1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
|
TEST /// -- embedding cubic surface (with 3 singular points) in P^3 via 5 sections of O(2)
setRandomSeed 0
elapsedTime d = dim ker map(QQ[x,y,z,w]/ideal(x^3 - y*z*w), QQ[a_0..a_4], {x*w + 2*x*y, x*w-3*y^2, z^2, x^2 + y^2 + z^2 - w^2, 3*y*w - 2*x^2})
R = CC[x,y,z,w]
I = ideal(x^3 - y*z*w)
F = {x*w + 2*x*y, x*w-3*y^2, z^2, x^2 + y^2 + z^2 - w^2, 3*y*w - 2*x^2}
assert(numericalImageDim(F, I) == d)
-- Cf. also: non-homogeneous ideal (x^5 - y*z*w) (~35 seconds for GB computation), kernel over finite fields
///
TEST /// -- twisted cubic
setRandomSeed 0
R = CC[s,t]
F = basis(3,R)
J = monomialCurveIdeal(QQ[a_0..a_3], {1,2,3})
assert(all(1..5, d -> (numericalHilbertFunction(F,ideal 0_R,d)).hilbertFunctionValue == numcols super basis(d,J)))
assert(all(1..5, d -> (numericalHilbertFunction(F,ideal 0_R,d,UseSLP=>true)).hilbertFunctionValue == numcols super basis(d,J)))
W = pseudoWitnessSet(F, ideal 0_R);
assert(W.degree == 3)
assert(isOnImage(W, first numericalImageSample(F,ideal 0_R)) == true)
assert(isOnImage(W, point random(CC^1,CC^(numcols F))) == false)
///
TEST /// -- Rational quartic curve in P^3
setRandomSeed 0
R = CC[s,t]
F = flatten entries basis(4, R) - set{s^2*t^2}
I = ideal 0_R
S = QQ[a_0..a_3]
I3 = super basis(3, ker map(QQ[s,t], S, {s^4,s^3*t,s*t^3,t^4}))
T = numericalHilbertFunction(F, I, 3);
M = extractImageEquations(T, AttemptZZ => true)
assert(image M == image (map(ring M, S, gens ring M))(I3))
elapsedTime PW = pseudoWitnessSet(F,I)
assert(PW.degree == 4)
///
TEST /// -- Grassmannian Gr(3, 5) = G(P^2,P^4)
setRandomSeed 0
(k, n) = (3,5)
R = CC[x_(1,1)..x_(k,n)]
I = ideal 0_R
F = (minors(k, genericMatrix(R, k, n)))_*
assert(numericalImageDim(F, I) == 1 + k*(n-k))
T = numericalHilbertFunction(F, I, 2)
J = super basis(2, Grassmannian(k-1,n-1))
assert(T.hilbertFunctionValue == numcols J)
I2 = image extractImageEquations(T, AttemptZZ => true)
assert(image (map(ring I2, ring J, gens ring I2))(J) == I2)
time W = pseudoWitnessSet(F, I, Repeats => 2)
assert(W.degree == 5)
-- (n, m) = (5, 10)
-- pointList = numericalImageSample(F, I, n);
-- assert(all(pointList, q -> (tally apply(m, i -> isOnImage(W, q)))#true / m >= 8/10)) -- too slow for test
///
-* disabled due to issue 2230
TEST /// -- random canonical curve of genus 4, under random projection to P^2 by cubics
setRandomSeed 0
R = CC[x_0..x_3]
I = ideal(random(2,R),random(3,R))
F = random(R^1,R^{3:-3})
assert(numericalImageDegree(F,I) == 18)
assert((numericalHilbertFunction(F,I,18)).hilbertFunctionValue == 1)
///
*-
TEST /// -- Segre + Veronese
setRandomSeed 0
-- Veronese surface P^2 in P^5
(d, n) = (2, 2)
R = CC[x_0..x_n]
F = basis(d, R)
PW = pseudoWitnessSet(F, ideal 0_R)
assert(PW.degree == 4)
assert((pseudoWitnessSet(PW.map, PW.sourceEquations, PW.witnessPointPairs_{1}, PW.imageSlice)).degree == 4)
assert((pseudoWitnessSet(PW.map, PW.sourceEquations, PW.witnessPointPairs_{0,2}, PW.imageSlice)).degree == 4)
I2 = ideal extractImageEquations(F, ideal 0_R, 2, AttemptZZ => true)
S = QQ[y_0..y_(binomial(d+n,d)-1)]
RQ = QQ[x_0..x_n]
J = ker map(RQ, S, basis(d, RQ))
assert((map(ring I2, S, gens ring I2))(J) == I2)
-- Segre P^2 x P^3
(n1, n2) = (2, 4)
R = CC[s_0..s_(n1), t_0..t_(n2)]
F = (ideal(s_0..s_(n1))*ideal(t_0..t_(n2)))_*
I2 = ideal extractImageEquations(F, ideal 0_R, 2, AttemptZZ => true)
RQ = QQ[s_0..s_(n1), t_0..t_(n2)]
S = QQ[y_0..y_((n1+1)*(n2+1)-1)]
J = ker map(RQ, S, (ideal(s_0..s_(n1))*ideal(t_0..t_(n2)))_*)
assert((map(ring I2, S, gens ring I2))(J) == I2)
///
TEST /// -- Iterated Veronese
(d1,d2) = (2,3)
R = CC[x_0..x_(d1)]
I = ideal(x_0*x_2 - x_1^2)
W = first components numericalIrreducibleDecomposition I
I.cache.WitnessSet = W;
