| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 
 | ------------------------------------------------------
-- deflation and numerical rank
-- (loaded by  ../NumericalAlgebraicGeometry.m2)
------------------------------------------------------
export { "deflate", 
    "SolutionSystem", "Deflation", "DeflationRandomMatrix", "liftPointToDeflation", 
    "deflateAndStoreDeflationSequence", "DeflationSequence", "DeflationSequenceMatrices",
    "LiftedPoint", "LiftedSystem", "SquareUp"
    }
deflate = method(Options=>{Variable=>null})
-- creates and stores (if not stored already) a deflated system and the corresponding random matrix 
-- returns the deflation rank
deflate (PolySystem, AbstractPoint) := o -> (F,P) -> (
    J := evaluate(jacobian F, P);
    r := numericalRank J;
    deflate(F,r,o);
    r
    )	
-- creates and stores (if not stored already) 
-- returns a deflated system for rank r
deflate (PolySystem, ZZ) := o -> (F,r) -> (
    if not F.?Deflation then (
	F.Deflation = new MutableHashTable;
	F.DeflationRandomMatrix = new MutableHashTable;
	);
    if not F.Deflation#?r then (
	C := coefficientRing ring F;
	B := random(C^(F.NumberOfVariables),C^(r+1));
    	deflate(F,B,o);
	); 
    F.Deflation#r
    )
-- deflate using a matrix 
deflate(PolySystem, Matrix) := o -> (F,B) -> (
    if not F.?Deflation then (
	F.Deflation = new MutableHashTable;
	F.DeflationRandomMatrix = new MutableHashTable;
	);
    r := numcols B - 1;
    L := if o.Variable === null then symbol L else o.Variable;
    C := coefficientRing ring F;
    R := C (monoid [gens ring F, L_1..L_r]);
    LL := transpose matrix{ take(gens R, -r) | {1_C} };
    RFtoR := map(R, ring F);
    F.Deflation#r = polySystem (RFtoR F.PolyMap || (RFtoR jacobian F)*B*LL);
    F.DeflationRandomMatrix#r = B; 
    F.Deflation#r
    )
-- deflate using a pair of matrices: one for deflation, the other for squaring up 
deflate(PolySystem, Sequence) := o -> (F,BM) -> (
    (B,M) := BM;
    FD := deflate(F,B,o); -- passing non-null option may not work!!!
    squareUp(FD,M)
    )
-- deflate according to the sequence of matrices (or pairs of matrices if squaring up)
deflate(PolySystem, List) := o -> (F, seq) -> (
    scan(seq, B -> F = deflate(F,B,o)); -- here B is either a Matrix or (Matrix,Matrix)
    F
    )
-- deflation ideal
deflate Ideal := o -> I -> (
    C := coefficientRing ring I;
    F := polySystem transpose gens I;
    B := map C^(F.NumberOfVariables) | map(C^(F.NumberOfVariables),C^1,0);
    ideal deflate(F,B,o)
    )
liftPointToDeflation = method() 
-- approximates the coordinates corresponding to the augmented deflation variables
-- for the deflation of F of rank r
liftPointToDeflation (AbstractPoint,PolySystem,ZZ) := (P,F,r) -> (
    if F.NumberOfVariables == (F.Deflation#r).NumberOfVariables then P
    else (
    	A := evaluate(jacobian F, P)*(F.DeflationRandomMatrix#r);
    	last'column := numColumns A-1; 
    	point {
	    coordinates P | 
	    flatten entries solve(submatrix'(A,{last'column}),-submatrix(A,{last'column}),ClosestFit=>true)
	    }
	) 
    )
   
TEST ///
C=CC_200
C[x,y,z]
F = polySystem {x^3,y^3,x^2*y,z^2}
P0 = point sub(matrix{{0.000001, 0.000001*ii,0.000001-0.000001*ii}},C)
assert not isFullNumericalRank evaluate(jacobian F,P0)
r1 = deflate (F,P0)
P1' = liftPointToDeflation(P0,F,r1) 
F1 = F.Deflation#r1
P1 = newton(F1,P1')
assert not isFullNumericalRank evaluate(jacobian F1,P1)
r2 = deflate (F1,P1)
P2' = liftPointToDeflation(P1,F1,r2) 
F2 = F1.Deflation#r2
P2 = newton(F2,P2')
assert isFullNumericalRank evaluate(jacobian F2,P2)
P = point {take(coordinates P2, F.NumberOfVariables)}
assert(residual(F,P) < 1e-50)
NP2 = newton(F2,P2)
NNP2 = newton(F2,NP2)
assert(P2.cache.ErrorBoundEstimate^2 > NP2.cache.ErrorBoundEstimate)
///
deflateAndStoreDeflationSequence = method(Options=>{SquareUp=>true})
deflateAndStoreDeflationSequence(AbstractPoint,PolySystem) := o -> (P,F) -> (
    P0 := P;
    F0 := F;
    d'seq := {}; -- deflation sequence: a sequence of matrices used for deflation
    d'seq'mat := {}; -- ... corresponding matrices      
    assert isSolution(P,F);
    if (status P =!= Regular or (not P.?SolutionSystem) or P.SolutionSystem =!= F) then
    while not isFullNumericalRank evaluate(jacobian F0,P0) do (
	r := deflate (F0,P0);
	d'seq = d'seq | {r};
	new'mat'or'pair := F0.DeflationRandomMatrix#r;
