1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875
|
newPackage("NumericalImplicitization",
Headline => "numerical invariants of images of varieties",
AuxiliaryFiles => true,
Version => "2.2.0",
Date => "November 24, 2020",
Authors => {
{Name => "Justin Chen",
Email => "justin.chen@math.gatech.edu",
HomePage => "https://people.math.gatech.edu/~jchen646/"},
{Name => "Joe Kileel",
Email => "jkileel@math.princeton.edu",
HomePage => "https://web.math.princeton.edu/~jkileel/"}
},
Keywords => {"Numerical Algebraic Geometry"},
PackageExports => {"NumericalAlgebraicGeometry"},
Certification => {
"journal name" => "The Journal of Software for Algebra and Geometry",
"journal URI" => "http://j-sag.org/",
"article title" => "Numerical implicitization",
"acceptance date" => "11 April 2019",
"published article URI" => "https://msp.org/jsag/2019/9-1/p07.xhtml",
"published article DOI" => "10.2140/jsag.2019.9.55",
"published code URI" => "https://msp.org/jsag/2019/9-1/jsag-v9-n1-x07-NumericalImplicitization.m2",
"repository code URI" => "http://github.com/Macaulay2/M2/blob/master/M2/Macaulay2/packages/NumericalImplicitization.m2",
"release at publication" => "2f801d123692462f4a65ccb135d411be425c28bd", -- git commit number in hex
"version at publication" => "2.1.0",
"volume number" => "9",
"volume URI" => "https://msp.org/jsag/2019/9-1/"
}
)
export {
"numericalSourceSample",
"numericalImageSample",
"numericalEval",
"numericalNullity",
"Precondition",
"SVDGap",
"numericalImageDim",
"numericalHilbertFunction",
"ConvertToCone",
"NumericalInterpolationTable",
"hilbertFunctionArgument",
"hilbertFunctionValue",
"UseSLP",
"imagePoints",
"interpolationBasis",
"interpolationSVD",
"interpolationMatrix",
"extractImageEquations",
"AttemptZZ",
"numericalImageDegree",
"pseudoWitnessSet",
"DoRefinements",
"DoTraceTest",
"MaxAttempts",
"MaxPoints",
"MaxThreads",
"Repeats",
"TraceThreshold",
-- "Endgame",
"PseudoWitnessSet",
"isCompletePseudoWitnessSet",
"sourceEquations",
"sourceSlice",
"generalCombinations",
"imageSlice",
"witnessPointPairs",
"isOnImage",
"realPoint",
"optimizeNelderMead",
"lineSearch",
"Initial"
}
-- Point sampling code
load "NumericalImplicitization/approxPoint.m2"
-- software options: default is M2engine throughout
NumericalInterpolationTable = new Type of HashTable
NumericalInterpolationTable.synonym = "numerical interpolation table"
globalAssignment NumericalInterpolationTable
net NumericalInterpolationTable := T -> (
(net ofClass class T | ", indicating") ||
("the space of degree " | (toString T.hilbertFunctionArgument) |
" forms in the ideal of the image has dimension " | (toString T.hilbertFunctionValue))
)
PseudoWitnessSet = new Type of HashTable
PseudoWitnessSet.synonym = "pseudo-witness set"
globalAssignment PseudoWitnessSet
net PseudoWitnessSet := W -> (
(net ofClass class W | ", indicating") ||
("the image has degree " | (toString W.degree))
)
checkRings = method(Options => {symbol ConvertToCone => false})
-- checks if the rings of F and I agree and have floating point arithmetic, and converts F, I, pts to the affine cone if ConvertToCone is false
checkRings (Matrix, Ideal, List) := Sequence => opts -> (F, I, pts) -> (
k := coefficientRing ring I;
if not numrows F == 1 then error "Expected map to be given by a 1-row matrix of polynomials";
if not ring F === ring I then error "Expected same rings for ideal and map";
if not instance(class(1_k), InexactFieldFamily) then error "Expected coefficient field with floating point arithmetic";
if opts.ConvertToCone then (
JJ := getSymbol "JJ";
S := k(monoid[append(gens ring I, JJ)]);
toS := map(S, ring I);
((last gens S)*(toS F | matrix{{1_S}}), toS(I), pts/(p -> point{append(p#Coordinates, 1_k)}))
) else (F, I, pts)
)
numericalSourceSample = method(Options => {Software => M2engine})
numericalSourceSample (Ideal, Thing, ZZ) := List => opts -> (I, W, sampleSize) -> (
R := ring I;
if I == 0 then ( k := coefficientRing R; return (entries random(k^(sampleSize), k^(#gens R)))/(p -> {p})/point; );
-- samplePoints := if instance(W, Point) and not I.cache.?WitnessSet then (
-- d := first numericalDimensions(vars R, I, W);
-- squaredUpSource := randomSlice(gens I, #gens R - d, {});
-- startSys := squaredUpSource | randomSlice(vars R, d, {W, "source"});
-- flatten apply(sampleSize, i -> track(startSys, squaredUpSource | randomSlice(vars R, d, {}), {W}, opts))) -- track not reliable, often fails
if instance(opts.Software, FunctionClosure) then return apply(sampleSize, i -> (opts.Software) I);
if not I.cache.?WitnessSet then I.cache.WitnessSet = if instance(W, WitnessSet) then W else first components(numericalIrreducibleDecomposition(I, opts));
samplePoints := apply(sampleSize, i -> sample I.cache.WitnessSet);
