File: NumericalImplicitization.m2

package info (click to toggle)
macaulay2 1.21%2Bds-3
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 133,096 kB
  • sloc: cpp: 110,377; ansic: 16,306; javascript: 4,193; makefile: 3,821; sh: 3,580; lisp: 764; yacc: 590; xml: 177; python: 140; perl: 114; lex: 65; awk: 3
file content (875 lines) | stat: -rw-r--r-- 44,085 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
newPackage("NumericalImplicitization",
    Headline => "numerical invariants of images of varieties",
    AuxiliaryFiles => true,
    Version => "2.2.0",
    Date => "November 24, 2020",
    Authors => {
        {Name => "Justin Chen",
	 Email => "justin.chen@math.gatech.edu",
         HomePage => "https://people.math.gatech.edu/~jchen646/"},
        {Name => "Joe Kileel",
	 Email => "jkileel@math.princeton.edu",
	 HomePage => "https://web.math.princeton.edu/~jkileel/"}
        },
    Keywords => {"Numerical Algebraic Geometry"},
    PackageExports => {"NumericalAlgebraicGeometry"},
    Certification => {	
	"journal name" => "The Journal of Software for Algebra and Geometry",	
	"journal URI" => "http://j-sag.org/",	
	"article title" => "Numerical implicitization",	
	"acceptance date" => "11 April 2019",	
	"published article URI" => "https://msp.org/jsag/2019/9-1/p07.xhtml",	
	"published article DOI" => "10.2140/jsag.2019.9.55",	
	"published code URI" => "https://msp.org/jsag/2019/9-1/jsag-v9-n1-x07-NumericalImplicitization.m2",	
	"repository code URI" => "http://github.com/Macaulay2/M2/blob/master/M2/Macaulay2/packages/NumericalImplicitization.m2",	
	"release at publication" => "2f801d123692462f4a65ccb135d411be425c28bd",	    -- git commit number in hex	
	"version at publication" => "2.1.0",	
	"volume number" => "9",	
	"volume URI" => "https://msp.org/jsag/2019/9-1/"	
	}
    )
    export {
        "numericalSourceSample",
        "numericalImageSample",
	"numericalEval",
        "numericalNullity",
        "Precondition",
	"SVDGap",
        "numericalImageDim",
        "numericalHilbertFunction",
        "ConvertToCone",
	"NumericalInterpolationTable",
        "hilbertFunctionArgument",
        "hilbertFunctionValue",
        "UseSLP",
        "imagePoints",
        "interpolationBasis",
        "interpolationSVD",
        "interpolationMatrix",
	"extractImageEquations",
        "AttemptZZ",
	"numericalImageDegree",
	"pseudoWitnessSet",
        "DoRefinements",
	"DoTraceTest",
        "MaxAttempts",
	"MaxPoints",
	"MaxThreads",
	"Repeats",
        "TraceThreshold",
        -- "Endgame",
	"PseudoWitnessSet",
        "isCompletePseudoWitnessSet",
        "sourceEquations",
        "sourceSlice",
        "generalCombinations",
        "imageSlice",
        "witnessPointPairs",
	"isOnImage",
        "realPoint",
        "optimizeNelderMead",
        "lineSearch",
        "Initial"
    }

-- Point sampling code
load "NumericalImplicitization/approxPoint.m2"
    
-- software options: default is M2engine throughout

NumericalInterpolationTable = new Type of HashTable
NumericalInterpolationTable.synonym = "numerical interpolation table"
globalAssignment NumericalInterpolationTable
net NumericalInterpolationTable := T -> (
    	(net ofClass class T | ", indicating") ||
	("the space of degree " | (toString T.hilbertFunctionArgument) | 
        " forms in the ideal of the image has dimension " | (toString T.hilbertFunctionValue))
)

PseudoWitnessSet = new Type of HashTable
PseudoWitnessSet.synonym = "pseudo-witness set"
globalAssignment PseudoWitnessSet
net PseudoWitnessSet := W -> (
    	(net ofClass class W | ", indicating") ||
	("the image has degree " | (toString W.degree))
)


checkRings = method(Options => {symbol ConvertToCone => false})
-- checks if the rings of F and I agree and have floating point arithmetic, and converts F, I, pts to the affine cone if ConvertToCone is false
checkRings (Matrix, Ideal, List) := Sequence => opts -> (F, I, pts) -> (
    k := coefficientRing ring I;
    if not numrows F == 1 then error "Expected map to be given by a 1-row matrix of polynomials";
    if not ring F === ring I then error "Expected same rings for ideal and map";
    if not instance(class(1_k), InexactFieldFamily) then error "Expected coefficient field with floating point arithmetic";
    if opts.ConvertToCone then (
        JJ := getSymbol "JJ";
        S := k(monoid[append(gens ring I, JJ)]);
        toS := map(S, ring I);
        ((last gens S)*(toS F | matrix{{1_S}}), toS(I), pts/(p -> point{append(p#Coordinates, 1_k)}))
    ) else (F, I, pts)
)


numericalSourceSample = method(Options => {Software => M2engine})
numericalSourceSample (Ideal, Thing, ZZ) := List => opts -> (I, W, sampleSize) -> (
    R := ring I;
    if I == 0 then ( k := coefficientRing R; return (entries random(k^(sampleSize), k^(#gens R)))/(p -> {p})/point; );
    -- samplePoints := if instance(W, Point) and not I.cache.?WitnessSet then (
    	-- d := first numericalDimensions(vars R, I, W);
    	-- squaredUpSource := randomSlice(gens I, #gens R - d, {});
	-- startSys := squaredUpSource | randomSlice(vars R, d, {W, "source"});
    	-- flatten apply(sampleSize, i -> track(startSys, squaredUpSource | randomSlice(vars R, d, {}), {W}, opts))) -- track not reliable, often fails
    if instance(opts.Software, FunctionClosure) then return apply(sampleSize, i -> (opts.Software) I);
    if not I.cache.?WitnessSet then I.cache.WitnessSet = if instance(W, WitnessSet) then W else first components(numericalIrreducibleDecomposition(I, opts));
    samplePoints := apply(sampleSize, i -> sample I.cache.WitnessSet);
    if precision R <= precision ring samplePoints#0#Coordinates#0 then samplePoints else refine(polySystem(I_*), samplePoints, Bits => precision R)
)
numericalSourceSample (Ideal, WitnessSet) := List => opts -> (I, W) -> numericalSourceSample(I, W, 1, opts)
numericalSourceSample (Ideal, Point) := List => opts -> (I, p) -> numericalSourceSample(I, p, 1, opts)
numericalSourceSample (Ideal, ZZ) := List => opts -> (I, sampleSize) -> numericalSourceSample(I, null, sampleSize, opts)
numericalSourceSample Ideal := List => opts -> I -> numericalSourceSample(I, 1, opts)

