File: NumericalSchubertCalculus.m2

package info (click to toggle)
macaulay2 1.21%2Bds-3
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 133,096 kB
  • sloc: cpp: 110,377; ansic: 16,306; javascript: 4,193; makefile: 3,821; sh: 3,580; lisp: 764; yacc: 590; xml: 177; python: 140; perl: 114; lex: 65; awk: 3
file content (1017 lines) | stat: -rw-r--r-- 36,963 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
phcPresent := run ("type phc >/dev/null 2>&1") === 0
phcVersion := if phcPresent then replace("PHCv([0-9.]+) .*\n","\\1",get "! phc --version")
phcVersionNeeded := "2.3.80"
phcPresentAndModern := phcPresent and match("^[0-9.]+$",phcVersion) and phcVersion >= phcVersionNeeded

newPackage(
    "NumericalSchubertCalculus",
    Version => "1.17", 
    Date => "Sep 2020",
    Authors => {
	{Name => "Anton Leykin", 
	    Email => "leykin@math.gatech.edu", 
	    HomePage => "http://people.math.gatech.edu/~aleykin3"},
	{Name => "Abraham Martin del Campo", 
	    Email => "abraham.mc@cimat.mx", 
	    HomePage => "http://www.cimat.mx/~abraham.mc"},
	{Name => "Frank Sottile", 
	    Email => "sottile@math.tamu.edu", 
	    HomePage => "http://www.math.tamu.edu/~sottile"},
	{Name => "Ravi Vakil",
		Email => "vakil@math.stanford.edu",
		HomePage => "http://math.stanford.edu/~vakil"},
	{Name => "Jan Verschelde",
		Email => "jan@math.uic.edu",
		HomePage => "http://www.math.uic.edu/~jan/"}
	},
    Headline => "numerical methods in Schubert Calculus",
    PackageImports => {
	"PHCpack",
	"NumericalAlgebraicGeometry",
	"MonodromySolver",
        "Schubert2"
	},
    AuxiliaryFiles => true,
    CacheExampleOutput => true,
    OptionalComponentsPresent => phcPresentAndModern,
    DebuggingMode => false
    )
debug NumericalAlgebraicGeometry
export { 
   "changeFlags",
   "resetStatistics",
   "printStatistics",
   "setVerboseLevel", 
   "solveSchubertProblem",
   "OneHomotopy"
   }
protect Board
protect IsResolved
protect Fathers
protect Children
protect FlagM
protect CriticalRow
protect Solutions
protect SolutionsSuperset -- temporary

-- NC means no checker in that column
--  16.09.29:  Frank thinks we should choose one or the other, but not both
NC = infinity

-- OUR FIELD
FFF = QQ
FFF = RR
FFF = CC
--FFF = CC_53
ERROR'TOLERANCE = 0.001
NEWTON'TOLERANCE = 10^-10
------------------
-- Debug Level --
------------------
-- 0 = no debug mode (default)
-- 1 = print progress info and time main processes
-- 2 = ... + checkerboard steps info
-- >2 = new experimental stuff kicks in
DBG = 0

---------------------
-- setVerboseLevel --
---------------------
--
-- Function to change different levels of 
-- information printed while running
---------------------
-- input: integer number between 0,1,2, or greater
--
setVerboseLevel = method()
setVerboseLevel ZZ := i->DBG=i
--
VERIFY'SOLUTIONS = true
BLACKBOX = false

--INITIALIZING THE KEYS OF NODE
--Board= symbol Board


setDebugOptions = method(Options=>{"debug"=>null,"verify solutions"=>null,"blackbox"=>null})
installMethod(setDebugOptions, o -> () -> scan(keys o, k->if o#k=!=null then
	if k == "debug" then DBG = o#k
	else if k === "verify solutions" then VERIFY'SOLUTIONS = o#k
	else if k === "blackbox" then BLACKBOX = o#k
	))
 
load "NumericalSchubertCalculus/PHCpack-LRhomotopies.m2"
load "NumericalSchubertCalculus/pieri.m2"
load "NumericalSchubertCalculus/service-functions.m2"
--load "NumericalSchubertCalculus/UnderDevelopment/galois.m2"

--------------------------------------
-- produces a matrix that parametrizes
-- the "big cell" of Gr(k,n)
------------------------------
bigCellLocalCoordinates = method()
bigCellLocalCoordinates(ZZ,ZZ) := (k,n) -> (
    x := symbol x;
    R := FFF(monoid[x_(1,1)..x_(n-k,k)]);
    transpose genericMatrix(R,k,n-k) || map(R^k)
    )