if precision R <= precision ring samplePoints#0#Coordinates#0 then samplePoints else refine(polySystem(I_*), samplePoints, Bits => precision R)
)
numericalSourceSample (Ideal, WitnessSet) := List => opts -> (I, W) -> numericalSourceSample(I, W, 1, opts)
numericalSourceSample (Ideal, Point) := List => opts -> (I, p) -> numericalSourceSample(I, p, 1, opts)
numericalSourceSample (Ideal, ZZ) := List => opts -> (I, sampleSize) -> numericalSourceSample(I, null, sampleSize, opts)
numericalSourceSample Ideal := List => opts -> I -> numericalSourceSample(I, 1, opts)
numericalImageSample = method(Options => options numericalSourceSample)
numericalImageSample (Matrix, Ideal, List, ZZ) := List => opts -> (F, I, pts, sampleSize) -> (
samplePoints := if #pts > 0 then numericalSourceSample(I, pts#0, sampleSize-#pts, opts) else numericalSourceSample(I, sampleSize, opts);
numericalEval(F, samplePoints, false) /point
)
numericalImageSample (Matrix, Ideal, ZZ) := List => opts -> (F, I, sampleSize) -> numericalImageSample(F, I, {}, sampleSize, opts)
numericalImageSample (Matrix, Ideal) := List => opts -> (F, I) -> numericalImageSample(F, I, {}, 1, opts)
numericalImageSample (List, Ideal, List, ZZ) := List => opts -> (F, I, pts, sampleSize) -> numericalImageSample(matrix{F}, I, pts, sampleSize, opts)
numericalImageSample (List, Ideal, ZZ) := List => opts -> (F, I, sampleSize) -> numericalImageSample(matrix{F}, I, {}, sampleSize, opts)
numericalImageSample (List, Ideal) := List => opts -> (F, I) -> numericalImageSample(matrix{F}, I, {}, 1, opts)
numericalImageSample (RingMap, Ideal, List, ZZ) := List => opts -> (F, I, pts, sampleSize) -> numericalImageSample(F.matrix, I, pts, sampleSize, opts)
numericalImageSample (RingMap, Ideal, ZZ) := List => opts -> (F, I, sampleSize) -> numericalImageSample(F.matrix, I, {}, sampleSize, opts)
numericalImageSample (RingMap, Ideal) := List => opts -> (F, I) -> numericalImageSample(F.matrix, I, {}, 1, opts)
numericalEval = method()
numericalEval (Matrix, List, Boolean) := List => (F, upstairsPoints, includeUpstairs) -> ( -- returns a list of either matrices, or pairs of the form (Point, Matrix)
evalPts := upstairsPoints/(p -> (p, sub(F, matrix p)));
if includeUpstairs then evalPts else evalPts/last
)
numericalDimensions = method(Options => options numericalSourceSample)
numericalDimensions (Matrix, Ideal, Point) := List => opts -> (F, I, p) -> ( --outputs {dim(V(I)), dim(F(V(I))}
(F, I, p) = checkRings(F, I, {p});
p0 := 1/norm(2, matrix p#0)*(matrix p#0);
dF := sub(transpose jacobian F, p0);
if I == 0 then return {#gens ring I, #gens ring I - numericalNullity(dF, false)};
sourceJacobian := sub(transpose jacobian I, p0);
sourceDim := numericalNullity(sourceJacobian, false);
{sourceDim, sourceDim - numericalNullity(sourceJacobian || dF, false)}
)
numericalDimensions (Matrix, Ideal) := ZZ => opts -> (F, I) -> numericalDimensions(F, I, first numericalSourceSample(I, Software => opts.Software), opts)
numericalImageDim = method(Options => options numericalSourceSample)
numericalImageDim (Matrix, Ideal, Point) := ZZ => opts -> (F, I, p) -> last numericalDimensions(F, I, p, opts)
numericalImageDim (Matrix, Ideal) := ZZ => opts -> (F, I) -> last numericalDimensions(F, I, opts)
numericalImageDim (List, Ideal, Point) := ZZ => opts -> (F, I, p) -> last numericalDimensions(matrix{F}, I, p, opts)
numericalImageDim (List, Ideal) := ZZ => opts -> (F, I) -> last numericalDimensions(matrix{F}, I, opts)
numericalImageDim (RingMap, Ideal, Point) := ZZ => opts -> (F, I, p) -> last numericalDimensions(F.matrix, I, p, opts)
numericalImageDim (RingMap, Ideal) := ZZ => opts -> (F, I) -> last numericalDimensions(F.matrix, I, opts)
-- converts M to a list of 1-element lists of row matrices (to normalize rows easily)
-- listForm satisfies M == matrix listForm M (if numrows M, numcols M > 0), and this conversion is fast
listForm Matrix := A -> apply(entries A, r -> {matrix{r}})
rowScale := (L, s) -> matrix flatten apply(L, r -> if r#0 == 0 then {} else {(s/norm(2,r#0))*r}) -- deletes any zero rows
-- doubleScale := L -> transpose rowScale((entries transpose rowScale(L,1))/(r -> {matrix{r}}), sqrt(#L/(numcols(L#0#0))))
numericalNullity = method(Options => {symbol SVDGap => 1e5, Verbose => false, symbol Precondition => false})
numericalNullity (List, Boolean) := List => opts -> (M, keepSVD) -> (
if matrix M == 0 then return if keepSVD then {numcols M#0#0, 0} else numcols M#0#0;
if opts.Verbose then print "Performing normalization preconditioning ...";
T := timing A := if opts.Precondition then rowScale(M, 1) else matrix M;
if opts.Verbose then print(" -- used " | toString(T#0) | " seconds");
if opts.Verbose then print "Computing numerical kernel ...";
T = timing (S, U, Vt) := SVD A; -- do not use DivideConquer => true!