    
numericalImageSample = method(Options => options numericalSourceSample)
numericalImageSample (Matrix, Ideal, List, ZZ) := List => opts -> (F, I, pts, sampleSize) -> (
    samplePoints := if #pts > 0 then numericalSourceSample(I, pts#0, sampleSize-#pts, opts) else numericalSourceSample(I, sampleSize, opts);
    numericalEval(F, samplePoints, false) /point
)
numericalImageSample (Matrix, Ideal, ZZ) := List => opts -> (F, I, sampleSize) -> numericalImageSample(F, I, {}, sampleSize, opts)
numericalImageSample (Matrix, Ideal) := List => opts -> (F, I) -> numericalImageSample(F, I, {}, 1, opts)
numericalImageSample (List, Ideal, List, ZZ) := List => opts -> (F, I, pts, sampleSize) -> numericalImageSample(matrix{F}, I, pts, sampleSize, opts)
numericalImageSample (List, Ideal, ZZ) := List => opts -> (F, I, sampleSize) -> numericalImageSample(matrix{F}, I, {}, sampleSize, opts)
numericalImageSample (List, Ideal) := List => opts -> (F, I) -> numericalImageSample(matrix{F}, I, {}, 1, opts)
numericalImageSample (RingMap, Ideal, List, ZZ) := List => opts -> (F, I, pts, sampleSize) -> numericalImageSample(F.matrix, I, pts, sampleSize, opts)
numericalImageSample (RingMap, Ideal, ZZ) := List => opts -> (F, I, sampleSize) -> numericalImageSample(F.matrix, I, {}, sampleSize, opts)
numericalImageSample (RingMap, Ideal) := List => opts -> (F, I) -> numericalImageSample(F.matrix, I, {}, 1, opts)


numericalEval = method()
numericalEval (Matrix, List, Boolean) := List => (F, upstairsPoints, includeUpstairs) -> ( -- returns a list of either matrices, or pairs of the form (Point, Matrix)
    evalPts := upstairsPoints/(p -> (p, sub(F, matrix p)));
    if includeUpstairs then evalPts else evalPts/last
)


numericalDimensions = method(Options => options numericalSourceSample)
numericalDimensions (Matrix, Ideal, Point) := List => opts -> (F, I, p) -> ( --outputs {dim(V(I)), dim(F(V(I))}
    (F, I, p) = checkRings(F, I, {p});
    p0 := 1/norm(2, matrix p#0)*(matrix p#0);
    dF := sub(transpose jacobian F, p0);
    if I == 0 then return {#gens ring I, #gens ring I - numericalNullity(dF, false)};
    sourceJacobian := sub(transpose jacobian I, p0);
    sourceDim := numericalNullity(sourceJacobian, false);
    {sourceDim, sourceDim - numericalNullity(sourceJacobian || dF, false)}
)
numericalDimensions (Matrix, Ideal) := ZZ => opts -> (F, I) -> numericalDimensions(F, I, first numericalSourceSample(I, Software => opts.Software), opts)


numericalImageDim = method(Options => options numericalSourceSample)
numericalImageDim (Matrix, Ideal, Point) := ZZ => opts -> (F, I, p) -> last numericalDimensions(F, I, p, opts)
numericalImageDim (Matrix, Ideal) := ZZ => opts -> (F, I) -> last numericalDimensions(F, I, opts)
numericalImageDim (List, Ideal, Point) := ZZ => opts -> (F, I, p) -> last numericalDimensions(matrix{F}, I, p, opts)
numericalImageDim (List, Ideal) := ZZ => opts -> (F, I) -> last numericalDimensions(matrix{F}, I, opts)
numericalImageDim (RingMap, Ideal, Point) := ZZ => opts -> (F, I, p) -> last numericalDimensions(F.matrix, I, p, opts)
numericalImageDim (RingMap, Ideal) := ZZ => opts -> (F, I) -> last numericalDimensions(F.matrix, I, opts)


-- converts M to a list of 1-element lists of row matrices (to normalize rows easily)
-- listForm satisfies M == matrix listForm M (if numrows M, numcols M > 0), and this conversion is fast
listForm Matrix := A -> apply(entries A, r -> {matrix{r}})


rowScale := (L, s) -> matrix flatten apply(L, r -> if r#0 == 0 then {} else {(s/norm(2,r#0))*r}) -- deletes any zero rows
-- doubleScale := L -> transpose rowScale((entries transpose rowScale(L,1))/(r -> {matrix{r}}), sqrt(#L/(numcols(L#0#0))))


numericalNullity = method(Options => {symbol SVDGap => 1e5, Verbose => false, symbol Precondition => false})
numericalNullity (List, Boolean) := List => opts -> (M, keepSVD) -> (
    if matrix M == 0 then return if keepSVD then {numcols M#0#0, 0} else numcols M#0#0;
    if opts.Verbose then print "Performing normalization preconditioning ...";
    T := timing A := if opts.Precondition then rowScale(M, 1) else matrix M;
    if opts.Verbose then print("     -- used " | toString(T#0) | " seconds");
    if opts.Verbose then print "Computing numerical kernel ...";
    T = timing (S, U, Vt) := SVD A; -- do not use DivideConquer => true!
    if opts.Verbose then print("     -- used " | toString(T#0) | " seconds");
    largestGap := (#S, opts.SVDGap);
    for i from 1 to #S-1 do (
        if S#i == 0 then ( largestGap = (i, "infinity"); break; )
        else if S#(i-1)/S#i > last largestGap then ( largestGap = (i, S#(i-1)/S#i); break; );
    );
    if keepSVD then {numcols A - first largestGap, (S, U, Vt)} else numcols A - first largestGap
)
numericalNullity (Matrix, Boolean) := ZZ => opts -> (M, keepSVD) -> if numrows M == 0 then numcols M else numericalNullity(listForm M, keepSVD, opts)
numericalNullity Matrix := ZZ => opts -> M -> numericalNullity(M, false, opts)


