1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
|
phcPresent := run ("type phc >/dev/null 2>&1") === 0
phcVersion := if phcPresent then replace("PHCv([0-9.]+) .*\n","\\1",get "! phc --version")
phcVersionNeeded := "2.3.80"
phcPresentAndModern := phcPresent and match("^[0-9.]+$",phcVersion) and phcVersion >= phcVersionNeeded
newPackage(
"NumericalSchubertCalculus",
Version => "1.17",
Date => "Sep 2020",
Authors => {
{Name => "Anton Leykin",
Email => "leykin@math.gatech.edu",
HomePage => "http://people.math.gatech.edu/~aleykin3"},
{Name => "Abraham Martin del Campo",
Email => "abraham.mc@cimat.mx",
HomePage => "http://www.cimat.mx/~abraham.mc"},
{Name => "Frank Sottile",
Email => "sottile@math.tamu.edu",
HomePage => "http://www.math.tamu.edu/~sottile"},
{Name => "Ravi Vakil",
Email => "vakil@math.stanford.edu",
HomePage => "http://math.stanford.edu/~vakil"},
{Name => "Jan Verschelde",
Email => "jan@math.uic.edu",
HomePage => "http://www.math.uic.edu/~jan/"}
},
Headline => "numerical methods in Schubert Calculus",
PackageImports => {
"PHCpack",
"NumericalAlgebraicGeometry",
"MonodromySolver",
"Schubert2"
},
AuxiliaryFiles => true,
CacheExampleOutput => true,
OptionalComponentsPresent => phcPresentAndModern,
DebuggingMode => false
)
debug NumericalAlgebraicGeometry
export {
"changeFlags",
"resetStatistics",
"printStatistics",
"setVerboseLevel",
"solveSchubertProblem",
"OneHomotopy"
}
protect Board
protect IsResolved
protect Fathers
protect Children
protect FlagM
protect CriticalRow
protect Solutions
protect SolutionsSuperset -- temporary
-- NC means no checker in that column
-- 16.09.29: Frank thinks we should choose one or the other, but not both
NC = infinity
-- OUR FIELD
FFF = QQ
FFF = RR
FFF = CC
--FFF = CC_53
ERROR'TOLERANCE = 0.001
NEWTON'TOLERANCE = 10^-10
------------------
-- Debug Level --
------------------
-- 0 = no debug mode (default)
-- 1 = print progress info and time main processes
-- 2 = ... + checkerboard steps info
-- >2 = new experimental stuff kicks in
DBG = 0
---------------------
-- setVerboseLevel --
---------------------
--
-- Function to change different levels of
-- information printed while running
---------------------
-- input: integer number between 0,1,2, or greater
--
setVerboseLevel = method()
setVerboseLevel ZZ := i->DBG=i
--
VERIFY'SOLUTIONS = true
BLACKBOX = false
--INITIALIZING THE KEYS OF NODE
--Board= symbol Board
setDebugOptions = method(Options=>{"debug"=>null,"verify solutions"=>null,"blackbox"=>null})
installMethod(setDebugOptions, o -> () -> scan(keys o, k->if o#k=!=null then
if k == "debug" then DBG = o#k
else if k === "verify solutions" then VERIFY'SOLUTIONS = o#k
else if k === "blackbox" then BLACKBOX = o#k
))
load "NumericalSchubertCalculus/PHCpack-LRhomotopies.m2"
load "NumericalSchubertCalculus/pieri.m2"
load "NumericalSchubertCalculus/service-functions.m2"
--load "NumericalSchubertCalculus/UnderDevelopment/galois.m2"
--------------------------------------
-- produces a matrix that parametrizes
-- the "big cell" of Gr(k,n)
------------------------------
bigCellLocalCoordinates = method()
bigCellLocalCoordinates(ZZ,ZZ) := (k,n) -> (
x := symbol x;
R := FFF(monoid[x_(1,1)..x_(n-k,k)]);
transpose genericMatrix(R,k,n-k) || map(R^k)
)
-----------------------------
-- Numerical LR-Homotopies
-----------------------------
---------------------
-- redChkrPos
--
-- given two brackets, computes the positions of the
-- red checkers at the start of a checkerboard game
---------------------
-- input: two Schubert conditions l and m written
-- as brackets the Grassmannian G(k,n)
--
-- Output: checkboard coordinates for the
-- red checkers
---------------------
-- example: for {2,1}*{2} in G(3,6)
--
--partition2bracket({2,1},3,6)
-- o = {2, 4, 6}
--partition2bracket({2},3,6)
-- o = {2, 5, 6}
--redChkrPos({2,4,6},{2,5,6},3,6)
-- o = {infinity, 5, infinity, 4, infinity, 1}
--------------------
redChkrPos = method(TypicalValue => List)
redChkrPos(List,List,ZZ,ZZ) := (l,m,k,n) -> (
-- input the Schubert conditions l and m
-- as bracket
-- input the Grassmannian G(k,n)
m = reverse m;
board := for i to n-1 list NC;
redPos := new MutableList from board;
apply(#l, j -> redPos#(l#j-1) = m#j-1);
toList redPos
)
----------------------------------------------------
-- moveRed
--
-- makes the move of the red checkers during a game
---------------------------------------------------
-- input: {(blackup, blackdown, redposition)}
-- blackup - Coordinates of the ascending black checker
