File: decomposition.m2

package info (click to toggle)
macaulay2 1.21%2Bds-3
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 133,096 kB
  • sloc: cpp: 110,377; ansic: 16,306; javascript: 4,193; makefile: 3,821; sh: 3,580; lisp: 764; yacc: 590; xml: 177; python: 140; perl: 114; lex: 65; awk: 3
file content (174 lines) | stat: -rw-r--r-- 6,240 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
------------------------------------------------------
-- numerical irreducible decomposition
-- (loaded by  ../NumericalAlgebraicGeometry.m2)
------------------------------------------------------

regeneration = method(TypicalValue=>NumericalVariety, Options =>{Software=>null, Output=>Singular})
regeneration List := List => o -> F -> (
-- solves a system of polynomial Equations via regeneration     
-- IN:  F = list of polynomials
--      Software => {PHCPACK, BERTINI, hom4ps2}
-- OUT: a NumericalVariety
     o = fillInDefaultOptions o;
     
     checkCCpolynomials F;
     F = toCCpolynomials(F,53);
     
     R := ring F#0;
     V := numericalAffineSpace R; -- current solution components
     for f in F do V = hypersurfaceSection(V,f,o); -- intersect with hypersurface	 
     V
     )

TEST /// -- example with a non-reduced component
setRandomSeed 0
R = CC[x,y,z]
sph = (x^2+y^2+z^2-1); 
I = ideal {sph, (x+y+z-1)^2};
result = regeneration I_* -- deflation sequences are supposed to be the same
assert(dim result == 1 and degree result#1#0 == 2)
p = first points result#1#0
assert(numericalRank evaluate(jacobian p.cache.SolutionSystem,p) == 2)
///

-----------------------------------------------------------------------
-- DECOMPOSITION
decompose WitnessSet := {} >> unusedOpts -> (W) -> (
     R := ring W;
     n := numgens R;
     k := dim W;
     eq := equations W;
     which := new MutableHashTable from {}; 
     cs := new MutableList from apply(degree W, i->(which#i = i; {i})); -- current components
     i'cs := {}; -- certified irreducible components
     for i from 0 to #cs-1 do if linearTraceTest(W, cs#i) then (i'cs = i'cs | {cs#i}; cs#i = {}) ;
     --sorted'cs := MutableList toList(0..deg W - 1); -- list of numbers of components sorted by degree (small to large)
     -- -1 indicates no component 
     mergeComponents := (c,c') -> (
	  cs#c = cs#c | cs#c';
	  cs#c' = {};
	  );	     	
     findComponent := (pt) -> ( 
	 for i to #cs-1  do (
	     if any(cs#i, p->areEqual((points W)#p,pt)) 
	     then return i; 
	     );
	 return null 
	 );
     done := all(new List from cs, c->#c==0);
     n'misses := 0;
     while not done do (
	  while (c := random(#cs); #cs#c == 0) do (); -- vvv
	  p := cs#c#(random(#(cs#c))); -- pick a component/point (rewrite!!!)
	  S := eq | slice W;	  
	  while (
	      T := sliceEquations(randomSlice(k,n),R); 
	      pt' := first movePoints(W, slice W, T, {(W.Points)#p}, Software=>M2engine);
	      status pt' =!= Regular
	      ) 
	  do (); 
	  pt := first movePoints(W, T, slice W, {pt'}, Software=>M2engine);
	  if (c' :=  findComponent pt) === null then error "point outside of any current component";
	  if c' == c then n'misses = n'misses + 1
	  else ( 
	       mergeComponents(c,c');
	       if linearTraceTest(W, cs#c) then (i'cs = i'cs | {cs#c}; cs#c = {});  
	       n'misses = 0 );
	  done = all(new List from cs, c->#c==0) or n'misses > 30;
	  );
     incomplete := select(new List from cs, c->#c!=0);
     if #incomplete>0 then print "-- decompose: some witness points were not classified";
     irred := apply(i'cs, c->witnessSet(W.Equations, W.Slice, (W.Points)_c));
     scan(irred, c->c.cache.IsIrreducible = true);
     irred | if #incomplete == 0 then {} 
             else {
		 witnessSet(
		     W.Equations, 
		     W.Slice, 
		     (W.Points)_(flatten(incomplete))
		     )
		 }
     ) 

linearTraceTest = method() -- check linearity of trace to see if component is irreducible
linearTraceTest (WitnessSet, List) := (W,c) -> (
-- IN: W = witness superset, 
--     c = list of integers (witness points subset)
-- OUT: do (points W)_c represent an irreducible component?
     if dim W == 0 then return true;
     w := (W.Points)_c;
     proj := random(CC^(numgens ring W), CC^1); 
     three'samples := apply(3, i->(
	       local r;
	       w' := (
		    if i == 0 then (
 			-- !!! better to NOT use the existing slice
			r = W.Slice_(dim W - 1, numgens ring W);
			w 
			)
		    else (
	       	    	 M := new MutableMatrix from W.Slice;
		    	 M_(dim W - 1, numgens ring W) = r = random CC; -- replace last column
		    	 movePoints(W, slice W, sliceEquations(matrix M,ring W), w, Software=>M2engine) 
	       	    	 ) );
	       {1, r, sum flatten entries (matrix (w'/coordinates) * proj)} 
               ));
     if DBG>2 then (
	  print matrix three'samples;
     	  print det matrix three'samples;
	  );
     abs det matrix three'samples < DEFAULT.Tolerance  -- points are (approximately) on a line
     )  

TEST ///
setRandomSeed 0
R = CC[x,y]
F = {x^2+y^2-1, x*y};
result = components regeneration F 
assert(#result==1 and degree first result == 4 and dim first result == 0)

--example with a reduced scheme (no singular points)
setRandomSeed 0
R = CC[x,y,z]
sph = (x^2+y^2+z^2-1); 
I = ideal {sph*(x-1)*(y-x^2), sph*(y-2)*(z-x^3)};
result = components regeneration I_*
assert(#result==2 and result/degree == {7,2} and result/dim == {1,2})

--example with 4 double points (same deflation sequence)
-- NAGtrace 3
R = CC[x,y,z];
sph = (x^2+y^2+z^2-1); 
I = ideal {sph*(y-x^2), sph*(z-x^3), (x+y+z-1)^2}; -- ^3 fails
for i to 5 do (
    print setRandomSeed i;
    result = components regeneration I_*;
    assert(#result==2 and result/degree == {3,2} and result/dim == {0,1})
    )
///


numericalIrreducibleDecompositionM2 = (I,o) -> numericalVariety flatten (components regeneration (I_*,Software=>M2engine) / decompose)
numericalIrreducibleDecomposition = method(Options=>{Software=>null})
numericalIrreducibleDecomposition Ideal := o -> I -> (
    o = fillInDefaultOptions o;   
    ( 
	if o.Software === BERTINI 
    	then numericalIrreducibleDecompositionBertini 
    	else if o.Software === PHCPACK 
    	then numericalIrreducibleDecompositionPHCpack 
    	else if member(o.Software,{M2,M2engine})  
	then numericalIrreducibleDecompositionM2
    	else error "allowed values for Software: M2engine, M2, BERTINI, PHCPACK"
    	) (I,o)
    )

TEST /// -- example with one nonreduced component
setRandomSeed 0
R = CC[x,y,z]
sph = (x^2+y^2+z^2-1); 
I = ideal {sph*(x-1)*(y-x^2), sph*(y-1)*(z-x^3)};
V = numericalIrreducibleDecomposition I 
assert(#V#1==4 and sort(V#1/degree) == {1, 1, 1, 3} and #V#2==1 and degree first V#2 == 2)
///