-----------------------------
-- Numerical LR-Homotopies
-----------------------------

---------------------
-- redChkrPos 
--
-- given two brackets, computes the positions of the 
-- red checkers at the start of a checkerboard game
---------------------
-- input: two Schubert conditions l and m written 
--	   as brackets the Grassmannian G(k,n)
--
-- Output: checkboard coordinates for the 
--         red checkers
---------------------
-- example: for {2,1}*{2} in G(3,6)
--
--partition2bracket({2,1},3,6)
--     o = {2, 4, 6}
--partition2bracket({2},3,6)
--     o = {2, 5, 6}
--redChkrPos({2,4,6},{2,5,6},3,6)  
--     o = {infinity, 5, infinity, 4, infinity, 1}
--------------------
redChkrPos = method(TypicalValue => List)
redChkrPos(List,List,ZZ,ZZ) := (l,m,k,n) -> (
     -- input the Schubert conditions l and m
     -- as bracket
     -- input the Grassmannian G(k,n)
     m = reverse m;
     board := for i to n-1 list NC;
     redPos := new MutableList from board;
     apply(#l, j -> redPos#(l#j-1) = m#j-1);
     toList redPos
)

----------------------------------------------------
-- moveRed
--
-- makes the move of the red checkers during a game
---------------------------------------------------
-- input: {(blackup, blackdown, redposition)}
--       blackup - Coordinates of the ascending black checker
--       blackdown - Coordinates of the descending black checker
--       redpos - List of red checker positions
--
-- output: {(repos,typeofmove,critrow)} or {(repos1,typeofmove1,critrow),(repos2,typeofmove2,critrow)}
--       redpos - Updated list (of lists) of red checker positions
--       typeofmove - {row,column,split}
--                    a triple which tells the type of the move we had to perform from
--                    the 3x3 table of moves (critical row/diagonal). This is given as a 
--                    tuple {row,column,split} where split says
--                    if you moved or not the red checkers
--                    (by 0 and 1 respectively) when there was a split
--       critrow - the critical row
moveRed = method(TypicalValue => List)
moveRed(List,List,List) := (blackup, blackdown, redposition) -> (
    ------------------------------------------------
    -- We need to check first if it is a valid configuration
    --
    -- (no longer need as it is checked before calling playCheckers) -- Abr. 15.0ct.15 
    ------------------------------------------------
    n := #redposition; -- n is the size of the checkboard
    split:=0;
    critrow := 0;
    critdiag := 0;
    g:=2; -- g answers where is the red checker in the critical row
    r:=2; -- r answers where is the red checker in the critical diagonal
    -- r,g is the coordinate of the moving situation in the 3x3 table of moves
    indx := new List;
    redpos := new MutableList from redposition;
    -- find the critical row, and how the red checkers sit with respect to it
    indx = for i to n-blackdown#0-1 list n-1-i;
    apply(indx, j -> (
	    if redpos#j === blackdown#1 then (
	       	critrow = j;
	       	if j == blackdown#0 then g=0 else g=1;
	  	) 	
     	    ));    
    -- find the critical diagonal, and how the red checkers sit with respect to it
    indx= for i to blackdown#0-1 list i;
    indx = reverse indx;
    apply(indx, j->(
	    if blackdown#0-j+redpos#j == n then(
	       	critdiag = j;
	       	if blackup === {j,redpos#j} then r=0 else r=1;
	  	)
     	    ));
    if r == 0 then (
	redpos#(blackup#0)=redpos#(blackup#0)-1;
	if g == 0 then redpos#(blackdown#0) = redpos#(blackdown#0)+1;
	if g == 1 then redpos#critrow = redpos#critrow + 1;
     	) else if r == 1 then (
	if g == 0 then(
	    redpos#critrow = redpos#critdiag;
	    redpos#critdiag = NC;
	    redpos#(blackup#0) = blackdown#1;
	    ) else if g == 1 then(
	    block := 0;
	    blockindx := for i to critrow-1-critdiag-1 list critrow-1-i;
	    apply(blockindx, b -> if redpos#critrow < redpos#b and redpos#b < redpos#critdiag then block = 1);
	    if block != 1 then (
		-- switch the rows of the red checkers in the critical diagonal and critical row
		-- then, move the left one over to the column of the ascending black checker
		redpos#critrow = redpos#critdiag;
		redpos#critdiag = NC;
		redpos#(blackup#0) = blackdown#1;
		split = 1;
	       	);
	    );
     	) else if r == 2 and g == 0 then (
	redpos#(blackup#0)=redpos#critrow;
	redpos#critrow = NC;
     	);
    if split == 0 then {(toList redpos,{r,g,split})} else {(redposition,{r,g,0}), (toList redpos,{r,g,split})}
    )

