BombieriWeylScalarProductQI(T,H't0); --Re <f,g_i>
v3 := norm2H*evalH(x0,1) - ReScalarProductTandH't0*H0; --v3
chiTildeSquare2 := --b
1 +
normSquareQI(
invM
*
v3 --v4
)
/ (norm2x0*( --||z_i||^2
norm2T*norm2H --n1*n4
-
ReScalarProductTandH't0^2 --n5
));
chiTildeSquare := chiTildeSquare1*chiTildeSquare2; --ab
if DBG>1 then << "chiTildeSquare1 = " << toRR chiTildeSquare1
<< ", chiTildeSquare2 = " << toRR chiTildeSquare2 << endl;
W := W0/chiTildeSquare;
L := 1 - W + W^2/6;
U := 1 - W/2;
if DBG>1 then << "U - L = " << toRR (U-L) << "; ||x0|| = " << sqrt norm2x0 <<
"; res1 = " << abs QItoCC H0_(0,0)/(sqrt norm2x0)^max'deg << endl;
-- computation of epsilon
epsilon := epsilon0 / chiTildeSquare1;
if DBG>1 then << "epsilon = " << toRR epsilon << endl;
(-- return pair (dt,epsilon)
pick'dt((norm2H,
Re BombieriWeylScalarProductQI(H't0,T-S),--Re <H't0,T-S>,
BombieriWeylNormSquaredQI(T-S) --||T-S||^2
),L,U,log'denominator't0),
epsilon
)
); -- END compute'dt'epsilon
compStartTime := currentTime();
rawSols := apply(#solsS, sN->(
s := solsS#sN;
s'status := Processing;
if DBG > 2 then << "tracking solution " << toString s << endl;
x0 := s;
t0 := 0;
log'denominator't0 = 0;
count := 1; -- number of computed points
if HISTORY then history := new MutableHashTable from{ count => new MutableHashTable from {
"t"=>t0,"x"=>x0
} };
while s'status === Processing do (
if DBG > 4 then << "--- current t = " << toRR t0 << endl;
dPatch = matrix{ flatten entries x0 / conjugateQI}; -- x0* used in evaluation
(dt,epsilon) := compute'dt'epsilon(x0,t0); -- main work is done here
--debugging code: multiply the representative by 10
--dPatch = matrix{ flatten entries (10*x0) / conjugateQI}; -- x0* used in evaluation
--compute'dt'epsilon(10*x0,t0); -- check independence on a representative
--dPatch = matrix{ flatten entries x0 / conjugateQI}; -- x0* used in evaluation
dx := 0; -- 0-th order predictor
if dt < 0.000001 then error "dt is very small";
if HISTORY then history#count#"dx" = dx;
t1 := min(t0 + dt, 1_QQ);
x1 := x0 + dx;
dx = -inverse(evalHx(x1,t1))*evalH(x1,t1);
x1 = x1 + dx;
x1 = shorterZero(x1,epsilon);
--x1 = roundQI(5,x1); -- round to a few digits!!!
x0 = x1;
--x0 = normalizeQI x1; -- approximate normalization!!!
t0 = t1;
log'denominator't0 = round log_2 denominator t0;
if DBG>1 then (
<< "*** step " << count << " ***: t0 = " << toRR t0 << ", x0 = " << toString x0 << endl;
<< "number of digits in the denominator of t0: " << log'denominator't0 << endl;
);
count = count + 1;
if HISTORY then history#count = new MutableHashTable from {"t"=>t0,"x"=>x0};
if t0 == 1 then s'status = Regular;
);
if DBG > 0 then << (if s'status == Regular then "."