-- blackdown - Coordinates of the descending black checker
-- redpos - List of red checker positions
--
-- output: {(repos,typeofmove,critrow)} or {(repos1,typeofmove1,critrow),(repos2,typeofmove2,critrow)}
-- redpos - Updated list (of lists) of red checker positions
-- typeofmove - {row,column,split}
-- a triple which tells the type of the move we had to perform from
-- the 3x3 table of moves (critical row/diagonal). This is given as a
-- tuple {row,column,split} where split says
-- if you moved or not the red checkers
-- (by 0 and 1 respectively) when there was a split
-- critrow - the critical row
moveRed = method(TypicalValue => List)
moveRed(List,List,List) := (blackup, blackdown, redposition) -> (
------------------------------------------------
-- We need to check first if it is a valid configuration
--
-- (no longer need as it is checked before calling playCheckers) -- Abr. 15.0ct.15
------------------------------------------------
n := #redposition; -- n is the size of the checkboard
split:=0;
critrow := 0;
critdiag := 0;
g:=2; -- g answers where is the red checker in the critical row
r:=2; -- r answers where is the red checker in the critical diagonal
-- r,g is the coordinate of the moving situation in the 3x3 table of moves
indx := new List;
redpos := new MutableList from redposition;
-- find the critical row, and how the red checkers sit with respect to it
indx = for i to n-blackdown#0-1 list n-1-i;
apply(indx, j -> (
if redpos#j === blackdown#1 then (
critrow = j;
if j == blackdown#0 then g=0 else g=1;
)
));
-- find the critical diagonal, and how the red checkers sit with respect to it
indx= for i to blackdown#0-1 list i;
indx = reverse indx;
apply(indx, j->(
if blackdown#0-j+redpos#j == n then(
critdiag = j;
if blackup === {j,redpos#j} then r=0 else r=1;
)
));
if r == 0 then (
redpos#(blackup#0)=redpos#(blackup#0)-1;
if g == 0 then redpos#(blackdown#0) = redpos#(blackdown#0)+1;
if g == 1 then redpos#critrow = redpos#critrow + 1;
) else if r == 1 then (
if g == 0 then(
redpos#critrow = redpos#critdiag;
redpos#critdiag = NC;
redpos#(blackup#0) = blackdown#1;
) else if g == 1 then(
block := 0;
blockindx := for i to critrow-1-critdiag-1 list critrow-1-i;
apply(blockindx, b -> if redpos#critrow < redpos#b and redpos#b < redpos#critdiag then block = 1);
if block != 1 then (
-- switch the rows of the red checkers in the critical diagonal and critical row
-- then, move the left one over to the column of the ascending black checker
redpos#critrow = redpos#critdiag;
redpos#critdiag = NC;
redpos#(blackup#0) = blackdown#1;
split = 1;
);
);
) else if r == 2 and g == 0 then (
redpos#(blackup#0)=redpos#critrow;
redpos#critrow = NC;
);
if split == 0 then {(toList redpos,{r,g,split})} else {(redposition,{r,g,0}), (toList redpos,{r,g,split})}
)
---------------------------------------------------------------------------------
-- moveCheckers
-----------------
-- makes the next move of black and
-- red checkers during a game
-----------------
-- Input:
-- blackred -> array of black and redchecker positions [blackPositions, redPositions]
--
-- Output:
-- a Sequence containing:
-- board --> the new checkerboard [blackCheckers, redCheckers]
-- move --> the type of move that we realized: {i,j,splt} (3x3 table from Ravi's notes)
-- critrow --> the critical row
-----------------------------------
-- Example:
--
-- blackCheckersPosition = {0,1,3,4,5,2};
-- redCheckersPosition = {0, NC, NC, 4, NC, NC};
--
-- moveCheckers [blackCheckersPosition, redCheckersPosition];
-- o = ({[{0, 1, 2, 4, 5, 3}, {0, infinity, infinity, 4, infinity, infinity}, {1, 2, 0}]}, 2)
-------------------------------------
moveCheckers = method(TypicalValue => List)
moveCheckers Array := blackred -> (
blackposition := first blackred;
redposition := last blackred;
n := #redposition; -- n is the size of the board
splitcount:=0;
copies:=0;
-- determine the columns of the descending and ascending black checkers
-- blackdown1 is the column to the right of the column of the lowest black checker
-- blackup1 is the column of the checker that is one row lower than the checker
-- in blackdown1
blackdown1 := position(blackposition, x->x == n-1) + 1;
if blackdown1 == n then return ({},"leaf");
blackup1 := position(blackposition, x-> x == 1+blackposition#blackdown1);
-- Determine the rows of the pair of black checkers that will be sorted. They are row r and
-- r+1 in the paper with r the critical row of the falling checker.