debug needsPackage "SLPexpressions"

monomialGate = method()
monomialGate (RingElement, List, List) := ProductGate => (m, varList, expList) -> (
     productGate flatten apply(#gens ring m, i -> apply(expList#i, j -> varList#i))
)
monomialGate (RingElement, List) := ProductGate => (m, varList) -> monomialGate(m, varList, first exponents m)


makeInterpolationMatrix = method()
makeInterpolationMatrix (Matrix, List) := List => (mons, pts) -> (
    X := apply(#gens ring mons, i -> inputGate ("x"|i));
    Y := matrix{apply(flatten entries mons, m -> monomialGate(m, X))};
    -- E := makeEvaluator(Y, matrix{X});
    E := makeSLProgram(matrix{X}, Y);
    out := mutableMatrix(ring pts#0, numrows Y, numcols Y);
    apply(pts/mutableMatrix, p -> (
        evaluate(E, p, out);
        {matrix out}
    ))
)


numericalHilbertFunction = method(Options => {
    symbol ConvertToCone => false,
    symbol Precondition => true,
    Software => M2engine,
    symbol SVDGap => 1e5,
    symbol UseSLP => false,
    Verbose => true})
numericalHilbertFunction (Matrix, Ideal, List, ZZ) := NumericalInterpolationTable => opts -> (F, I, sampleImagePoints, d) -> ( --outputs a degree d interpolation table for F(V(I))
    (F, I, sampleImagePoints) = checkRings(F, I, sampleImagePoints, ConvertToCone => opts.ConvertToCone);
    y := getSymbol "y";
    allMonomials := basis(d, (coefficientRing ring I)(monoid[y_0..y_(numcols F-1)]));
    N := numcols allMonomials;
    if #sampleImagePoints < N then (
        if opts.Verbose then print "Sampling image points ...";
    	T := timing sampleImagePoints = sampleImagePoints | numericalImageSample(F, I, sampleImagePoints, N, Software => opts.Software);
	if opts.Verbose then print("     -- used " | toString(T#0) | " seconds");
    );
    sampleImagePoints = apply(sampleImagePoints/matrix, p -> 1/norm(2,p)*p);
    if opts.Verbose then print "Creating interpolation matrix ...";
    T = timing A := if opts.UseSLP then makeInterpolationMatrix(allMonomials, sampleImagePoints) else apply(sampleImagePoints, p -> {sub(allMonomials, p)});
    if opts.Verbose then print("     -- used " | toString(T#0) | " seconds");
    interpolationData := numericalNullity(A, true, Precondition => opts.Precondition, SVDGap => opts.SVDGap, Verbose => opts.Verbose);
    new NumericalInterpolationTable from {
        symbol hilbertFunctionArgument => d,
        symbol hilbertFunctionValue => first interpolationData,
        symbol imagePoints => VerticalList sampleImagePoints,
	symbol interpolationBasis => allMonomials,
        symbol interpolationSVD => last interpolationData,
        symbol interpolationMatrix => matrix A,
	symbol map => F
    }
)
numericalHilbertFunction (Matrix, Ideal, ZZ) := NumericalInterpolationTable => opts -> (F, I, d) -> numericalHilbertFunction(F, I, {}, d, opts)
numericalHilbertFunction (List, Ideal, List, ZZ) := NumericalInterpolationTable => opts -> (F, I, sampleImagePoints, d) -> numericalHilbertFunction(matrix{F}, I, sampleImagePoints, d, opts)
numericalHilbertFunction (List, Ideal, ZZ) := NumericalInterpolationTable => opts -> (F, I, d) -> numericalHilbertFunction(matrix{F}, I, {}, d, opts)
numericalHilbertFunction (RingMap, Ideal, List, ZZ) := NumericalInterpolationTable => opts -> (F, I, sampleImagePoints, d) -> numericalHilbertFunction(F.matrix, I, sampleImagePoints, d, opts)
numericalHilbertFunction (RingMap, Ideal, ZZ) := NumericalInterpolationTable => opts -> (F, I, d) -> numericalHilbertFunction(F.matrix, I, {}, d, opts)


realPartMatrix := A -> matrix apply(entries A, r -> r/realPart)
imPartMatrix := A -> if class ring A === RealField then 0 else matrix apply(entries A, r -> r/imaginaryPart)


extractImageEquations = method(Options => {symbol Threshold => 5, symbol AttemptZZ => false})
extractImageEquations NumericalInterpolationTable := Matrix => opts -> T -> (
    n := opts.Threshold;
    (V, mons) := (last T.interpolationSVD, T.interpolationBasis);
    A := clean(10.0^(-n), conjugate transpose V^{numrows V-T.hilbertFunctionValue..numrows V-1});
    if not opts.AttemptZZ === false then (
        if opts.AttemptZZ === 2 then (
            B := if class ring A === ComplexField then matrix table(numrows A, numcols A, (i,j) -> matrix{{realPart A_(i,j),imaginaryPart A_(i,j)}}) else A;
            C := matrix apply(entries B, r -> r/(e -> lift(round(10^(1+n)*round(n, e)), ZZ)));
            D := submatrix(LLL(C), numcols A..numcols C-1);
            E := mons*colReduce(sub(D, ring mons), 10.0^(-n));
        ) else (
            A = T.interpolationMatrix;
            B = random(RR)*realPartMatrix A + random(RR)*imPartMatrix A;
            C = matrix apply(entries B, r -> r/(e -> lift(round(10^(1+n)*round(n, e)), ZZ)));
            D = submatrix(LLL(id_(ZZ^(numcols C)) || C), toList (0..<numcols mons), toList(0..<T.hilbertFunctionValue));
            E = mons*sub(D, ring mons);
        );
        val := sub(E, T.imagePoints#0);
        if clean(10.0^(-n), val) != 0 then (
            << "Warning: some of the integer equations may be inexact. Their values at a sample image point are " << val << endl;
        );
        E
    ) else mons*sub(A, ring mons)
)
extractImageEquations (Matrix, Ideal, ZZ) := Matrix => opts -> (F, I, d) -> extractImageEquations(numericalHilbertFunction(F, I, d), opts)
extractImageEquations (List, Ideal, ZZ) := Matrix => opts -> (F, I, d) -> extractImageEquations(numericalHilbertFunction(matrix{F}, I, d), opts)
extractImageEquations (RingMap, Ideal, ZZ) := Matrix => opts -> (F, I, d) -> extractImageEquations(numericalHilbertFunction(F.matrix, I, d), opts)