---------------------------------------------------------------------------------
-- moveCheckers
-----------------
-- makes the next move of black and 
-- red checkers during a game
-----------------
-- Input:
--    blackred -> array of black and redchecker positions [blackPositions, redPositions]
--
-- Output:
--         a Sequence containing:
--    board --> the new checkerboard [blackCheckers, redCheckers]
--    move --> the type of move that we realized: {i,j,splt} (3x3 table from Ravi's notes) 
--    critrow --> the critical row
-----------------------------------
-- Example:
--
-- blackCheckersPosition = {0,1,3,4,5,2};
-- redCheckersPosition = {0, NC, NC, 4, NC, NC};
--
-- moveCheckers [blackCheckersPosition, redCheckersPosition];
--    o =  ({[{0, 1, 2, 4, 5, 3}, {0, infinity, infinity, 4, infinity, infinity}, {1, 2, 0}]}, 2)
-------------------------------------
moveCheckers = method(TypicalValue => List)
moveCheckers Array := blackred -> (
     blackposition := first blackred;
     redposition := last blackred;
     n := #redposition; -- n is the size of the board
     splitcount:=0;
     copies:=0;
     -- determine the columns of the descending and ascending black checkers
     -- blackdown1 is the column to the right of the column of the lowest black checker
	 -- blackup1 is the column of the checker that is one row lower than the checker 
	 --  in blackdown1 
     blackdown1 := position(blackposition, x->x == n-1) + 1;
     if blackdown1 == n then return ({},"leaf");
     blackup1 := position(blackposition, x-> x == 1+blackposition#blackdown1);
     -- Determine the rows of the pair of black checkers that will be sorted.  They are row r and 
     --    r+1 in the paper with r the critical row of the falling checker.
     --  n-blackdown1 is one more than the number of checkers in the upper right corner 
     --     (region A in paper)
     --  blackup1 is the number of checkers above and to the left of rising checker (as we are 0-based)
     --  Their sum is one more than the number of checkers above the moving pair = row of rising checker
     blackup2 := n-blackdown1+blackup1;
     blackdown2 := blackup2-1; -- this is the critical row 
     -- Now we figure out how to move the red checkers
     listofredpositions := moveRed({blackup1,blackup2},{blackdown1,blackdown2}, redposition);
     blackposition = new MutableList from blackposition;
     blackposition#blackup1 = blackposition#blackup1 - 1;
     blackposition#blackdown1 = blackposition#blackdown1 + 1;
     (
	 apply(listofredpositions, r-> [toList blackposition, 
		 first r, -- new redposition
		 last r -- new type of move
		 ]), 
	 blackdown2 --return also the critical row
	 )
)

----------------------------------------------------
-- Statistics
---------------
-- this function displays some information about
-- the type of moves that are performed in each
-- checkerboard game. These are the redchecker moves
-- encoded in the 9x9 table in the paper, where we
-- denote them by a triplet {i,j,k} where i is the
-- row (0,1, or 2), j is the column (0,1,2) and
-- k is 0 or 1 depending if we have a swap or not
----------
-- NOTE: the move {} indicates to be in the top
--       of a dag, i.e. the beginning of a game
--
-- NOTE: the tracking time we report is the whole
--       time used when tracking 
--
-- CAVEAT: printStatistics will display the information
--        about moves performed every time you run
--        a checker board game. Thus, if you use the
--        function solveSchubertProblem twice, the function 
--        will report the information of both Tournaments,
--        to avoid that, you need to export the following:
--            resetStatistics()
---------------------------------
resetStatistics = () -> (
    stats =  new MutableHashTable from 
    flatten flatten (apply(3,i->apply(3,j->{i,j,0}=>0)) | {{1,1,1}=>0, {}=>0}) | 
    { "tracking time" => 0 };
    )  
resetStatistics()

statsIncrementMove = m -> stats#m = stats#m + 1;
statsIncrementTrackingTime = t -> stats#"tracking time" = stats#"tracking time" + t
printStatistics = () -> (
    scan(sort select(keys stats, k->class k === List), k-> 
    	<< "# moves of type " << k << " = " << stats#k << endl
	);
    scan(select(keys stats, k->class k =!= List), k-> 
	<< k << " = " << stats#k << endl
	)
    )