if opts.Verbose then print(" -- used " | toString(T#0) | " seconds");
largestGap := (#S, opts.SVDGap);
for i from 1 to #S-1 do (
if S#i == 0 then ( largestGap = (i, "infinity"); break; )
else if S#(i-1)/S#i > last largestGap then ( largestGap = (i, S#(i-1)/S#i); break; );
);
if keepSVD then {numcols A - first largestGap, (S, U, Vt)} else numcols A - first largestGap
)
numericalNullity (Matrix, Boolean) := ZZ => opts -> (M, keepSVD) -> if numrows M == 0 then numcols M else numericalNullity(listForm M, keepSVD, opts)
numericalNullity Matrix := ZZ => opts -> M -> numericalNullity(M, false, opts)
debug needsPackage "SLPexpressions"
monomialGate = method()
monomialGate (RingElement, List, List) := ProductGate => (m, varList, expList) -> (
productGate flatten apply(#gens ring m, i -> apply(expList#i, j -> varList#i))
)
monomialGate (RingElement, List) := ProductGate => (m, varList) -> monomialGate(m, varList, first exponents m)
makeInterpolationMatrix = method()
makeInterpolationMatrix (Matrix, List) := List => (mons, pts) -> (
X := apply(#gens ring mons, i -> inputGate ("x"|i));
Y := matrix{apply(flatten entries mons, m -> monomialGate(m, X))};
-- E := makeEvaluator(Y, matrix{X});
E := makeSLProgram(matrix{X}, Y);
out := mutableMatrix(ring pts#0, numrows Y, numcols Y);
apply(pts/mutableMatrix, p -> (
evaluate(E, p, out);
{matrix out}
))
)
numericalHilbertFunction = method(Options => {
symbol ConvertToCone => false,
symbol Precondition => true,
Software => M2engine,
symbol SVDGap => 1e5,
symbol UseSLP => false,
Verbose => true})
numericalHilbertFunction (Matrix, Ideal, List, ZZ) := NumericalInterpolationTable => opts -> (F, I, sampleImagePoints, d) -> ( --outputs a degree d interpolation table for F(V(I))
(F, I, sampleImagePoints) = checkRings(F, I, sampleImagePoints, ConvertToCone => opts.ConvertToCone);
y := getSymbol "y";
allMonomials := basis(d, (coefficientRing ring I)(monoid[y_0..y_(numcols F-1)]));
N := numcols allMonomials;
if #sampleImagePoints < N then (
if opts.Verbose then print "Sampling image points ...";
T := timing sampleImagePoints = sampleImagePoints | numericalImageSample(F, I, sampleImagePoints, N, Software => opts.Software);
if opts.Verbose then print(" -- used " | toString(T#0) | " seconds");
);
sampleImagePoints = apply(sampleImagePoints/matrix, p -> 1/norm(2,p)*p);
if opts.Verbose then print "Creating interpolation matrix ...";
T = timing A := if opts.UseSLP then makeInterpolationMatrix(allMonomials, sampleImagePoints) else apply(sampleImagePoints, p -> {sub(allMonomials, p)});
if opts.Verbose then print(" -- used " | toString(T#0) | " seconds");
interpolationData := numericalNullity(A, true, Precondition => opts.Precondition, SVDGap => opts.SVDGap, Verbose => opts.Verbose);
new NumericalInterpolationTable from {
symbol hilbertFunctionArgument => d,
symbol hilbertFunctionValue => first interpolationData,
symbol imagePoints => VerticalList sampleImagePoints,
symbol interpolationBasis => allMonomials,
symbol interpolationSVD => last interpolationData,
symbol interpolationMatrix => matrix A,
symbol map => F
}
)
numericalHilbertFunction (Matrix, Ideal, ZZ) := NumericalInterpolationTable => opts -> (F, I, d) -> numericalHilbertFunction(F, I, {}, d, opts)
numericalHilbertFunction (List, Ideal, List, ZZ) := NumericalInterpolationTable => opts -> (F, I, sampleImagePoints, d) -> numericalHilbertFunction(matrix{F}, I, sampleImagePoints, d, opts)
numericalHilbertFunction (List, Ideal, ZZ) := NumericalInterpolationTable => opts -> (F, I, d) -> numericalHilbertFunction(matrix{F}, I, {}, d, opts)
numericalHilbertFunction (RingMap, Ideal, List, ZZ) := NumericalInterpolationTable => opts -> (F, I, sampleImagePoints, d) -> numericalHilbertFunction(F.matrix, I, sampleImagePoints, d, opts)
numericalHilbertFunction (RingMap, Ideal, ZZ) := NumericalInterpolationTable => opts -> (F, I, d) -> numericalHilbertFunction(F.matrix, I, {}, d, opts)
realPartMatrix := A -> matrix apply(entries A, r -> r/realPart)
imPartMatrix := A -> if class ring A === RealField then 0 else matrix apply(entries A, r -> r/imaginaryPart)
extractImageEquations = method(Options => {symbol Threshold => 5, symbol AttemptZZ => false})
extractImageEquations NumericalInterpolationTable := Matrix => opts -> T -> (
n := opts.Threshold;
(V, mons) := (last T.interpolationSVD, T.interpolationBasis);
A := clean(10.0^(-n), conjugate transpose V^{numrows V-T.hilbertFunctionValue..numrows V-1});
if not opts.AttemptZZ === false then (
if opts.AttemptZZ === 2 then (
B := if class ring A === ComplexField then matrix table(numrows A, numcols A, (i,j) -> matrix{{realPart A_(i,j),imaginaryPart A_(i,j)}}) else A;
C := matrix apply(entries B, r -> r/(e -> lift(round(10^(1+n)*round(n, e)), ZZ)));
D := submatrix(LLL(C), numcols A..numcols C-1);
E := mons*colReduce(sub(D, ring mons), 10.0^(-n));
) else (
A = T.interpolationMatrix;