-- n-blackdown1 is one more than the number of checkers in the upper right corner
-- (region A in paper)
-- blackup1 is the number of checkers above and to the left of rising checker (as we are 0-based)
-- Their sum is one more than the number of checkers above the moving pair = row of rising checker
blackup2 := n-blackdown1+blackup1;
blackdown2 := blackup2-1; -- this is the critical row
-- Now we figure out how to move the red checkers
listofredpositions := moveRed({blackup1,blackup2},{blackdown1,blackdown2}, redposition);
blackposition = new MutableList from blackposition;
blackposition#blackup1 = blackposition#blackup1 - 1;
blackposition#blackdown1 = blackposition#blackdown1 + 1;
(
apply(listofredpositions, r-> [toList blackposition,
first r, -- new redposition
last r -- new type of move
]),
blackdown2 --return also the critical row
)
)
----------------------------------------------------
-- Statistics
---------------
-- this function displays some information about
-- the type of moves that are performed in each
-- checkerboard game. These are the redchecker moves
-- encoded in the 9x9 table in the paper, where we
-- denote them by a triplet {i,j,k} where i is the
-- row (0,1, or 2), j is the column (0,1,2) and
-- k is 0 or 1 depending if we have a swap or not
----------
-- NOTE: the move {} indicates to be in the top
-- of a dag, i.e. the beginning of a game
--
-- NOTE: the tracking time we report is the whole
-- time used when tracking
--
-- CAVEAT: printStatistics will display the information
-- about moves performed every time you run
-- a checker board game. Thus, if you use the
-- function solveSchubertProblem twice, the function
-- will report the information of both Tournaments,
-- to avoid that, you need to export the following:
-- resetStatistics()
---------------------------------
resetStatistics = () -> (
stats = new MutableHashTable from
flatten flatten (apply(3,i->apply(3,j->{i,j,0}=>0)) | {{1,1,1}=>0, {}=>0}) |
{ "tracking time" => 0 };
)
resetStatistics()
statsIncrementMove = m -> stats#m = stats#m + 1;
statsIncrementTrackingTime = t -> stats#"tracking time" = stats#"tracking time" + t
printStatistics = () -> (
scan(sort select(keys stats, k->class k === List), k->
<< "# moves of type " << k << " = " << stats#k << endl
);
scan(select(keys stats, k->class k =!= List), k->
<< k << " = " << stats#k << endl
)
)
--------------------------------------------------------
-- playCheckers
-----------------
-- This function takes as input a specific node and plays
-- a checkerboard game between two varieties X1 and X2
--
-- It sets up the game, and then it uses
-- the combinatorial Littlewood Richardson rule to make deformations
-- between the Schubert variety X2 to X1
-- It stores all the information in a HashTable
-------------------
-- To compute X1\cap X2 \cap X3 \cap...\cap Xn
-- we first play the checkers with X1 and X2
--
-- input1:
-- partn1, partn2, two partitions (representing X1 and X2)
-- k,n the Grassmannian where they live
-- Output1:
-- Dag - a Hashtable with all the checkermoves played
--
-------------------
playCheckers = method(TypicalValue => MutableHashTable)
playCheckers(List,List,ZZ,ZZ) := (partn1,partn2,k,n) -> (
all'nodes := new MutableHashTable;
redChkrs :=
if partn1 > partn2 then
redChkrPos(partition2bracket(partn2,k,n),partition2bracket(partn1,k,n),k,n)
else
redChkrPos(partition2bracket(partn1,k,n),partition2bracket(partn2,k,n),k,n);
blackChkrs := reverse toList (0..(n-1)); --initial black positions
if DBG>0 then print "-- playCheckers";
if DBG>1 then print(partn1,partn2);
if DBG>1 then print([blackChkrs, redChkrs]);
if DBG>0 then cpu0 := cpuTime();
-- we call playCheckers recursively
root :=playCheckers ([blackChkrs, redChkrs], null, {}, all'nodes); -- returns the root of the tree
if DBG>0 then << "-- cpu time = " << cpuTime()-cpu0 << endl;
if DBG>1 then print VerticalList keys all'nodes;
root
)
------------------------
-- PlayCheckers will also play the next checkerboard game
-- in the Tournament.