round (ZZ, ZZ) := ZZ => (n, x) -> x
round (ZZ, CC) := CC => (n, x) -> round(n, realPart x) + ii*round(n, imaginaryPart x)
round (ZZ, BasicList) := BasicList => (n, L) -> L/round_n
round (ZZ, Matrix) := Matrix => (n, M) -> matrix(entries M/round_n)
round (ZZ, RingElement) := RingElement => (n, f) -> (
    C := coefficients f;
    ((C#0)*round(n, lift(C#1, coefficientRing ring f)))_(0,0)
)


pseudoWitnessSet = method(Options => {
    symbol DoRefinements => false,
    symbol DoTraceTest => true,
    symbol MaxAttempts => 5,
    symbol MaxPoints => infinity,
    symbol MaxThreads => 1,
    Software => M2engine,
    symbol Repeats => 3,
    symbol TraceThreshold => 1e-5,
    symbol Threshold => 5,
    -- symbol Endgame => false,
    Verbose => true})
pseudoWitnessSet (Matrix, Ideal, List, Thing) := PseudoWitnessSet => opts -> (F, I, pointPairs, sliceMatrix) -> ( --outputs a pseudo-witness set for F(V(I))
    local imagePointString, local pairTable, local startSystem;
    y := getSymbol "y";
    k := coefficientRing ring I;
    targetRing := k(monoid[y_1..y_(numcols F)]);
    if #pointPairs == 0 then error "Expected source point";
    sourcePoint := pointPairs#0#0;
    dims := numericalDimensions(F, I, sourcePoint);
    numAttempts := 0;
    traceResult := opts.TraceThreshold + 1;
    (fiberSlice, fiberdim) := ({}, first dims - last dims);
    while not traceResult < opts.TraceThreshold and numAttempts < opts.MaxAttempts do (
        if numAttempts > 0 then sourcePoint = first numericalSourceSample(I, sourcePoint, Software => opts.Software);
        pullbackSlice := if sliceMatrix === null then randomSlice(F, last dims, {sourcePoint, "source"}) else (
            if numAttempts == 0 and not all(pointPairs, pair -> clean((10.0)^(-opts.Threshold), sub(sliceMatrix, matrix pair#0)) == 0) then error "Expected input points to lie on input slice";
            flatten entries sliceMatrix
        );
        squaredUpSource := if I == 0 then {} else randomSlice(gens I, #gens ring I - first dims, {});
        if fiberdim > 0 then (
	    fiberSlice = randomSlice(vars ring I, fiberdim, {sourcePoint, "source"});
            if numAttempts == 0 and #pointPairs > 1 then pointPairs = numericalEval(F, {sourcePoint} | flatten apply(toList(1..#pointPairs-1), i -> (
		codimSlice := randomSlice(F - sub(matrix pointPairs#i#1, ring F), first dims - fiberdim, {});
		localFiberSlice := codimSlice | squaredUpSource | randomSlice(vars ring I, fiberdim, {pointPairs#i#0, "source"});
		globalFiberSlice := codimSlice | squaredUpSource | fiberSlice;
		myTrack(localFiberSlice, globalFiberSlice, {pointPairs#i#0})
	    )), true);
        );
	newStartSystem := squaredUpSource | fiberSlice | pullbackSlice;
        newPairs := if numAttempts > 0 then numericalEval(F, myTrack(startSystem, newStartSystem, (values pairTable)/first, opts), true) else pointPairs/(pair -> (pair#0, matrix pair#1));
	if #newPairs == 0 then (
            if opts.Verbose then print "Failed to track old points to new slice. Retrying...";
            numAttempts = numAttempts + 1;
            continue;
        );
        pairTable = new MutableHashTable;
        for pair in newPairs do (
            imagePointString = toString round(opts.Threshold, last pair);
            if not pairTable#?imagePointString then pairTable#imagePointString = pair;
        );       
	startSystem = newStartSystem;
        pointPairs = monodromyLoop(F, last dims, startSystem, pairTable, opts);
	if not opts.DoTraceTest then break;
	if opts.DoRefinements then (
	    if opts.Verbose then print "Refining solutions...";
	    pointPairs = numericalEval(F, refine(startSystem, pointPairs/first, Bits => precision ring I), true);
	);
	if opts.Verbose then print("Running trace test ...");
	traceResult = traceTest(F, last dims, pointPairs, startSystem, opts);
	if not traceResult < opts.TraceThreshold and opts.Verbose then print("Failed trace test! Trace: " | toString traceResult);
    	numAttempts = numAttempts + 1;
    );
    if opts.Verbose then (
	if traceResult > opts.TraceThreshold then (
            print("Degree of image should be at least " | #pointPairs);
            print("Consider changing parameters (Repeats, MaxAttempts, Threshold) or reparametrizing for a better result.");
            -- Alternatively, consider increasing precision (e.g. changing ground field to CC_100).
        );
    );
    new PseudoWitnessSet from {
        symbol isCompletePseudoWitnessSet => traceResult < opts.TraceThreshold,
        symbol degree => #pointPairs,
        symbol map => F,
        symbol sourceEquations => I,
        symbol generalCombinations => matrix{squaredUpSource},
        symbol sourceSlice => matrix{fiberSlice},
        symbol imageSlice => matrix{pullbackSlice},
        symbol witnessPointPairs => VerticalList apply(pointPairs, pair -> (pair#0, point pair#1)),
	symbol trace => traceResult
    }
)
pseudoWitnessSet(Matrix, Ideal, Point) := PseudoWitnessSet => opts -> (F, I, p) -> (
    (F, I, p) = checkRings(F, I, {p});
    pseudoWitnessSet(F, I, numericalEval(F, p, true), null, opts)
)
pseudoWitnessSet (Matrix, Ideal) := PseudoWitnessSet => opts -> (F, I) -> (
    if opts.Verbose then print "Sampling point in source ...";
    pseudoWitnessSet(F, I, first numericalSourceSample I, opts)
)
pseudoWitnessSet(List, Ideal, List, Thing) := PseudoWitnessSet => opts -> (F, I, pointPairs, L) -> pseudoWitnessSet(matrix{F}, I, pointPairs, L, opts)
pseudoWitnessSet(List, Ideal, Point) := PseudoWitnessSet => opts -> (F, I, p) -> pseudoWitnessSet(matrix{F}, I, p, opts)
pseudoWitnessSet (List, Ideal) := PseudoWitnessSet => opts -> (F, I) -> pseudoWitnessSet(matrix{F}, I, opts)
pseudoWitnessSet(RingMap, Ideal, List, Thing) := PseudoWitnessSet => opts -> (F, I, pointPairs, L) -> pseudoWitnessSet(F.matrix, I, pointPairs, L, opts)
pseudoWitnessSet(RingMap, Ideal, Point) := PseudoWitnessSet => opts -> (F, I, p) -> pseudoWitnessSet(F.matrix, I, p, opts)
pseudoWitnessSet (RingMap, Ideal) := PseudoWitnessSet => opts -> (F, I) -> pseudoWitnessSet(F.matrix, I, opts)