B = random(RR)*realPartMatrix A + random(RR)*imPartMatrix A;
C = matrix apply(entries B, r -> r/(e -> lift(round(10^(1+n)*round(n, e)), ZZ)));
D = submatrix(LLL(id_(ZZ^(numcols C)) || C), toList (0..<numcols mons), toList(0..<T.hilbertFunctionValue));
E = mons*sub(D, ring mons);
);
val := sub(E, T.imagePoints#0);
if clean(10.0^(-n), val) != 0 then (
<< "Warning: some of the integer equations may be inexact. Their values at a sample image point are " << val << endl;
);
E
) else mons*sub(A, ring mons)
)
extractImageEquations (Matrix, Ideal, ZZ) := Matrix => opts -> (F, I, d) -> extractImageEquations(numericalHilbertFunction(F, I, d), opts)
extractImageEquations (List, Ideal, ZZ) := Matrix => opts -> (F, I, d) -> extractImageEquations(numericalHilbertFunction(matrix{F}, I, d), opts)
extractImageEquations (RingMap, Ideal, ZZ) := Matrix => opts -> (F, I, d) -> extractImageEquations(numericalHilbertFunction(F.matrix, I, d), opts)
round (ZZ, ZZ) := ZZ => (n, x) -> x
round (ZZ, CC) := CC => (n, x) -> round(n, realPart x) + ii*round(n, imaginaryPart x)
round (ZZ, BasicList) := BasicList => (n, L) -> L/round_n
round (ZZ, Matrix) := Matrix => (n, M) -> matrix(entries M/round_n)
round (ZZ, RingElement) := RingElement => (n, f) -> (
C := coefficients f;
((C#0)*round(n, lift(C#1, coefficientRing ring f)))_(0,0)
)
pseudoWitnessSet = method(Options => {
symbol DoRefinements => false,
symbol DoTraceTest => true,
symbol MaxAttempts => 5,
symbol MaxPoints => infinity,
symbol MaxThreads => 1,
Software => M2engine,
symbol Repeats => 3,
symbol TraceThreshold => 1e-5,
symbol Threshold => 5,
-- symbol Endgame => false,
Verbose => true})
pseudoWitnessSet (Matrix, Ideal, List, Thing) := PseudoWitnessSet => opts -> (F, I, pointPairs, sliceMatrix) -> ( --outputs a pseudo-witness set for F(V(I))
local imagePointString, local pairTable, local startSystem;
y := getSymbol "y";
k := coefficientRing ring I;
targetRing := k(monoid[y_1..y_(numcols F)]);
if #pointPairs == 0 then error "Expected source point";
sourcePoint := pointPairs#0#0;
dims := numericalDimensions(F, I, sourcePoint);
numAttempts := 0;
traceResult := opts.TraceThreshold + 1;
(fiberSlice, fiberdim) := ({}, first dims - last dims);
while not traceResult < opts.TraceThreshold and numAttempts < opts.MaxAttempts do (
if numAttempts > 0 then sourcePoint = first numericalSourceSample(I, sourcePoint, Software => opts.Software);
pullbackSlice := if sliceMatrix === null then randomSlice(F, last dims, {sourcePoint, "source"}) else (
if numAttempts == 0 and not all(pointPairs, pair -> clean((10.0)^(-opts.Threshold), sub(sliceMatrix, matrix pair#0)) == 0) then error "Expected input points to lie on input slice";
flatten entries sliceMatrix
);
squaredUpSource := if I == 0 then {} else randomSlice(gens I, #gens ring I - first dims, {});
if fiberdim > 0 then (
fiberSlice = randomSlice(vars ring I, fiberdim, {sourcePoint, "source"});
if numAttempts == 0 and #pointPairs > 1 then pointPairs = numericalEval(F, {sourcePoint} | flatten apply(toList(1..#pointPairs-1), i -> (
codimSlice := randomSlice(F - sub(matrix pointPairs#i#1, ring F), first dims - fiberdim, {});
localFiberSlice := codimSlice | squaredUpSource | randomSlice(vars ring I, fiberdim, {pointPairs#i#0, "source"});
globalFiberSlice := codimSlice | squaredUpSource | fiberSlice;
myTrack(localFiberSlice, globalFiberSlice, {pointPairs#i#0})
)), true);
);
newStartSystem := squaredUpSource | fiberSlice | pullbackSlice;
newPairs := if numAttempts > 0 then numericalEval(F, myTrack(startSystem, newStartSystem, (values pairTable)/first, opts), true) else pointPairs/(pair -> (pair#0, matrix pair#1));
if #newPairs == 0 then (
if opts.Verbose then print "Failed to track old points to new slice. Retrying...";
numAttempts = numAttempts + 1;
continue;
);
pairTable = new MutableHashTable;
for pair in newPairs do (
imagePointString = toString round(opts.Threshold, last pair);
if not pairTable#?imagePointString then pairTable#imagePointString = pair;
);
startSystem = newStartSystem;
pointPairs = monodromyLoop(F, last dims, startSystem, pairTable, opts);
if not opts.DoTraceTest then break;
if opts.DoRefinements then (
if opts.Verbose then print "Refining solutions...";
pointPairs = numericalEval(F, refine(startSystem, pointPairs/first, Bits => precision ring I), true);
);
if opts.Verbose then print("Running trace test ...");
traceResult = traceTest(F, last dims, pointPairs, startSystem, opts);
if not traceResult < opts.TraceThreshold and opts.Verbose then print("Failed trace test! Trace: " | toString traceResult);
numAttempts = numAttempts + 1;
);
if opts.Verbose then (
if traceResult > opts.TraceThreshold then (
print("Degree of image should be at least " | #pointPairs);
print("Consider changing parameters (Repeats, MaxAttempts, Threshold) or reparametrizing for a better result.");
-- Alternatively, consider increasing precision (e.g. changing ground field to CC_100).