-- Input:
-- board
-- father (the checkergame this game came from)
-- typeofmove - the type of move in the 3x3 table we perform to go to the father
-- all'nodes - the list of games played already
--
-- THIS IS THE RECURSIVE CALL OF PLAYCHECKERS
--
-- Output:
-- Dag --> a HashTable with the following information:
-- Board
-- IsResolved
-- Fathers
-- Children (a HashTable if the condition is not 0-dimensional)
--
----------------------------
playCheckers (Array,Thing,List,MutableHashTable) := (board,father,typeofmove,all'nodes) ->(
-- all'nodes is a HashTable whose keys are boards,
-- and this is where we store all nodes that we have
-- already visited.
--
--------------------------------------------
node'exists := all'nodes#?board; -- check if we already played this game
self := if node'exists
then all'nodes#board -- if so, then glue solutions, otherwise, start a new hashtable
else new MutableHashTable from {
Board => board,
IsResolved => false,
Fathers => {}
};
statsIncrementMove typeofmove; -- here we are collecting statistics for the number of times we see each type of move
if father=!=null then self.Fathers = self.Fathers | {(father,typeofmove)}; -- add the new way to get to this node
if not node'exists then (
--<< "this is node'exists "<< node'exists<<endl;
coordX := makeLocalCoordinates board; -- local coordinates X = (x_(i,j))
if numgens ring coordX > 0 then (
(children,c) := moveCheckers board;
self.CriticalRow = c;
self.Children = apply(children, b -> playCheckers (take(b,2),self,last b,all'nodes));
);
all'nodes#board = self;
);
self
)
-----------------------------------
-- Example:
--
-- We play the game {2,1} vs {1,1,1} in G36
-- Game = playCheckers({2,1},{1,1,1}, 3,6) -- plays the game {2,1} vs. {1,1,1} in G36
-- o = MutableHashTable{Board => [{5, 4, 3, 2, 1, 0}, {infinity, infinity, 5, 3, 1, infinity}]}
-- Children => {MutableHashTable{...5...}}
-- CriticalRow => 4
-- Fathers => {}
-- IsResolved => false
--
-- G = first Game.Children -- this is a Hash table with the first node below the root from above
-- we can now test the recursive call of playCheckers
-- NOTE: the key Fathers has value a list of sequences of fathers and movetypes
--
-- These are the values in G
-- Board = [{4, 5, 3, 2, 1, 0}, {infinity, infinity, 5, 3, 1, infinity}]
-- Children = {MutableHashTable{...5...}}
-- CriticalRow = 3
-- Fathers = {([{5, 4, 3, 2, 1, 0}, {infinity, infinity, 5, 3, 1, infinity}], {2, 2, 0})}
-- IsResolved = false
--
-- playCheckers(G.Board, first first G.Fathers, last first G.Fathers, first Q.Children)
-- o = MutableHashTable{Board => [{4, 5, 3, 2, 1, 0}, {infinity, infinity, 5, 3, 1, infinity}]}
-- Children => {MutableHashTable{...5...}}
-- CriticalRow => 3
-- Fathers => {(MutableHashTable{...5...}, {2, 2, 0})}
-- IsResolved => false
-------------------------------------
-----------------
--- makeLocalCoordinates
--
-- Translates a checkerboard
-- configuration into a matrix with
-- 0's, 1's and variables
-----------------
-- input: an array of black and red checkers
-- in the form [ ListofPositionsBlack, ListofPositionsRed ]
-- output: a matrix with local coordinates
-----------------
-- example:
--
-- blackCheckersPosition = {0,1,3,4,5,2};
-- redCheckersPosition = {0, NC, NC, 4, NC, NC};
--
-- makeLocalCoordinates [blackCheckersPosition, redCheckersPosition]
-- o = | 1 0 |
-- | 0 x_(1,1) |
-- | 0 0 |
-- | 0 x_(3,1) |
-- | 0 1 |
-- | 0 0 |
--
-----------------
makeLocalCoordinates = method(TypicalValue => MutableMatrix)
makeLocalCoordinates Array := blackred ->(
blackposition := first blackred;
redposition := last blackred;
VAR := symbol VAR;
n := #redposition; -- n is the size of the board
-- we find how many black checkers are in northwest to a given red
rowsred := sort select(redposition, r->r=!=NC);
colsred := apply(rowsred, r -> position(redposition, j-> j == r));
E := new MutableHashTable;
for r to #rowsred-1 do(
E#(rowsred#r,r) = 1;
variablerows := take(blackposition,colsred#r+1);
variablerows = select(variablerows, b-> b< rowsred#r);
scan(variablerows, j->(
if member(j,rowsred) and position(redposition, i-> i == j) < colsred#r then
variablerows = delete(j,variablerows);
));
scan(variablerows, col-> (
E#(col,r)=VAR;
));
);
x:= symbol x;
R:=FFF[apply(select(sort keys E, k-> E#k===VAR), k-> x_k)];
X := mutableMatrix(R,n,#rowsred);
scan(keys E, k-> X_k = if E#k === 1 then 1 else x_k);