numericalImageDegree = method(Options => options pseudoWitnessSet)
numericalImageDegree PseudoWitnessSet := ZZ => opts -> W -> W.degree
numericalImageDegree (Matrix, Ideal) := ZZ => opts -> (F, I) -> (pseudoWitnessSet(F, I, opts)).degree
numericalImageDegree (List, Ideal) := ZZ => opts -> (F, I) -> (pseudoWitnessSet(matrix{F}, I, opts)).degree
numericalImageDegree (RingMap, Ideal) := ZZ => opts -> (F, I) -> (pseudoWitnessSet(F.matrix, I, opts)).degree


myTrack = method(Options => options pseudoWitnessSet)
myTrack (List, List, List) := List => opts -> (startSystem, targetSystem, startSolutions) -> (
    k := coefficientRing ring startSystem#0;
    randomGamma := random k;
    if #startSolutions > max(10, 2*opts.MaxThreads) and opts.MaxThreads > 1 then ( -- prints many errors, but continues to run
        --setIOExclusive(); -- buggy: causes isReady to indefinitely hang
	startSolutionsList := pack(ceiling(#startSolutions/opts.MaxThreads), startSolutions);
        threadList := {};
        for paths in startSolutionsList do (
            threadList = append(threadList, schedule(x -> timing track x, (startSystem, targetSystem, paths, gamma => randomGamma, Software => opts.Software)));
        );
        while not all(threadList, isReady) do sleep 1;
	results := delete(null, threadList/taskResult);
        targetSolutions := flatten(results/last);
        if opts.Verbose then print("Finished tracking " | #targetSolutions | " paths in parallel, in " | toString sum(results/first) | " seconds");
    ) else ( -- if startSolutions is empty then error is thrown!
    	T := timing targetSolutions = track(startSystem, targetSystem, startSolutions, gamma => randomGamma, Software => opts.Software);
	if opts.Verbose and T#0 > 1 then print ("     -- used " | toString(T#0) | " seconds");
    );
    goodSols := select(targetSolutions, p -> p.cache#?SolutionStatus and status p == Regular);
    if opts.Verbose and #goodSols < #startSolutions then print("Paths going to infinity: " | #startSolutions - #goodSols | " out of " | #startSolutions);
    if opts.DoRefinements then goodSols = apply(refine(polySystem targetSystem, goodSols, Bits => precision k), p -> point sub(matrix p, k));
    goodSols
)


randomSlice = method() -- returns a list of c random linear combinations of polys (row matrix) passing through (optional source or target) point, via translation
randomSlice (Matrix, ZZ, List) := List => (polys, c, pointData) -> (
    R := ring polys;
    coeffs := random(R^(numcols polys), R^c);
    G := polys*coeffs;
    flatten entries(G - if #pointData == 0 then 0 else sub(if pointData#1 == "source" then sub(G, matrix pointData#0) else (matrix pointData#0)*coeffs, R))
)


monodromyLoop = method(Options => options pseudoWitnessSet)
monodromyLoop (Matrix, ZZ, List, MutableHashTable) := List => opts -> (F, imageDim, startSystem, pairTable) -> (
    numRepetitiveMonodromyLoops := 0;
    numPts := {#values pairTable};
    if opts.Verbose then print "Tracking monodromy loops ...";
    while numRepetitiveMonodromyLoops < opts.Repeats do (
	intermediateSystem1 := drop(startSystem, -imageDim) | randomSlice(F | matrix{{10_(ring F)}}, imageDim, {});
        startSols := (values pairTable)/first;
        -- increment := if opts.Endgame and #startSols > 100 and #numPts > 5 and all((firstDifference firstDifference numPts)_{-3..-1}, d -> d < 0) then (
            -- startSols = startSols_(randomInts(#startSols, max(100, #startSols//10)));
            -- 1/4
        -- ) else 1;
        intermediateSolutions1 := myTrack(startSystem, intermediateSystem1, startSols, opts);
        if #intermediateSolutions1 > 0 then (
            endSolutions := myTrack(intermediateSystem1, startSystem, intermediateSolutions1, opts);
            if #endSolutions > 0 then (
                candidatePairs := numericalEval(F, endSolutions, true);
                for pair in candidatePairs do (
                    imagePointString := toString round(opts.Threshold, last pair);
                    if not pairTable#?imagePointString then pairTable#imagePointString = pair;
                );
            );
        );
        if numPts#-1 < #values pairTable then numRepetitiveMonodromyLoops = 0
        else numRepetitiveMonodromyLoops = numRepetitiveMonodromyLoops + 1;
        numPts = append(numPts, #values pairTable);
        if opts.Verbose then print ("Points found: " | numPts#-1);
        if numPts#-1 >= opts.MaxPoints then break;
    );
    values pairTable
)