);
);
new PseudoWitnessSet from {
symbol isCompletePseudoWitnessSet => traceResult < opts.TraceThreshold,
symbol degree => #pointPairs,
symbol map => F,
symbol sourceEquations => I,
symbol generalCombinations => matrix{squaredUpSource},
symbol sourceSlice => matrix{fiberSlice},
symbol imageSlice => matrix{pullbackSlice},
symbol witnessPointPairs => VerticalList apply(pointPairs, pair -> (pair#0, point pair#1)),
symbol trace => traceResult
}
)
pseudoWitnessSet(Matrix, Ideal, Point) := PseudoWitnessSet => opts -> (F, I, p) -> (
(F, I, p) = checkRings(F, I, {p});
pseudoWitnessSet(F, I, numericalEval(F, p, true), null, opts)
)
pseudoWitnessSet (Matrix, Ideal) := PseudoWitnessSet => opts -> (F, I) -> (
if opts.Verbose then print "Sampling point in source ...";
pseudoWitnessSet(F, I, first numericalSourceSample I, opts)
)
pseudoWitnessSet(List, Ideal, List, Thing) := PseudoWitnessSet => opts -> (F, I, pointPairs, L) -> pseudoWitnessSet(matrix{F}, I, pointPairs, L, opts)
pseudoWitnessSet(List, Ideal, Point) := PseudoWitnessSet => opts -> (F, I, p) -> pseudoWitnessSet(matrix{F}, I, p, opts)
pseudoWitnessSet (List, Ideal) := PseudoWitnessSet => opts -> (F, I) -> pseudoWitnessSet(matrix{F}, I, opts)
pseudoWitnessSet(RingMap, Ideal, List, Thing) := PseudoWitnessSet => opts -> (F, I, pointPairs, L) -> pseudoWitnessSet(F.matrix, I, pointPairs, L, opts)
pseudoWitnessSet(RingMap, Ideal, Point) := PseudoWitnessSet => opts -> (F, I, p) -> pseudoWitnessSet(F.matrix, I, p, opts)
pseudoWitnessSet (RingMap, Ideal) := PseudoWitnessSet => opts -> (F, I) -> pseudoWitnessSet(F.matrix, I, opts)
numericalImageDegree = method(Options => options pseudoWitnessSet)
numericalImageDegree PseudoWitnessSet := ZZ => opts -> W -> W.degree
numericalImageDegree (Matrix, Ideal) := ZZ => opts -> (F, I) -> (pseudoWitnessSet(F, I, opts)).degree
numericalImageDegree (List, Ideal) := ZZ => opts -> (F, I) -> (pseudoWitnessSet(matrix{F}, I, opts)).degree
numericalImageDegree (RingMap, Ideal) := ZZ => opts -> (F, I) -> (pseudoWitnessSet(F.matrix, I, opts)).degree
myTrack = method(Options => options pseudoWitnessSet)
myTrack (List, List, List) := List => opts -> (startSystem, targetSystem, startSolutions) -> (
k := coefficientRing ring startSystem#0;
randomGamma := random k;
if #startSolutions > max(10, 2*opts.MaxThreads) and opts.MaxThreads > 1 then ( -- prints many errors, but continues to run
--setIOExclusive(); -- buggy: causes isReady to indefinitely hang
startSolutionsList := pack(ceiling(#startSolutions/opts.MaxThreads), startSolutions);
threadList := {};
for paths in startSolutionsList do (
threadList = append(threadList, schedule(x -> timing track x, (startSystem, targetSystem, paths, gamma => randomGamma, Software => opts.Software)));
);
while not all(threadList, isReady) do sleep 1;
results := delete(null, threadList/taskResult);
targetSolutions := flatten(results/last);
if opts.Verbose then print("Finished tracking " | #targetSolutions | " paths in parallel, in " | toString sum(results/first) | " seconds");
) else ( -- if startSolutions is empty then error is thrown!
T := timing targetSolutions = track(startSystem, targetSystem, startSolutions, gamma => randomGamma, Software => opts.Software);
if opts.Verbose and T#0 > 1 then print (" -- used " | toString(T#0) | " seconds");
);
goodSols := select(targetSolutions, p -> p.cache#?SolutionStatus and status p == Regular);
if opts.Verbose and #goodSols < #startSolutions then print("Paths going to infinity: " | #startSolutions - #goodSols | " out of " | #startSolutions);
if opts.DoRefinements then goodSols = apply(refine(polySystem targetSystem, goodSols, Bits => precision k), p -> point sub(matrix p, k));
goodSols
)
randomSlice = method() -- returns a list of c random linear combinations of polys (row matrix) passing through (optional source or target) point, via translation
randomSlice (Matrix, ZZ, List) := List => (polys, c, pointData) -> (
R := ring polys;
coeffs := random(R^(numcols polys), R^c);
G := polys*coeffs;
flatten entries(G - if #pointData == 0 then 0 else sub(if pointData#1 == "source" then sub(G, matrix pointData#0) else (matrix pointData#0)*coeffs, R))
)
monodromyLoop = method(Options => options pseudoWitnessSet)
monodromyLoop (Matrix, ZZ, List, MutableHashTable) := List => opts -> (F, imageDim, startSystem, pairTable) -> (
numRepetitiveMonodromyLoops := 0;
numPts := {#values pairTable};
if opts.Verbose then print "Tracking monodromy loops ...";
while numRepetitiveMonodromyLoops < opts.Repeats do (
intermediateSystem1 := drop(startSystem, -imageDim) | randomSlice(F | matrix{{10_(ring F)}}, imageDim, {});
startSols := (values pairTable)/first;
-- increment := if opts.Endgame and #startSols > 100 and #numPts > 5 and all((firstDifference firstDifference numPts)_{-3..-1}, d -> d < 0) then (
-- startSols = startSols_(randomInts(#startSols, max(100, #startSols//10)));
-- 1/4
-- ) else 1;
intermediateSolutions1 := myTrack(startSystem, intermediateSystem1, startSols, opts);
if #intermediateSolutions1 > 0 then (
endSolutions := myTrack(intermediateSystem1, startSystem, intermediateSolutions1, opts);
if #endSolutions > 0 then (
candidatePairs := numericalEval(F, endSolutions, true);
for pair in candidatePairs do (