else if s'status == Singular then "S"
else if s'status == MinStepFailure then "M"
else if s'status == Infinity then "I"
else error "unknown solution status"
) << if (sN+1)%100 == 0 then endl else flush;
-- create a solution record
(x0,
NumberOfSteps => count-1, -- number of points - 1
SolutionStatus => s'status,
--ConditionNumber => conditionNumber evalHx(x0,t0),
LastT => t0
) | ( if HISTORY
then sequence new HashTable from history
else sequence ())
));
if DBG>3 then print rawSols;
ret := rawSols/(s->{flatten entries first s} | drop(toList s,1));
if DBG>0 then (
<< "Number of solutions = " << #rawSols << endl;
<< "Average number of steps per path = " << toRR sum(ret,s->s#1#1)/#ret << endl;
if DBG>1 then
<< "Evaluation time (M2 measured): Hx = " << etHx << " ,
Ht = " << etHt << " , H = " << etH << endl;
<< "Setup time: " << compStartTime - setupStartTime << endl;
<< "Computing time:" << currentTime() - compStartTime << endl;
);
apply(ret, s->
if HISTORY then drop(toList s, -1)
else toList s
)
)
-- Gaussian rationals: "QI" = QQ[I]/(I^2+1)
THE'QI := QQ[I]/(I^2+1)
makeQI = method()
makeQI = ()->THE'QI
conjugateQI = method()
conjugateQI RingElement := RingElement => x -> sub(sub(x, matrix{{ -I }}),ring x)
Re = method()
Re ZZ := identity
Re QQ := identity
Re RingElement := RingElement => x -> sub((x + conjugateQI x)/2,QQ)
Im = method()
Im RingElement := RingElement => x -> sub((x - conjugateQI x)/(2*THE'QI_0),QQ)
normSquareQI = method(TypicalValue=>RingElement) -- 2-norm of a vector
normSquareQI List := v -> sub(sum(v, x->x*conjugateQI x),QQ);
normSquareQI Matrix := v -> normSquareQI flatten entries v -- this is Frobenius norm for a matrix
productQI = method()
productQI (List, List) := (a,b) -> sum(#a, i->a#i*conjugateQI b#i)
productQI (Matrix, Matrix) := (a,b) -> productQI(flatten entries a, flatten entries b)
distanceSquareQI = method()
distanceSquareQI (Matrix, Matrix) := (a,b) -> (Re productQI(a,b))^2 / (normSquareQI a * normSquareQI b)
normalizeQI = method(TypicalValue => Matrix) -- normalizes a column vector
normalizeQI Matrix := v -> (1/approxSqrt(normSquareQI v,1/100000))*v
roundQI = method()
roundQI (ZZ, RingElement) := RingElement => (n,x) -> 10^(-n)*(round(10^n*Re x) + round(10^n*Im x)*(ring x)_0)
roundQI (ZZ, Matrix) := Matrix => (n,M) -> matrix apply(entries M, r->apply(r, e->roundQI(n,e)))
QItoQQ = x -> sub(x,QQ)
newCCRing := memoize (R->CC(monoid R))
QItoCC = method()
QItoCC RingElement := RingElement => x -> (
R := ring x;
if R === THE'QI then toRR Re x + ii*(toRR Im x)
else if instance(R, PolynomialRing) then (
CR := coefficientRing R;
newR := newCCRing R;
sum(listForm x, (m,c)->QItoCC c * newR_m)
)
else "error can not convert to complex numbers"
)
QItoCC List := List => L -> L/QItoCC
QItoCC Matrix := Matrix => M -> matrix(M/QItoCC)
floorQQ = method()
floorQQ QQ := ZZ => x -> (numerator x // denominator x) - (if x<0 then 1 else 0)
approxSqrt = method()
approxSqrt(QQ,QQ) := (t,e) -> (
--t' := toQQ(sqrt t);
--if t'^2>=t and t'^2<t*(1+e)^2 then return t'; -- hack!!!