traceTest = method(Options => options pseudoWitnessSet)
traceTest (Matrix, ZZ, List, List) := RR => opts -> (F, imageDim, intersectionPointPairs, startSystem) -> (
    C := coefficientRing ring F;
    startUpstairsPoints := intersectionPointPairs/first;
    startDownstairsPoints := intersectionPointPairs/last;
    for translationMagnitude in {0,1,3,2,-1,5,-2,6} do (
        randomTranslation := 10^(translationMagnitude)*flatten entries(map(C^1, C^(#startSystem - imageDim), 0) | random(C^1, C^imageDim));
        gammas := {random C, random C};
        firstStepSystem := startSystem + (first gammas)*randomTranslation;
        secondStepSystem := startSystem + (last gammas)*randomTranslation;
        firstStepUpstairsPoints := myTrack(startSystem, firstStepSystem, startUpstairsPoints, opts);
        if #firstStepUpstairsPoints == #startUpstairsPoints then (
            secondStepUpstairsPoints := myTrack(startSystem, secondStepSystem, startUpstairsPoints, opts);
            if #secondStepUpstairsPoints == #startUpstairsPoints then (
                firstStepDownstairsPoints := numericalEval(F, firstStepUpstairsPoints, false);
                secondStepDownstairsPoints := numericalEval(F, secondStepUpstairsPoints, false);
                traceList := (1/first gammas)*(firstStepDownstairsPoints - startDownstairsPoints) - (1/last gammas)*(secondStepDownstairsPoints - startDownstairsPoints);
                return norm(2,sum traceList);
            );
        );
    );
    infinity
)


isOnImage = method(Options => {
    MaxThreads => 1,
    Software => M2engine,
    Threshold => 5,
    Verbose => true})
isOnImage (PseudoWitnessSet, Point) := Boolean => opts -> (W, q) -> (
    q = matrix q;
    if not W.isCompletePseudoWitnessSet then print "Warning: not a complete pseudo-witness set! May return false negative.";
    F := W.map;
    I := W.sourceEquations;
    if not ring q === coefficientRing ring I then error "Point must have coordinates in the coefficient ring of the ideal.";
    fiberSlice := flatten entries W.sourceSlice;
    pullbackSlice := flatten entries W.imageSlice;
    squaredUpSource := flatten entries W.generalCombinations;
    startUpstairsPoints := W.witnessPointPairs /first;
    newPullbackSlice := randomSlice(F, #pullbackSlice, {q, "target"});
    targetUpstairsPoints := myTrack(squaredUpSource | fiberSlice | pullbackSlice, squaredUpSource | fiberSlice | newPullbackSlice, startUpstairsPoints, opts);
    imagePointTable := hashTable apply(numericalEval(F, targetUpstairsPoints, false), p -> round(opts.Threshold, p) => 0);
    imagePointTable#?(round(opts.Threshold, q))
)
isOnImage (Matrix, Ideal, Point) := Boolean => opts -> (F, I, q) -> isOnImage(pseudoWitnessSet(F, I, opts), q, opts)
isOnImage (List, Ideal, Point) := Boolean => opts -> (F, I, q) -> isOnImage(matrix{F}, I, q, opts)
isOnImage (RingMap, Ideal, Point) := Boolean => opts -> (F, I, q) -> isOnImage(F.matrix, I, q, opts)


isWellDefined NumericalInterpolationTable := Boolean => T -> (
    -- CHECK DATA STRUCTURE
    -- CHECK KEYS
    K := keys T;
    expectedKeys := set {
        symbol hilbertFunctionArgument,
        symbol hilbertFunctionValue,
        symbol imagePoints,
        symbol interpolationBasis,
        symbol interpolationSVD,
	symbol interpolationMatrix,
        symbol map
    };
    if set K =!= expectedKeys then (
	if debugLevel > 0 then (
	    added := toList(K - expectedKeys);
	    missing := toList(expectedKeys - K);
	    if #added > 0 then << "-- unexpected key(s): " << toString added << endl;
	    if #missing > 0 then << "-- missing keys(s): " << toString missing << endl;
        );
        return false
    );
    -- CHECK TYPES
    if not instance(T.hilbertFunctionArgument, ZZ) then (
        if debugLevel > 0 then << "-- expected `hilbertFunctionArgument' to be an integer" << endl;
	return false
    );
    if not instance(T.hilbertFunctionValue, ZZ) then (
        if debugLevel > 0 then << "-- expected `hilbertFunctionValue' to be an integer" << endl;
	return false
    );
    if not instance(T.map, Matrix) then (
        if debugLevel > 0 then << "-- expected `map' to be a matrix" << endl;
	return false
    );
    if not instance(T.interpolationBasis, Matrix) then (
        if debugLevel > 0 then << "-- expected `interpolationBasis' to be a matrix" << endl;
	return false
    );
    if not instance(T.interpolationMatrix, Matrix) then (
        if debugLevel > 0 then << "-- expected `interpolationMatrix' to be a matrix" << endl;
	return false
    );
    if not instance(T.interpolationSVD, Sequence) then (
        if debugLevel > 0 then << "-- expected `interpolationSVD' to be a sequence" << endl;
        return false
    );
    if not instance(first T.interpolationSVD, List) then (
        if debugLevel > 0 then << "-- expected first element of `interpolationSVD' to be a list" << endl;
        return false
    );
    if not all(first T.interpolationSVD, s -> instance(s, RR)) then (
        if debugLevel > 0 then << "-- expected first element of `interpolationSVD' to be a list of singular values" << endl;
        return false
    );
    if not all(drop(T.interpolationSVD, 1), M -> instance(M, Matrix)) then (
        if debugLevel > 0 then << "-- expected second and third elements of `interpolationSVD' to be matrices" << endl;
	return false
    );
    -- CHECK MATHEMATICAL STRUCTURE
    if not unique flatten last degrees T.interpolationBasis === {T.hilbertFunctionArgument} then (
        if debugLevel > 0 then << ("-- expected `interpolationBasis' to consist of monomials of degree " | T.hilbertFunctionArgument) << endl;
        return false
    );
    if not all({coefficientRing ring T.interpolationBasis, ring(T.interpolationSVD#2)}/class, C -> C === ComplexField) then (
        if debugLevel > 0 then << "-- expected ground field to be complex numbers" << endl;
        return false
    );
    numMonomials := binomial(numcols T.map + T.hilbertFunctionArgument - 1, T.hilbertFunctionArgument);
    if not #gens ring T.interpolationBasis === numcols T.map or not numcols T.interpolationBasis === numMonomials then (
        if debugLevel > 0 then << ("-- expected `interpolationBasis' to have " | numMonomials | " monomials in " | #T.map | " variables") << endl;
        return false
    );
    true
)