imagePointString := toString round(opts.Threshold, last pair);
if not pairTable#?imagePointString then pairTable#imagePointString = pair;
);
);
);
if numPts#-1 < #values pairTable then numRepetitiveMonodromyLoops = 0
else numRepetitiveMonodromyLoops = numRepetitiveMonodromyLoops + 1;
numPts = append(numPts, #values pairTable);
if opts.Verbose then print ("Points found: " | numPts#-1);
if numPts#-1 >= opts.MaxPoints then break;
);
values pairTable
)
traceTest = method(Options => options pseudoWitnessSet)
traceTest (Matrix, ZZ, List, List) := RR => opts -> (F, imageDim, intersectionPointPairs, startSystem) -> (
C := coefficientRing ring F;
startUpstairsPoints := intersectionPointPairs/first;
startDownstairsPoints := intersectionPointPairs/last;
for translationMagnitude in {0,1,3,2,-1,5,-2,6} do (
randomTranslation := 10^(translationMagnitude)*flatten entries(map(C^1, C^(#startSystem - imageDim), 0) | random(C^1, C^imageDim));
gammas := {random C, random C};
firstStepSystem := startSystem + (first gammas)*randomTranslation;
secondStepSystem := startSystem + (last gammas)*randomTranslation;
firstStepUpstairsPoints := myTrack(startSystem, firstStepSystem, startUpstairsPoints, opts);
if #firstStepUpstairsPoints == #startUpstairsPoints then (
secondStepUpstairsPoints := myTrack(startSystem, secondStepSystem, startUpstairsPoints, opts);
if #secondStepUpstairsPoints == #startUpstairsPoints then (
firstStepDownstairsPoints := numericalEval(F, firstStepUpstairsPoints, false);
secondStepDownstairsPoints := numericalEval(F, secondStepUpstairsPoints, false);
traceList := (1/first gammas)*(firstStepDownstairsPoints - startDownstairsPoints) - (1/last gammas)*(secondStepDownstairsPoints - startDownstairsPoints);
return norm(2,sum traceList);
);
);
);
infinity
)
isOnImage = method(Options => {
MaxThreads => 1,
Software => M2engine,
Threshold => 5,
Verbose => true})
isOnImage (PseudoWitnessSet, Point) := Boolean => opts -> (W, q) -> (
q = matrix q;
if not W.isCompletePseudoWitnessSet then print "Warning: not a complete pseudo-witness set! May return false negative.";
F := W.map;
I := W.sourceEquations;
if not ring q === coefficientRing ring I then error "Point must have coordinates in the coefficient ring of the ideal.";
fiberSlice := flatten entries W.sourceSlice;
pullbackSlice := flatten entries W.imageSlice;
squaredUpSource := flatten entries W.generalCombinations;
startUpstairsPoints := W.witnessPointPairs /first;
newPullbackSlice := randomSlice(F, #pullbackSlice, {q, "target"});
targetUpstairsPoints := myTrack(squaredUpSource | fiberSlice | pullbackSlice, squaredUpSource | fiberSlice | newPullbackSlice, startUpstairsPoints, opts);
imagePointTable := hashTable apply(numericalEval(F, targetUpstairsPoints, false), p -> round(opts.Threshold, p) => 0);
imagePointTable#?(round(opts.Threshold, q))
)
isOnImage (Matrix, Ideal, Point) := Boolean => opts -> (F, I, q) -> isOnImage(pseudoWitnessSet(F, I, opts), q, opts)
isOnImage (List, Ideal, Point) := Boolean => opts -> (F, I, q) -> isOnImage(matrix{F}, I, q, opts)
isOnImage (RingMap, Ideal, Point) := Boolean => opts -> (F, I, q) -> isOnImage(F.matrix, I, q, opts)
isWellDefined NumericalInterpolationTable := Boolean => T -> (
-- CHECK DATA STRUCTURE
-- CHECK KEYS
K := keys T;
expectedKeys := set {
symbol hilbertFunctionArgument,
symbol hilbertFunctionValue,
symbol imagePoints,
symbol interpolationBasis,
symbol interpolationSVD,
symbol interpolationMatrix,
symbol map
};
if set K =!= expectedKeys then (
if debugLevel > 0 then (
added := toList(K - expectedKeys);
missing := toList(expectedKeys - K);
if #added > 0 then << "-- unexpected key(s): " << toString added << endl;
if #missing > 0 then << "-- missing keys(s): " << toString missing << endl;
);
return false
);
-- CHECK TYPES
if not instance(T.hilbertFunctionArgument, ZZ) then (
if debugLevel > 0 then << "-- expected `hilbertFunctionArgument' to be an integer" << endl;
return false
);
if not instance(T.hilbertFunctionValue, ZZ) then (
if debugLevel > 0 then << "-- expected `hilbertFunctionValue' to be an integer" << endl;
return false
);
if not instance(T.map, Matrix) then (
if debugLevel > 0 then << "-- expected `map' to be a matrix" << endl;
return false
);
if not instance(T.interpolationBasis, Matrix) then (
if debugLevel > 0 then << "-- expected `interpolationBasis' to be a matrix" << endl;
return false
);
if not instance(T.interpolationMatrix, Matrix) then (
if debugLevel > 0 then << "-- expected `interpolationMatrix' to be a matrix" << endl;
return false
);
if not instance(T.interpolationSVD, Sequence) then (
if debugLevel > 0 then << "-- expected `interpolationSVD' to be a sequence" << endl;
return false
);
if not instance(first T.interpolationSVD, List) then (
if debugLevel > 0 then << "-- expected first element of `interpolationSVD' to be a list" << endl;
return false
);
if not all(first T.interpolationSVD, s -> instance(s, RR)) then (
if debugLevel > 0 then << "-- expected first element of `interpolationSVD' to be a list of singular values" << endl;
return false
);
if not all(drop(T.interpolationSVD, 1), M -> instance(M, Matrix)) then (
if debugLevel > 0 then << "-- expected second and third elements of `interpolationSVD' to be matrices" << endl;