S = CC[y_0..y_(binomial(d1+d2,d2)-1)]
F = map(R,S,basis(d2,R))
eps = 1e-10
p1 = first numericalSourceSample(I)
assert(clean(eps, sub(gens I, matrix p1)) == 0)
p2 = first numericalSourceSample(I, W)
assert(clean(eps, sub(gens I, matrix p2)) == 0)
p3 = first numericalSourceSample(I, p1)
assert(clean(eps, sub(gens I, matrix p3)) == 0)
P = numericalSourceSample(I, W, 10)
assert(all(P/matrix, p -> clean(eps, sub(gens I, p)) == 0))
q1 = numericalImageSample(F, I)
S = numericalImageSample(F,I,55);
T = numericalHilbertFunction(F,I,S,2)
assert(T.hilbertFunctionValue == 42)
assert(isWellDefined T)
PW = pseudoWitnessSet(F, I, p1)
assert(isWellDefined PW)
assert(PW.degree == 6)
assert(numericalImageDegree(F, I) == 6)
assert((pseudoWitnessSet(F, I, {PW.witnessPointPairs#0}, PW.imageSlice)).degree == 6)
assert((pseudoWitnessSet(F, I, PW.witnessPointPairs, PW.imageSlice)).degree == 6)
///
TEST /// -- Orthogonal group O(n)
setRandomSeed 0
n = 4
R = CC[x_0..x_(n^2-1)]
A = genericMatrix(R,n,n)
I = ideal(A*transpose A - id_(R^n));
F = vars R
p = point id_((coefficientRing R)^n)
assert(numericalImageDim(F,I,p) == binomial(n,2))
degSOn = 2^(n-1)*det matrix table(floor(n/2), floor(n/2), (i,j) -> binomial(2*n - 2*i - 2*j - 4, n - 2*i - 2))
elapsedTime PW = pseudoWitnessSet(F,I,p, Repeats=>2, Threshold=>3, MaxThreads=>allowableThreads) -- ~ 40 seconds
assert(numericalImageDegree PW == degSOn)
///
TEST /// -- Twisted cubic projections
-- no-check-flag #2183
R = CC[x_0..x_3]
I = monomialCurveIdeal(R, {1,2,3})
F1 = random(R^1, R^{3:-1})
p = numericalSourceSample I
imagePts = numericalImageSample(F1, I, 10);
assert(numericalImageDim(F1, I, p#0) == 2)
assert((numericalHilbertFunction(F1, I, imagePts, 2)).hilbertFunctionValue == 0)
assert((numericalHilbertFunction(F1, I, imagePts, 3)).hilbertFunctionValue == 1)
F2 = (gens R)_{0,2,3}
T = numericalHilbertFunction(F2, I, 3)
nodalCubic = ideal extractImageEquations(T, AttemptZZ => true)
S = ring nodalCubic
assert(nodalCubic == ideal(S_1^3 - S_0*S_2^2))
F3 = (gens R)_{0,1,2}
assert((numericalHilbertFunction(F3, I, 2)).hilbertFunctionValue == 1)
assert((pseudoWitnessSet(F2, I, p#0)).degree == 3)
///
TEST /// -- 3x3 matrices with double eigenvalue
S = QQ[a_(0,0)..a_(2,2), lambda, mu]
B = transpose genericMatrix(S,3,3)
J = ideal(B*transpose(B) - id_(S^3), det(B)-1)
n = B*diagonalMatrix{lambda,lambda,mu}*transpose(B)
T = QQ[p_(0,0),p_(0,1),p_(0,2),p_(1,1),p_(1,2),p_(2,2)]
J = ker map(S/J,T,{n_(0,0),n_(0,1),n_(0,2),n_(1,1),n_(1,2),n_(2,2)})
R = CC[a_(0,0)..a_(2,2), lambda, mu]
A = transpose genericMatrix(R,3,3)
I = ideal(A*transpose(A) - id_(R^3), det(A)-1)
m = A*diagonalMatrix{lambda,lambda,mu}*transpose(A)
F = {m_(0,0),m_(0,1),m_(0,2),m_(1,1),m_(1,2),m_(2,2)}
p = point{flatten entries diagonalMatrix {-1,-1,1} | {-1_CC, 1}}
assert(numericalImageDim(F,I,p) == dim J)
assert((pseudoWitnessSet(F,I,p)).degree == degree J)
///
TEST /// -- Numerical nullity tests
assert(numericalNullity(matrix{{2, 1}, {0, 1e-7}}, Precondition => false) == 1)
assert(numericalNullity(map(CC^2,CC^2,0)) == 2)
assert(numericalNullity(id_(CC^2)) == 0)
assert(numericalNullity(random(CC^2,CC^2)) == 0)
assert(numericalNullity(random(CC^0,CC^2)) == 2)
assert(numericalNullity(random(CC^2,CC^0)) == 0)
assert(numericalNullity(random(CC^0,CC^0)) == 0)
///
TEST /// -- approxPoint tests
(n,r) = (4,5)
R = QQ[x_(1,1)..x_(n,r)]
A = transpose genericMatrix(R,r,n)
I1 = ideal(A*transpose A - (r/n)*id_(R^n))
I2 = ideal apply(entries transpose A, row -> sum(row, v -> v^2) - 1)
I = I1 + I2 -- funtf variety
-- setRandomSeed 5
elapsedTime q = first numericalSourceSample(I, Software => I -> realPoint(I, Iterations => 100))
assert(norm evaluate(gens I, q) < 1e-5)
///
|