isWellDefined PseudoWitnessSet := Boolean => W -> (
    -- CHECK DATA STRUCTURE
    -- CHECK KEYS
    K := keys W;
    expectedKeys := set {
        symbol isCompletePseudoWitnessSet,
        symbol degree,
        symbol map,
        symbol sourceEquations,
        symbol sourceSlice,
        symbol generalCombinations,
        symbol imageSlice,
        symbol witnessPointPairs,
        symbol trace
    };
    if set K =!= expectedKeys then (
	if debugLevel > 0 then (
	    added := toList(K - expectedKeys);
	    missing := toList(expectedKeys - K);
	    if #added > 0 then << "-- unexpected key(s): " << toString added << endl;
	    if #missing > 0 then << "-- missing keys(s): " << toString missing << endl;
        );
        return false
    );
    -- CHECK TYPES
    if not instance(W.isCompletePseudoWitnessSet, Boolean) then (
        if debugLevel > 0 then << "-- expected `isCompletePseudoWitnessSet' to be a Boolean" << endl;
	return false
    );
    if not instance(W.degree, ZZ) then (
        if debugLevel > 0 then << "-- expected `degree' to be an integer" << endl;
	return false
    );
    if not instance(W.map, Matrix) then (
        if debugLevel > 0 then << "-- expected `map' to be a matrix" << endl;
	return false
    );
    if not instance(W.sourceEquations, Ideal) then (
        if debugLevel > 0 then << "-- expected `sourceEquations' to be an ideal" << endl;
	return false
    );
    if not instance(W.sourceSlice, Matrix) then (
        if debugLevel > 0 then << "-- expected `sourceSlice' to be a matrix" << endl;
	return false
    );
    if not instance(W.generalCombinations, Matrix) then (
        if debugLevel > 0 then << "-- expected `generalCombinations' to be a matrix" << endl;
	return false
    );
    if not instance(W.imageSlice, Matrix) then (
        if debugLevel > 0 then << "-- expected `imageSlice' to be a matrix" << endl;
	return false
    );
    if not instance(W.witnessPointPairs, List) then (
        if debugLevel > 0 then << "-- expected `witnessPointPairs' to be a list" << endl;
	return false
    );
    if not all(W.witnessPointPairs, pair -> instance(pair, Sequence)) then (
        if debugLevel > 0 then << "-- expected `witnessPointPairs' to be a list of sequences" << endl;
        return false
    );
    if not all(W.witnessPointPairs, pair -> all(pair, p -> instance(p, Point))) then (
        if debugLevel > 0 then << "-- expected `witnessPointPairs' to be a list of sequences of points" << endl;
        return false
    );
    if not instance(W.trace, RR) then (
        if debugLevel > 0 then << "-- expected `trace' to be a real number" << endl;
	return false
    );
    -- CHECK MATHEMATICAL STRUCTURE
    R := ring W.sourceEquations;
    if not R === ring W.map then (
        if debugLevel > 0 then << "-- expected `map' and `sourceEquations' to have the same ring" << endl;
        return false
    );
    if not instance(class 1_(coefficientRing R), InexactFieldFamily) then (
        if debugLevel > 0 then << "-- expected ground field to have floating point arithmetic" << endl;
        return false
    );
    if not all(W.witnessPointPairs, pair -> #(pair#0#Coordinates) === #gens R and #(pair#1#Coordinates) === numcols W.map) then (
        if debugLevel > 0 then << "-- number of coordinates in `witnessPointPairs' do not match" << endl;
        return false
    );
    if not all(W.witnessPointPairs/first, p -> clean(1e-5, sub(gens W.sourceEquations, matrix p)) == 0) then (
	if debugLevel > 0 then << " -- expected first components of `witnessPointPairs' to satisfy `sourceEquations'" << endl;
	return false
    );
    if not all(W.witnessPointPairs, pair -> clean(1e-5, matrix last pair - sub(W.map, matrix first pair)) == 0) then (
	if debugLevel > 0 then << " -- expected components `witnessPointPairs' to correspond under `map'" << endl;
	return false
    );
    if not all(W.witnessPointPairs/first/matrix, p -> clean(1e-5, sub(W.imageSlice, p)) == 0) then (
	if debugLevel > 0 then << " -- expected second components of `witnessPointPairs' to lie on `imageSlice'" << endl;
	return false
    );
    true
)

beginDocumentation()

load "NumericalImplicitization/doc.m2"
load "NumericalImplicitization/tests.m2"

end--

restart
needsPackage "NumericalImplicitization"
loadPackage("NumericalImplicitization", Reload => true)
uninstallPackage "NumericalImplicitization"
installPackage "NumericalImplicitization"
installPackage("NumericalImplicitization", RemakeAllDocumentation => true)
viewHelp "NumericalImplicitization"
check "NumericalImplicitization"


-- Defaults: 10 in monodromyLoop for affine term, 20 in myTrack (for parallelization), {0,1,3,2,-1,5,-2,6} for translationMagnitude in traceTest

-- Future: Alpha-certify option, improvements to interpolation (using non-monomial bases, Jacobi SVD)


-- Guarantee correct number of sample points, starting from initial point p
goodPts = {}
sampleSize = 100
eps = 1e-10
elapsedTime while #goodPts < sampleSize do (
    q = first numericalSourceSample(I, p);
    if q#?SolutionStatus and q#SolutionStatus === Regular and clean(eps, sub(gens I, matrix q)) == 0 then goodPts = goodPts | {q};
)

-- high degree rational normal curve
R = CC[s,t],; F = basis(40,R); I = ideal 0_R;
numericalImageDim(F, I)
time tests = toList(1..100)/(i -> pseudoWitnessSet(F,I,Repeats=>2,Verbose=>false));


-- Generic Pinched Veronese
R = CC[x_0..x_3]
F = toList(1..5)/(i -> random(10,R));
allowableThreads = maxAllowableThreads
pseudoWitnessSet(F,ideal 0_R,Repeats=>2)


-- Trifocal variety
R=CC[a00,a01,a02,a03,a10,a11,a12,a13,a20,a21,a22,a23,b10,b11,b12,b13,b20,b21,b22,b23],;A = transpose genericMatrix(R,a00,4,3),;B = matrix{{0,0,0,1},{b10,b11,b12,b13},{b20,b21,b22,b23}},;C = matrix{{1_R,0,0,0},{0,1,0,0},{0,0,1,0}},;M = A||B||C,;F = flatten flatten apply(3, i-> apply(3, j-> apply(reverse subsets(3,2), k->det  submatrix(M,{i}|{j+3}|(k+{6,6}) , )  )   ));
allowableThreads = 4
elapsedTime pseudoWitnessSet(F,ideal 0_R,Repeats=>2,MaxThreads=>allowableThreads)