matrix X
)
load "NumericalSchubertCalculus/LR-resolveNode.m2"
---------------
-- solveSchubertProblem
---------------
-- Function that solves a Schubert problem
-- by first taking two of the conditions,
-- then create a tree/Dag (with nodes) by playing a
-- checker game, then resolve the node numerically
-- using homotopies, and gluing the solutions to each
-- node
---------------
-- input:
-- SchPblm := list of Schubert conditions with general flags
-- {(partition_List, flag_Matrix),...}
-- k,n := the Grassmannian G(k,n)
-- (option) LinAlgebra [default = true]
-- move to user flags via Linear Algebra (if false via homotopy continuation)
-- output:
-- list of solutions
---------------
solveSchubertProblem = method(Options=>{LinearAlgebra=>true})
solveSchubertProblem(List,ZZ,ZZ) := o -> (SchPblm,k,n) ->(
-- SchPblm is a list of sequences with two entries a condition and a flag
-- Check that it does indeed form a Schubert problem, and convert the conditions to partitions (if they were brackets)
SchPblm = ensurePartitions(SchPblm,k,n);
twoconds := take(SchPblm,2);
remaining'conditions'flags := drop(SchPblm,2);
-- take the first two conditions
l1:=verifyLength(first first twoconds,k);
l2:=verifyLength(first last twoconds,k);
F1:=promote(last first twoconds,FFF);
F2:=promote(last last twoconds,FFF);
resetGGstash(); -- resets GGstash in LR-makePolynomials.m2
Slns:={};
checkPartitionsOverlap := (l1+reverse l2)/(i->n-k-i);
if min(checkPartitionsOverlap) < 0 then
Slns
else(
if DBG>1 then print "solveSchubertProblem: transforming flags to (M,Id,...)";
-- resolveNode expects flags to be the following list:
-- flagM, Id, F3'....
--
-- we compute the linear transformations s.t.
-- A*F1 = FlagM*T1
-- A*F2 = ID * T2
ID := id_(FFF^n);
--
-- There is a fundamental difference between the case
-- with only two conditions and the one with 3 or more Schubert conditions
--
LocalFlags1 := {F1,F2};
flgM := matrix;
local LocalFlags2;
if #remaining'conditions'flags == 0 then (
flgM = ID;
LocalFlags2 = {flgM, rsort ID};
) else (
flgM = MovingFlag'at'Root n;
LocalFlags2 = {flgM, ID};
);
At1t2 := moveFlags2Flags(LocalFlags1,LocalFlags2); --Gets the transformations A, T1, T2
A := first At1t2;
-- we update the given flags F3 ... Fm
-- to F3' .. Fm' where Fi' = A*Fi
new'remaining'conditions'flags := apply(
remaining'conditions'flags, CF->(
(C,F):=CF;
(C,A*F)
));
newDag := playCheckers(l1,l2,k,n);
resolveNode(newDag, new'remaining'conditions'flags);
conds := {l1,l2};
-- resolveNode gives a solution in local coords
-- of {l1}*{l2} w.r.t {FlagM, Id}
-- we multiply the solution S by FlagM
-- and we obtain a solution of the Sch. problem
-- {l1,...,lm} with respect to
-- {FlagM, Id, F3',...,Fm'}
--
-- we need to make a change of coordinates back to the user-defined flags
-- that is, send (FlagM,Id)-->(F1,F2), which is done by A^(-1)
-------------------------------
--############ Fork to decide if you want to do this
-- change of flags via homotopy or via Linear Algebra
-- ########################################
if o.LinearAlgebra then(
Ainv := solve(A,ID);
Ainv*flgM*newDag.Solutions
)else(
-- #### NOW THIS IS BROKEN!! because is was based on wrong math
-- we need to use homotopy to transform the solutions to the
-- user defined flags.
--
-- A is the matrix above such that
-- A*F1 = FlagM*T1 (representing the same flag as F1)
-- A*F2 = ID*T2 (representing the same flag as F2)
--LocalFlags1 := {F1,F2};
--LocalFlags2:= {flgM,ID};
T1 := At1t2_1;
T2 := At1t2_2;
scan(remaining'conditions'flags, c-> (
conds = append(conds, first c);
LocalFlags2 = append(LocalFlags2, A*(last c));
LocalFlags1 = append(LocalFlags1, last c);
));
if DBG>1 then (
print "solutions obtained at the root of a node";
print newDag.Solutions;
print "this are the transformations that we apply";
print "before calling changeFlags:";
print(flgM);
print(flgM*newDag.Solutions);
);
changeFlags(flgM*newDag.Solutions, -- these are matrices in absolute coordinates
(conds, LocalFlags2, LocalFlags1), OneHomotopy=>false
)
) --
)
)-- end of solveSchubertProblem
--------- March 24, 2013
-- created a linear homotopy
-- from one set of flags to another
-- by changing column by column
-- for each of the flags
--
-- Later, we can speed up a little
-- by just creating the homotopy
-- between the flags, by changing
-- only the relevant parts of the
-- flag...