	P0' := liftPointToDeflation(P0,F0,r); 
	F0 = F0.Deflation#r; 
	if o.SquareUp then (
	    F0' := squareUp F0;
	    new'mat'or'pair = (new'mat'or'pair, squareUpMatrix F0);
	    F0 = F0';
	    );
	d'seq'mat = d'seq'mat | {new'mat'or'pair}; 
	P0 = newton(F0,P0');
	);
    P = point{take(coordinates P0, F.NumberOfVariables)};
    if #d'seq>0 then P.cache.ErrorBoundEstimate = P0.cache.ErrorBoundEstimate;
    P.cache.DeflationSequence = d'seq;
    P.cache.DeflationSequenceMatrices = d'seq'mat;
    P.cache.SolutionSystem = F;
    P.cache.LiftedSystem = P0.cache.SolutionSystem = F0;
    P.cache.LiftedPoint = P0;
    P.cache.SolutionStatus = if #d'seq > 0 then Singular else Regular;
    P
    )
TEST ///
setRandomSeed 1
C=CC_200
C[x,y,z]
F = polySystem {x^3,y^3,x^2*y,z*(z-1)^2}
P = point sub(matrix{{0.000001, 0.000001*ii,1.000001-0.000001*ii}},C)
P = deflateAndStoreDeflationSequence(P,F)
assert(P.cache.DeflationSequence == {0,1})
assert(10-*a not too large constant*-*P.cache.ErrorBoundEstimate^2 > (newton(P.cache.LiftedSystem,P.cache.LiftedPoint)).cache.ErrorBoundEstimate)
///
partitionViaDeflationSequence = method()
partitionViaDeflationSequence (List,PolySystem) := (pts,F) -> (
    H := new MutableHashTable;
    for p in pts do (
	if not p.cache.?DeflationSequence or p.cache.SolutionSystem =!= F 
	then p = deflateAndStoreDeflationSequence(p,F);
	ds := p.cache.DeflationSequence;
	if H#?ds then H#ds = H#ds | {p}
	else H#ds = {p}; 
	);
    values H
    )
TEST ///
C=CC_200
C[x,y,z]
F = polySystem {x^3,y^3,x^2*y,z*(z^2-1)^2}
e = 0.0000001
pts = {
    point sub(matrix{{e, e*ii,e-e*ii}},C),
    point sub(matrix{{e, e*ii,1+e-e*ii}},C),
    point sub(matrix{{e, e*ii,-1-e-e*ii}},C)
    }    
debug NumericalAlgebraicGeometry
partitionViaDeflationSequence(pts,F)
///
--------------------------------
-- OLD deflation
--------------------------------
///
dMatrix = method()
dMatrix (List,ZZ) := (F,d) -> dMatrix(ideal F, d)
dMatrix (Ideal,ZZ) := (I, d) -> (
-- deflation matrix of order d     
     R := ring I;
     v := flatten entries vars R;
     n := #v;
     ind := toList((n:0)..(n:d)) / toList;
     ind = select(ind, i->sum(i)<=d and sum(i)>0);
     A := transpose diff(matrix apply(ind, j->{R_j}), gens I);
     scan(select(ind, i->sum(i)<d and sum(i)>0), i->(
	       A = A || transpose diff(matrix apply(ind, j->{R_j}), R_i*gens I);
	       ));
     A
     )
dIdeal = method()
dIdeal (Ideal, ZZ) := (I, d) -> (
-- deflation ideal of order d     
     R := ring I;
     v := gens R;
     n := #v;
     ind := toList((n:0)..(n:d)) / toList;
     ind = select(ind, i->sum(i)<=d and sum(i)>0);
     A := dMatrix(I,d);
     newvars := apply(ind, i->getSymbol("x"|concatenate(i/toString)));
     S := (coefficientRing R)[newvars,v]; 
     sub(I,S) + ideal(sub(A,S) * transpose (vars S)_{0..#ind-1})
     )	   
deflatedSystem = method()
deflatedSystem(Ideal, Matrix, ZZ, ZZ) := memoize (
(I, M, r, attempt) -> (
-- In: gens I = the original (square) system   
--     M = deflation matrix
--     r = numerical rank of M (at some point)
-- Out: (square system of n+r equations, the random matrix SM)
     R := ring I;
     n := numgens R;
     SM := randomOrthonormalCols(numcols M, r+1);
     d := local d;
     S := (coefficientRing R)(monoid[gens R, d_0..d_(r-1)]);
     DF := sub(M,S)*sub(SM,S)*transpose ((vars S)_{n..n+r-1}|matrix{{1_S}}); -- new equations
     --print DF;     
     (
	  flatten entries squareUp ( sub(transpose gens I,S) || DF ),
	  SM
	  )
     )
) -- END memoize
liftSolution = method(Options=>{Tolerance=>null}) -- lifts a solution s to a solution of a deflated system dT (returns null if unsuccessful)
liftSolution(List, List) := o->(s,dT)->liftSolution(s, transpose matrix{dT},o)
liftSolution(List, Matrix) := o->(c,dT)->(
     R := ring dT;
     n := #c;
     N := numgens R;
     if N<=n then error "the number of variables in the deflated system is expected to be larger"; 
     newVars := (vars R)_{n..N-1};
     specR := (coefficientRing R)(monoid[flatten entries newVars]);
     dT0 := (map(specR, R, matrix{c}|vars specR)) dT;
     ls := first solveSystem flatten entries squareUpSystem dT0; -- here a linear system is solved!!!     
     if status ls =!= Regular then return null;
     ret := c | coordinates ls;
     -- if norm sub(dT, matrix{ret}) < o.Tolerance * norm matrix{c} then ret else null
     ret
     ) 
///
 |