return false
);
-- CHECK MATHEMATICAL STRUCTURE
if not unique flatten last degrees T.interpolationBasis === {T.hilbertFunctionArgument} then (
if debugLevel > 0 then << ("-- expected `interpolationBasis' to consist of monomials of degree " | T.hilbertFunctionArgument) << endl;
return false
);
if not all({coefficientRing ring T.interpolationBasis, ring(T.interpolationSVD#2)}/class, C -> C === ComplexField) then (
if debugLevel > 0 then << "-- expected ground field to be complex numbers" << endl;
return false
);
numMonomials := binomial(numcols T.map + T.hilbertFunctionArgument - 1, T.hilbertFunctionArgument);
if not #gens ring T.interpolationBasis === numcols T.map or not numcols T.interpolationBasis === numMonomials then (
if debugLevel > 0 then << ("-- expected `interpolationBasis' to have " | numMonomials | " monomials in " | #T.map | " variables") << endl;
return false
);
true
)
isWellDefined PseudoWitnessSet := Boolean => W -> (
-- CHECK DATA STRUCTURE
-- CHECK KEYS
K := keys W;
expectedKeys := set {
symbol isCompletePseudoWitnessSet,
symbol degree,
symbol map,
symbol sourceEquations,
symbol sourceSlice,
symbol generalCombinations,
symbol imageSlice,
symbol witnessPointPairs,
symbol trace
};
if set K =!= expectedKeys then (
if debugLevel > 0 then (
added := toList(K - expectedKeys);
missing := toList(expectedKeys - K);
if #added > 0 then << "-- unexpected key(s): " << toString added << endl;
if #missing > 0 then << "-- missing keys(s): " << toString missing << endl;
);
return false
);
-- CHECK TYPES
if not instance(W.isCompletePseudoWitnessSet, Boolean) then (
if debugLevel > 0 then << "-- expected `isCompletePseudoWitnessSet' to be a Boolean" << endl;
return false
);
if not instance(W.degree, ZZ) then (
if debugLevel > 0 then << "-- expected `degree' to be an integer" << endl;
return false
);
if not instance(W.map, Matrix) then (
if debugLevel > 0 then << "-- expected `map' to be a matrix" << endl;
return false
);
if not instance(W.sourceEquations, Ideal) then (
if debugLevel > 0 then << "-- expected `sourceEquations' to be an ideal" << endl;
return false
);
if not instance(W.sourceSlice, Matrix) then (
if debugLevel > 0 then << "-- expected `sourceSlice' to be a matrix" << endl;
return false
);
if not instance(W.generalCombinations, Matrix) then (
if debugLevel > 0 then << "-- expected `generalCombinations' to be a matrix" << endl;
return false
);
if not instance(W.imageSlice, Matrix) then (
if debugLevel > 0 then << "-- expected `imageSlice' to be a matrix" << endl;
return false
);
if not instance(W.witnessPointPairs, List) then (
if debugLevel > 0 then << "-- expected `witnessPointPairs' to be a list" << endl;
return false
);
if not all(W.witnessPointPairs, pair -> instance(pair, Sequence)) then (
if debugLevel > 0 then << "-- expected `witnessPointPairs' to be a list of sequences" << endl;
return false
);
if not all(W.witnessPointPairs, pair -> all(pair, p -> instance(p, Point))) then (
if debugLevel > 0 then << "-- expected `witnessPointPairs' to be a list of sequences of points" << endl;
return false
);
if not instance(W.trace, RR) then (
if debugLevel > 0 then << "-- expected `trace' to be a real number" << endl;
return false
);
-- CHECK MATHEMATICAL STRUCTURE
R := ring W.sourceEquations;
if not R === ring W.map then (
if debugLevel > 0 then << "-- expected `map' and `sourceEquations' to have the same ring" << endl;
return false
);
if not instance(class 1_(coefficientRing R), InexactFieldFamily) then (
if debugLevel > 0 then << "-- expected ground field to have floating point arithmetic" << endl;
return false
);
if not all(W.witnessPointPairs, pair -> #(pair#0#Coordinates) === #gens R and #(pair#1#Coordinates) === numcols W.map) then (
if debugLevel > 0 then << "-- number of coordinates in `witnessPointPairs' do not match" << endl;
return false
);
if not all(W.witnessPointPairs/first, p -> clean(1e-5, sub(gens W.sourceEquations, matrix p)) == 0) then (
if debugLevel > 0 then << " -- expected first components of `witnessPointPairs' to satisfy `sourceEquations'" << endl;
return false
);
if not all(W.witnessPointPairs, pair -> clean(1e-5, matrix last pair - sub(W.map, matrix first pair)) == 0) then (
if debugLevel > 0 then << " -- expected components `witnessPointPairs' to correspond under `map'" << endl;
return false
);
if not all(W.witnessPointPairs/first/matrix, p -> clean(1e-5, sub(W.imageSlice, p)) == 0) then (
if debugLevel > 0 then << " -- expected second components of `witnessPointPairs' to lie on `imageSlice'" << endl;
return false
);
true
)
beginDocumentation()
load "NumericalImplicitization/doc.m2"
load "NumericalImplicitization/tests.m2"
end--
restart
needsPackage "NumericalImplicitization"
loadPackage("NumericalImplicitization", Reload => true)
uninstallPackage "NumericalImplicitization"
installPackage "NumericalImplicitization"
installPackage("NumericalImplicitization", RemakeAllDocumentation => true)
viewHelp "NumericalImplicitization"
check "NumericalImplicitization"
-- Defaults: 10 in monodromyLoop for affine term, 20 in myTrack (for parallelization), {0,1,3,2,-1,5,-2,6} for translationMagnitude in traceTest
-- Future: Alpha-certify option, improvements to interpolation (using non-monomial bases, Jacobi SVD)