--------------------------
---------------------------------
--- solutionToChart
---------------------------------
-- takes a solution matrix in global coordinates
-- and converts it into local coordinates to know
-- what the values of the variables of the local
-- coordinates are, i.e.,
-- writes a solution Matrix in terms
-- of the chart MX (as a list of values
-- of the parameters)
---
-- Input:
-- s -> a nxk matrix representing the
-- solutions of the problem (in global coordinates ?)
-- MX -> the local coordinates of the checkerboard variety
--
-- Output: List of values for the variables in MX
--
---------------------------------
-- Example:
--
-- R = FFF[x_(1,1),x_(3,1)]
-- MX = matrix {{1, 0},
-- {0, x_(1,1)},
-- {0, 0},
-- {0, x_(3,1)},
-- {0, 1},
-- {0, 0}};
-- s = promote(transpose matrix{
-- {1,0,0,0,0,0},
-- {1,3,5,7,1,0}},FFF);
--
-- solutionToChart(s,MX)
-- o = {.115385, .269231}
------
-- s2 = promote(transpose matrix{
-- {2,3,5,7,11,13},
-- {1,4,9,25,49,-1}},FFF);
-- solutionToChart(s2,MX)
--
-- o = {.0755344, .491155}
---------------------------------
solutionToChart = method() -- writes s (a matrix solution) in terms the chart MX (as a list of values of the parameters)
solutionToChart(Matrix, Matrix) := (s,MX) -> (
k := numcols s;
n := numrows s;
a := symbol a;
RMX := ring MX;
R := (coefficientRing RMX)[a_(1,1)..a_(k,k),gens RMX];
G := genericMatrix(R,k,k);
f := flatten entries(s*G - sub(MX,R)); -- linear system in nk vars
nk := n*k;
nParameters := k^2+#gens RMX; -- number of parameters in f
A := map(FFF^nk,FFF^nParameters,(i,j)->(f#i)_(R_j));
b := map(FFF^nk,FFF^1,(i,j)->-(f#i)_(1_R));
X := solve(A,b, ClosestFit=>true);
drop(flatten entries X, k*k) -- drop a_(i,j) coordinates
)
--------------------------
-- toRawSolutions
--
-- Function that takes solutions (in local coordinates) as nxk matrices
-- and writes them into a list of values corresponding to
-- the variables in the local coordinates coordX of the
-- checkerboard variety
--
-- !! This functions is used to express the solutions from
-- matrix form to list form when using homotopies !!
--------------------------
-- Input:
-- coordX -- matrix of 0s,1s, and variables representing
-- the local coordinates of the checkerboard variety
-- X -- an nxk matrix that is a solution of the current incidence problem
--
-- Output:
-- List of values that correspond to the variables in the local coordinates
-------------------------
toRawSolutions = method()
toRawSolutions(Matrix,Matrix) := (coordX,X) -> (
a := flatten entries coordX;
b := flatten entries X;
delete(null, apply(#a, i->if a#i == 1 or a#i == 0 then null else b#i))
)
------------------
-- normalizeColumn
------------------
-- this function multiplies a column C of
-- a matrix by the multiplicative inverse of
-- the element C_r at row r.