-- Tensor product surface
(a,b) = (3,1)
R=CC[s,t,u,v, Degrees=>{{1,0},{1,0},{0,1},{0,1}}]
Ix=intersect(ideal(s,u),ideal(t,v))
B=super basis({a,b},Ix)
C=matrix{{1_R,1,0,0,0,0},{0,1,1,0,0,0},{0,0,1,1,0,0},{0,0,0,1,1,1}}
F = C*transpose(B)
I = ideal 0_R
numericalImageDim(F,I)
W = pseudoWitnessSet(F,I)
T = numericalHilbertFunction(F,I,W.degree)
extractImageEquations(T, AttemptZZ => true)


-- Undirected graphical model on 4 variables
setRandomSeed 0
loadPackage "GraphicalModels"
G = graph({1,2,3,4},{{1,2},{1,3},{2,3},{3,4}})
R = CC[x_(1,1),x_(1,2),x_(1,4),x_(2,2),x_(2,4),x_(3,3),x_(3,4),x_(4,4)]
M = matrix{{x_(1,1),x_(1,2),0,x_(1,4)},{x_(1,2),x_(2,2),0,x_(2,4)},{0,0,x_(3,3),x_(3,4)},{x_(1,4),x_(2,4),x_(3,4),x_(4,4)}}
F = flatten(for i from 1 to 4 list (
    for j from i to 4 list (
	det(submatrix'(M, {i-1}, {j-1}))
    )
))
I = ideal 0_R
numericalImageDim(F, I)
pseudoWitnessSet(F, I, Repeats => 2)
T = numericalHilbertFunction(F, I, 2)
extractImageEquations(T, AttemptZZ => true)


-- Check approximate equations:
T = numericalHilbertFunction(F, ideal 0_R, 2);
E = extractImageEquations(T, AttemptZZ => true);
all((toList T.imagePoints)/(p -> clean(1e-11, sub(E, toList(0..<#(p#Coordinates))/(i -> (gens ring E)#i => (p#Coordinates)#i)))), v -> v == 0)


--------------- Implicitization Challenge + variants

-- (line) secant of (P^1)^n in P^31, n = 5: degree 3256
n = 5
R = CC[a_1..a_n,b_1..b_n,s,t];
F = s*(terms product apply(toList(1..n), i-> 1 + a_i)) + t*(terms product apply(toList(1..n), i-> 1 + b_i));
allowableThreads = maxAllowableThreads
time W = pseudoWitnessSet(F, ideal 0_R, Repeats => 1)
elapsedTime W = pseudoWitnessSet(F, ideal 0_R, Repeats => 1, MaxThreads => allowableThreads) 


-- Challenge: Hadamard square of line secant of (P^1)^4 in P^15, degree 110, passed in 188.084 seconds
t = symbol t;
n = 4
R = CC[a_1..a_n,b_1..b_n, c_1..c_n, d_1..d_n,t_0..t_3];
F1 = t_0*(terms product apply(toList(1..n), i->(1 + a_i))) + t_1*(terms product apply(toList(1..n), i->(1 + b_i)));
F2 = t_2*(terms product apply(toList(1..n), i->(1 + c_i))) + t_3*(terms product apply(toList(1..n), i->(1 + d_i)));
F = apply(toList(0..15), i -> F1#i * F2#i);
allowableThreads = maxAllowableThreads
time W = pseudoWitnessSet(F, ideal 0_R, Repeats => 1, MaxThreads => allowableThreads)


-- precision tests

R = CC_54[s,t]; I = ideal 0_R; W = pseudoWitnessSet(basis(3, R), I)
toList W.witnessPointPairs /first/(p -> p#Coordinates )/first/ring

prec = 500
setDefault(Precision => prec)
R = CC_prec[s,t]; I = ideal 0_R; F = basis(3, R);
W = pseudoWitnessSet(F, I)

R = CC[s,t]; F = basis(4, R); I = ideal 0_R
T = numericalHilbertFunction(F, I, 2)
A = matrix T.interpolationMatrix

prec = 5
printingPrecision = 16
setDefault(Precision => prec)
R = CC_prec[x_0..x_3]
R = CC[x_0..x_2]
I = ideal random(R^1,R^{-2,-3})
I = ideal(random(2,R), random(3,R))
F = random(R^1,R^{3:-3})
F = matrix{toList(1..3)/(i -> random(3,R))}
d = 18

-- ConvertToCone tests
R = CC[x_1..x_5]
F = vars R
I = ideal(x_1*x_2^2 - x_3^2, x_1*x_4^2 - x_5^2)
elapsedTime I.cache.WitnessSet = first components numericalIrreducibleDecomposition I
time pseudoWitnessSet(F,I)
F = (gens R)_(toList(0,1,2))
I = ideal(x_1-x_3*x_4,x_2-x_3*x_5,x_4*x_5-1)

-- SO(5)
n = 5
R = CC[x_0..x_(n^2-1)]
A = genericMatrix(R,n,n)
I = ideal(A*transpose A - id_(R^n));
F = vars R
p = point id_((coefficientRing R)^n)
q = first numericalSourceSample(I, p)
allowableThreads = 4
elapsedTime PW = pseudoWitnessSet(F,I,p,Threshold=>3,MaxThreads=>allowableThreads, MaxPoints=>384) -- passed in 153.496 seconds

-- Dim challenge example
jacI=(d,l,n)->(S=CC[x_(0,1)..x_(n,l),c_0..c_(binomial(l,n)-1)];R= S[X_0..X_n];
M=for i from 1 to l list matrix{toList (x_(0,i)..x_(n,i))};
H=for b in(for i from 0 to#subsets(M,n)-1 list for a in(subsets(M,n))_i list{a})
list matrix b;
P=for t from 0 to #H-1 list for j from 0 to n list(-1)^(j)*(minors(n,H_t))_(n-j);
F=sum for i from 0 to #P-1 list c_(i)*(sum for j from 0 to n list P_i_j*X_j)^d;
I=transpose substitute((coefficients F)#1,S))
t=13
time F = jacI(t,t+1,2);
time numericalImageDim(F, ideal 0_S)