-- Guarantee correct number of sample points, starting from initial point p
goodPts = {}
sampleSize = 100
eps = 1e-10
elapsedTime while #goodPts < sampleSize do (
q = first numericalSourceSample(I, p);
if q#?SolutionStatus and q#SolutionStatus === Regular and clean(eps, sub(gens I, matrix q)) == 0 then goodPts = goodPts | {q};
)
-- high degree rational normal curve
R = CC[s,t],; F = basis(40,R); I = ideal 0_R;
numericalImageDim(F, I)
time tests = toList(1..100)/(i -> pseudoWitnessSet(F,I,Repeats=>2,Verbose=>false));
-- Generic Pinched Veronese
R = CC[x_0..x_3]
F = toList(1..5)/(i -> random(10,R));
allowableThreads = maxAllowableThreads
pseudoWitnessSet(F,ideal 0_R,Repeats=>2)
-- Trifocal variety
R=CC[a00,a01,a02,a03,a10,a11,a12,a13,a20,a21,a22,a23,b10,b11,b12,b13,b20,b21,b22,b23],;A = transpose genericMatrix(R,a00,4,3),;B = matrix{{0,0,0,1},{b10,b11,b12,b13},{b20,b21,b22,b23}},;C = matrix{{1_R,0,0,0},{0,1,0,0},{0,0,1,0}},;M = A||B||C,;F = flatten flatten apply(3, i-> apply(3, j-> apply(reverse subsets(3,2), k->det submatrix(M,{i}|{j+3}|(k+{6,6}) , ) ) ));
allowableThreads = 4
elapsedTime pseudoWitnessSet(F,ideal 0_R,Repeats=>2,MaxThreads=>allowableThreads)
-- Tensor product surface
(a,b) = (3,1)
R=CC[s,t,u,v, Degrees=>{{1,0},{1,0},{0,1},{0,1}}]
Ix=intersect(ideal(s,u),ideal(t,v))
B=super basis({a,b},Ix)
C=matrix{{1_R,1,0,0,0,0},{0,1,1,0,0,0},{0,0,1,1,0,0},{0,0,0,1,1,1}}
F = C*transpose(B)
I = ideal 0_R
numericalImageDim(F,I)
W = pseudoWitnessSet(F,I)
T = numericalHilbertFunction(F,I,W.degree)
extractImageEquations(T, AttemptZZ => true)
-- Undirected graphical model on 4 variables
setRandomSeed 0
loadPackage "GraphicalModels"
G = graph({1,2,3,4},{{1,2},{1,3},{2,3},{3,4}})
R = CC[x_(1,1),x_(1,2),x_(1,4),x_(2,2),x_(2,4),x_(3,3),x_(3,4),x_(4,4)]
M = matrix{{x_(1,1),x_(1,2),0,x_(1,4)},{x_(1,2),x_(2,2),0,x_(2,4)},{0,0,x_(3,3),x_(3,4)},{x_(1,4),x_(2,4),x_(3,4),x_(4,4)}}
F = flatten(for i from 1 to 4 list (
for j from i to 4 list (
det(submatrix'(M, {i-1}, {j-1}))
)
))
I = ideal 0_R
numericalImageDim(F, I)
pseudoWitnessSet(F, I, Repeats => 2)
T = numericalHilbertFunction(F, I, 2)
extractImageEquations(T, AttemptZZ => true)
-- Check approximate equations:
T = numericalHilbertFunction(F, ideal 0_R, 2);
E = extractImageEquations(T, AttemptZZ => true);
all((toList T.imagePoints)/(p -> clean(1e-11, sub(E, toList(0..<#(p#Coordinates))/(i -> (gens ring E)#i => (p#Coordinates)#i)))), v -> v == 0)
--------------- Implicitization Challenge + variants
-- (line) secant of (P^1)^n in P^31, n = 5: degree 3256
n = 5
R = CC[a_1..a_n,b_1..b_n,s,t];
F = s*(terms product apply(toList(1..n), i-> 1 + a_i)) + t*(terms product apply(toList(1..n), i-> 1 + b_i));
allowableThreads = maxAllowableThreads
time W = pseudoWitnessSet(F, ideal 0_R, Repeats => 1)
elapsedTime W = pseudoWitnessSet(F, ideal 0_R, Repeats => 1, MaxThreads => allowableThreads)
-- Challenge: Hadamard square of line secant of (P^1)^4 in P^15, degree 110, passed in 188.084 seconds
t = symbol t;
n = 4
R = CC[a_1..a_n,b_1..b_n, c_1..c_n, d_1..d_n,t_0..t_3];
F1 = t_0*(terms product apply(toList(1..n), i->(1 + a_i))) + t_1*(terms product apply(toList(1..n), i->(1 + b_i)));
F2 = t_2*(terms product apply(toList(1..n), i->(1 + c_i))) + t_3*(terms product apply(toList(1..n), i->(1 + d_i)));
F = apply(toList(0..15), i -> F1#i * F2#i);
allowableThreads = maxAllowableThreads
time W = pseudoWitnessSet(F, ideal 0_R, Repeats => 1, MaxThreads => allowableThreads)
-- precision tests
R = CC_54[s,t]; I = ideal 0_R; W = pseudoWitnessSet(basis(3, R), I)
toList W.witnessPointPairs /first/(p -> p#Coordinates )/first/ring
prec = 500
setDefault(Precision => prec)
R = CC_prec[s,t]; I = ideal 0_R; F = basis(3, R);
W = pseudoWitnessSet(F, I)
R = CC[s,t]; F = basis(4, R); I = ideal 0_R
T = numericalHilbertFunction(F, I, 2)
A = matrix T.interpolationMatrix
prec = 5
printingPrecision = 16
setDefault(Precision => prec)
R = CC_prec[x_0..x_3]
R = CC[x_0..x_2]
I = ideal random(R^1,R^{-2,-3})
I = ideal(random(2,R), random(3,R))
F = random(R^1,R^{3:-3})
F = matrix{toList(1..3)/(i -> random(3,R))}
d = 18
-- ConvertToCone tests
R = CC[x_1..x_5]
F = vars R
I = ideal(x_1*x_2^2 - x_3^2, x_1*x_4^2 - x_5^2)
elapsedTime I.cache.WitnessSet = first components numericalIrreducibleDecomposition I
time pseudoWitnessSet(F,I)
F = (gens R)_(toList(0,1,2))
I = ideal(x_1-x_3*x_4,x_2-x_3*x_5,x_4*x_5-1)
-- SO(5)
n = 5
R = CC[x_0..x_(n^2-1)]
A = genericMatrix(R,n,n)
I = ideal(A*transpose A - id_(R^n));
F = vars R
p = point id_((coefficientRing R)^n)
q = first numericalSourceSample(I, p)
allowableThreads = 4
elapsedTime PW = pseudoWitnessSet(F,I,p,Threshold=>3,MaxThreads=>allowableThreads, MaxPoints=>384) -- passed in 153.496 seconds
-- Dim challenge example
jacI=(d,l,n)->(S=CC[x_(0,1)..x_(n,l),c_0..c_(binomial(l,n)-1)];R= S[X_0..X_n];
M=for i from 1 to l list matrix{toList (x_(0,i)..x_(n,i))};
H=for b in(for i from 0 to#subsets(M,n)-1 list for a in(subsets(M,n))_i list{a})
list matrix b;
P=for t from 0 to #H-1 list for j from 0 to n list(-1)^(j)*(minors(n,H_t))_(n-j);
F=sum for i from 0 to #P-1 list c_(i)*(sum for j from 0 to n list P_i_j*X_j)^d;
I=transpose substitute((coefficients F)#1,S))
t=13
time F = jacI(t,t+1,2);
time numericalImageDim(F, ideal 0_S)
|