t' := approxSqrtGeqOne(numerator t,e) / approxSqrtGeqOne(denominator t, e/(1-e));
--print (toRR t' - sqrt t);
t'
)
approxSqrtGeqOne = method()
approxSqrtGeqOne(ZZ,QQ) := (t,e) -> (
if t == 0 then return 0;
t0 := t;
t' = (t0 + 1)/2;
while t'^2>t*(1+e)^2 do (
if (floorQQ t')^2 >= t then t' = floorQQ t';
t0 = t';
t' = t0/2 + t/(2*t0);
);
t'
)
-- out: z s.t. ||z-x0|| <= sqrt e and coords of z ar integers of length at most 1 + 3 sqrt((n+1)/e)
shorterZero = method()
shorterZero (Matrix,QQ) := Matrix => (x0,e) -> (
n := numRows x0 - 1;
R := ring x0;
x0'rat := apply(flatten entries x0, c->{Re c, Im c});
m := lcm(flatten flatten x0'rat/denominator@@QItoQQ);
x := m*x0;
x'rat := apply(flatten entries x, c->{Re c, Im c});
norm2x := normSquareQI x;
--1/0;
r := (21/20)^2;
a := 4;
k := 0;
while 2*(n+1)*r*a <= e*norm2x do (
k = k+1;
a = 4*a;
);
z'rat := apply(x'rat,c->apply(c,t->round(2^(-k)*t)));
transpose matrix{apply(z'rat, c->c#0+c#1*R_0)}
)
BombieriWeylScalarProductQI = method()
BombieriWeylScalarProductQI (RingElement,RingElement) := RingElement => (f,g) -> sum(listForm f, a->(
imc := product(a#0, d->d!) / (sum(a#0))!; -- inverse of multinomial coeff
bc := coefficient((ring f)_(first a),g); -- coeff of corresponding monomial in g
imc*a#1*conjugateQI bc
))
BombieriWeylScalarProductQI (List,List) := QQ => (F,G) -> sum(#F, i->BombieriWeylScalarProductQI(F#i,G#i))
BombieriWeylNormSquaredQI = method()
BombieriWeylNormSquaredQI RingElement := QQ => f -> Re sum(listForm f, a->(
imc := product(a#0, d->d!) / (sum(a#0))!; -- inverse of multinomial coeff
imc*a#1*conjugateQI a#1
))
BombieriWeylNormSquaredQI List := QQ => F -> sum(F, f->BombieriWeylNormSquaredQI f)
pick'dt = (abc,L,U,log'denominator't0) -> (
(a,b,c) := abc;
-- solve: (b^2-acU^2)t^2+2ab(1-U^2)+a^2(1-U^2)=0 and the same for L
A := toRR(b^2-a*c*U^2);
B := toRR(2*a*b*(1-U^2));
C := toRR(a^2*(1-U^2));
assert(A<0 and B^2-4*A*C>=0);
--return toQQ( (-B-sqrt(B^2-4*A*C))/(2*A) ); -- hack
if DBG>5 then <<"pick'dt: dt = " << t << endl;
local r;
isPositive := t -> (
tb := t*b;
r = (a+tb)^2 / (a*(a+2*tb+t^2*c));
a+tb > 0 and 4*r > (L+U)^2
);
t1 := 1;
L2 := L^2;
isPositive t1;
if a+b>0 and r>=L2 then t1
else (
U2 := U^2;
t0 := 0;
t2 := (t0+t1)/2;
count := 0; -- the number of bisections
s2 := isPositive t2;
while (L2>r or U2<r) or count<log'denominator't0-1 do (
if s2 then t0 = t2 else t1 = t2;
t2 = (t0+t1)/2;
count = count + 1;
s2 = isPositive t2;
);
if DBG>1 then << "number of bisections: " << count << endl;
t2
)
)
toQQ = method()
toQQ (ZZ,RR) := QQ => (n,t) -> ( -- n=number of binary digits
s := 2^(-round log_2 t + n);
round(s*t) / s
)
toQQ RR := QQ => t -> round (t<<(maxExponent//2))/2^(maxExponent//2)
compute'u0RPc = delta -> (
u0 := 0.17586;
R := sqrt 2;
P := sqrt 2 + sqrt(2+5/8);
a := (2*delta-1)*u0/(sqrt(2)+2*delta*u0);
c':= 1-(1-a)^(P/sqrt 2);
c := (1-(sqrt 2)*u0/2)^(sqrt 2)*c'/(1+(sqrt 2)*u0/2);
(u0,R,P,c)
)
end
-----------------------------------------------------------------
load "certifiedNAG.m2"
(u0,R,P,c) = compute'u0RPc(3/4)
C = R*P/log_10(1+c)
|