------------------
-- Input:
-- X'' - the matrix to be normalized
-- r - the row of the elt that becomes 1
-- j - the column to be normalized
-----------------
normalizeColumn = method(TypicalValue => Matrix)
normalizeColumn(Matrix,ZZ,ZZ) := (X,r,j) -> (
k := numgens source X;
if j=!=null then(
X = X_{0..j-1} | (1/X_(r,j))*X_{j} | X_{j+1..k-1};
--X''_(r,j) =-1/(1+X_(r,j)); -- error in Ravi's notes: should be -X_(r+1,j)/(1+X_(r,j))
--X''_(r+1,j) = 1; -- this is correct, but is also already taken care of
);
matrix X
)
-----------------
-- redCheckersColumnReduce
-----------------
-- This function reduce specific column
-- using elementary column operations
--
-- These reductions are necessary for the
-- change of coordinates in Ravi's notes
-----------------
redCheckersColumnReduce = method(TypicalValue => Matrix)
redCheckersColumnReduce(Matrix, MutableHashTable) := (X'', father) -> (
k := numgens source X'';
n := numgens target X'';
red := delete(NC,last father.Board);
redSorted := sort red;
r := father.CriticalRow;
j := position(redSorted, i-> i==r+1);
if j=!=null then(
X'' = mutableMatrix X'';
crit'col := position(red, i->i==r+1);
for jj from j+1 to k-1 do
-- reduce the columns for red checkers that have higher number and "see" the red checker in the row r+1
if position(red, i->red#jj == i) > crit'col then (
c := X''_(r+1,jj)/X''_(r+1,j);
scan(n, i->X''_(i,jj) = X''_(i,jj) - c*X''_(i,j))
)
);
matrix X''
)
redCheckersColumnReduceSwap = method(TypicalValue => Matrix)
redCheckersColumnReduceSwap(Matrix, MutableHashTable) := (X'', father) -> (
k := numgens source X'';
n := numgens target X'';
red := delete(NC,last father.Board);
redSorted := sort red;
r := father.CriticalRow;
j := position(redSorted, i-> i>=r+1);
rowj := redSorted#j; -- the row of the lower swapped red checker (in the father)
if j=!=null then(
X'' = mutableMatrix X'';
for jj from j+1 to k-1 do(
-- reduce the columns for red checkers that have higher number and "see" the red checker in the row r+1
scan(n, i-> (
X''_(i,jj) = X''_(i,jj) - X''_(rowj,jj)*X''_(i,j);
));
)
);
matrix X''
)
redCheckersColumnReduce2 = method(TypicalValue => Matrix)
redCheckersColumnReduce2(Matrix, MutableHashTable) := (X'', father) -> (
k := numgens source X'';
n := numgens target X'';
X'' = mutableMatrix X'';
red := delete(NC,last father.Board);
redSorted := sort red; -- numbers of the rows where red checkers are
apply(#redSorted, r->( -- column r is to be reduced
-- -- find the redcheckers below that can see the current redChecker
-- witnessReds:=select(drop(red,r), i->i>red#r);
-- j:={};
-- scan(witnessReds, i-> j=append(j,position(redSorted, l-> l==i)));
col'of'r'on'board := position(last father.Board, i->i==redSorted#r);
reducers := select(0..r-1,
j->position(last father.Board, i->i==redSorted#j)<col'of'r'on'board
);
scan(reducers, j->(
-- reduce the columns for red checkers that have higher number and "see" the red checker in the row r+1
scan(n, i-> (
X''_(i,r) = X''_(i,r) - X''_(redSorted#j,r)*X''_(i,j);
));
));
));
matrix X''
)
-------------------
-- columnReduce
-------------------
-- Given a matrix of solutions in checkerboard
-- coordinates (w.r.t lambda1,lambda2) we do
-- column row reduction to the solutions:
--
-- Given a solution matrix and the bracket (where
-- the pivots are) makes 0's in the columns right to the pivots
-------------------
-- input: S -- matrix of solutions
-- assumes the matrix lives in the Schubert cell for l with
-- the standard flag, but not all pivots are 1.
-- b -- the bracket corresponding to the standard flag
-- this is just a list of the parts of the flag that are affected by a partition lambda
-- (equivalent to a partition with k parts of size <= n-k)
-- (the default bracket is
-- output: Sred --matrix reduced
-------------------
columnReduce=method(TypicalValue=> Matrix )
columnReduce(Matrix,List) := (S,b)->(
k := numColumns S;
n := numRows S;
-- we use the bracket instead of the partition
-- b := output2bracket (redcheckers);
-- b := partition2bracket(l,k,n);
M:= S;
apply(k-1, col->(
-- editing with respect to the pivot of the (col)th column
r := b_(col)-1; --row where the ith pivot is
a := S_(r,col); --most likely, this will be 1 (in our application because we always have the standard flag)
--rescale the column
N := M_{0..col-1}|a^(-1)*M_{col};
scan(col+1..k-1, j->(
a2 := S_(r,j);
N=N|(-a2*N_{col}+M_{j});
));
M = N;
));
return M
)
TEST ///
load "NumericalSchubertCalculus/TST/columnReduce.m2"
///
load "NumericalSchubertCalculus/LR-makePolynomials.m2"
load "NumericalSchubertCalculus/LR-ParameterHomotopy.m2"
-----------------------------
-- Tracks a homotopy
-----------------------------
-- Input:
-- H -- a list of polynomials in k[xx,t];
-- S = {{...},...,{...}} -- a list of solutions to H at t=0
-- Output:
-- T - a list of Points that are solutions to H at t=1
-- Caveat:
-- H should be _linear_ in t
------------------------------
trackHomotopyNSC = method(TypicalValue=>List)
trackHomotopyNSC (Matrix,List) := (H,S) -> (
Rt := ring H;
t := Rt_0;
R := (coefficientRing Rt)[drop(gens Rt,1)];
map't'0 := map(R, Rt, matrix{{0_FFF}}|vars R);
map't'1 := map(R, Rt, matrix{{1_FFF}}|vars R);
correctorTolerance := 0.1*getDefault NumericalAlgebraicGeometry$CorrectorTolerance;
all'sols := select(
track(first entries map't'0 H, first entries map't'1 H, S,
NumericalAlgebraicGeometry$CorrectorTolerance=>correctorTolerance
),
s->status s === Regular
);
nAttempts := 3;
while nAttempts > 0 and #all'sols < #S do (
sols := track(first entries map't'0 H, first entries map't'1 H, S,
NumericalAlgebraicGeometry$CorrectorTolerance=>correctorTolerance
);
all'sols = solutionsWithMultiplicity(all'sols|select(sols, s->status s===Regular));
nAttempts = nAttempts - 1;
correctorTolerance = 0.1 * correctorTolerance;
-* -- alternative rerun strategy: piecewise linear path
-- (gets other solutions though... need to sync between undegenerations?)
t' := exp(2*pi*ii*random RR);
H1 := sub(H,matrix{{t'*t}|drop(gens Rt,1)});
sols' := select(track(
first entries map't'0 H1,
first entries map't'1 H1,
S,
NumericalAlgebraicGeometry$CorrectorTolerance=>correctorTolerance
), s->status s === Regular);
H2 := sub(H,matrix{{t+(1-t)*t'}|drop(gens Rt,1)});
sols := select(track(
first entries map't'0 H2,
first entries map't'1 H2, sols',
NumericalAlgebraicGeometry$CorrectorTolerance=>correctorTolerance
), s->status s === Regular);
all'sols = solutionsWithMultiplicity(all'sols|sols);
nAttempts = nAttempts - 1;
*-
);
if #all'sols < #S then error "trackHomotopy: singularity encountered";
if #all'sols > #S then error "trackHomotopy: more solutions found than expected";
if VERIFY'SOLUTIONS then verifyTarget(H, all'sols);
all'sols
)
------------------------
-- isRedCheckerInRegionE
------------------------
-- Binary function that tells if a given red checker, indicated by its row number,
-- lies in the `critical diagonal', also referred to as `Region E'. This is explained in
-- the paper. This is equivalent to the column C of this red checker satisfying
-- a \leq C < b, where a is the column of the rising black checker and b that of
-- the falling (these are in rows r and r+1, where r is the `critical row'
--
-- This function is needed to set up the homotopy in (at least) case II (again, see the paper).
----------------------------
-- Input:
-- i = coordinates of a red checker
-- r = critical row
-- black = black checkers on the board
---------------------------
-- Example:
--
-- !! Show a better example!!
--
--blackCheckersPosition = {0,1,3,4,5,2};
--redCheckersPosition = {0, NC, NC, 4, NC, NC};
--
-- simNode = new MutableHashTable
-- simNode.Board = [{0, 1, 2, 4, 5, 3}, {0, infinity, infinity, 4, infinity, infinity}]
-- simNode.CriticalRow = 2;
-- isRedCheckerInRegionE(1,simNode)
---------------------------
isRedCheckerInRegionE = method()
isRedCheckerInRegionE(ZZ,MutableHashTable) := (i,node) -> (
r := node.CriticalRow;
black := first node.Board;
e0 := position(black, b->b==r+1);
e1 := position(black, b->b==r);
i < e1 and i >= e0
)
-----------------------------
-- end Numerical LR-Homotopies
-----------------------------
-------------------
-- Documentation --
-------------------
beginDocumentation()
load "NumericalSchubertCalculus/doc.m2"
load "NumericalSchubertCalculus/PHCpack-LRhomotopies-doc.m2"
-------------------
-- Tests --
-------------------
TEST ///
load "NumericalSchubertCalculus/TST/4lines.m2"
///
TEST ///
load "NumericalSchubertCalculus/TST/2e4-G26.m2"
///
TEST ///
load "NumericalSchubertCalculus/TST/21e3-G36.m2"
///
TEST ///
load "NumericalSchubertCalculus/TST/4LinesOsculating_changeFlags.m2"
///
end ---------------------------------------------------------------------
-- END OF THE PACKAGE
---------------------------------------------------------------------------
restart
check "NumericalSchubertCalculus"
installPackage "NumericalSchubertCalculus"
installPackage ("NumericalSchubertCalculus", RerunExamples=>true)
installPackage ("NumericalSchubertCalculus", RunExamples=>false)
--n = 6;
--SchubProb = matrix{{3, 2,4,6}};
--(f, p, s) := LRtriple(n,SchubProb);
--(R, pols, sols, fixedFlags, movedFlag, solutionPlanes) = parseTriplet(f, p, s)
viewHelp NumericalSchubertCalculus
--first PieriHomotopies(2,2)
|