--------------------------------------------------------
-- playCheckers
-----------------
-- This function takes as input a specific node and plays
-- a checkerboard game between two varieties X1 and X2
--
-- It sets up the game, and then it uses
-- the combinatorial Littlewood Richardson rule to make deformations
-- between the Schubert variety X2 to X1
-- It stores all the information in a HashTable
-------------------
-- To compute X1\cap X2 \cap X3 \cap...\cap Xn
-- we first play the checkers with X1 and X2
--
-- input1:
--         partn1, partn2, two partitions (representing X1 and X2)
--         k,n the Grassmannian where they live
-- Output1:
--         Dag - a Hashtable with all the checkermoves played
--
-------------------
playCheckers = method(TypicalValue => MutableHashTable)
playCheckers(List,List,ZZ,ZZ) := (partn1,partn2,k,n) -> (
     all'nodes := new MutableHashTable;
     redChkrs := 
      if partn1 > partn2 then
     	  redChkrPos(partition2bracket(partn2,k,n),partition2bracket(partn1,k,n),k,n)
      else 
          redChkrPos(partition2bracket(partn1,k,n),partition2bracket(partn2,k,n),k,n);
     blackChkrs := reverse toList (0..(n-1)); --initial black positions
     if DBG>0 then print "-- playCheckers";
     if DBG>1 then print(partn1,partn2);
     if DBG>1 then print([blackChkrs, redChkrs]);
     if DBG>0 then cpu0 := cpuTime();
     -- we call playCheckers recursively
     root :=playCheckers ([blackChkrs, redChkrs], null, {}, all'nodes);  -- returns the root of the tree
     if DBG>0 then << "-- cpu time = " << cpuTime()-cpu0 << endl;
     if DBG>1 then print VerticalList keys all'nodes;
     root
)

------------------------
-- PlayCheckers will also play the next checkerboard game
-- in the Tournament.
-- Input: 
--       board 
--       father (the checkergame this game came from)
--       typeofmove - the type of move in the 3x3 table we perform to go to the father
--       all'nodes - the list of games played already
--
-- THIS IS THE RECURSIVE CALL OF PLAYCHECKERS
--
-- Output: 
--      Dag --> a HashTable with the following information:
--           	     Board
--           	     IsResolved
--           	     Fathers
--           	     Children (a HashTable if the condition is not 0-dimensional)
-- 
----------------------------
playCheckers (Array,Thing,List,MutableHashTable) := (board,father,typeofmove,all'nodes) ->(
    -- all'nodes is a HashTable whose keys are boards,
    -- and this is where we store all nodes that we have
    -- already visited.
    --
    --------------------------------------------
     node'exists := all'nodes#?board; -- check if we already played this game
     self := if node'exists  
     then all'nodes#board  -- if so, then glue solutions, otherwise, start a new hashtable
     else new MutableHashTable from {
	  Board => board, 
	  IsResolved => false,
	  Fathers => {}
	  };
     statsIncrementMove typeofmove; -- here we are collecting statistics for the number of times we see each type of move
     if father=!=null then self.Fathers = self.Fathers | {(father,typeofmove)}; -- add the new way to get to this node
     if not node'exists then (
         --<< "this is node'exists "<< node'exists<<endl;
	 coordX := makeLocalCoordinates board; -- local coordinates X = (x_(i,j))
     	 if numgens ring coordX > 0 then ( 
     	     (children,c) := moveCheckers board;
     	     self.CriticalRow = c;
     	     self.Children = apply(children, b -> playCheckers (take(b,2),self,last b,all'nodes));
	     );
	 all'nodes#board = self;
	 );
     self
)

-----------------------------------
-- Example:
--
-- We play the game {2,1} vs {1,1,1} in G36
-- Game = playCheckers({2,1},{1,1,1}, 3,6) -- plays the game {2,1} vs. {1,1,1} in G36
--    o =  MutableHashTable{Board => [{5, 4, 3, 2, 1, 0}, {infinity, infinity, 5, 3, 1, infinity}]}
--                      Children => {MutableHashTable{...5...}}
--                      CriticalRow => 4
--                      Fathers => {}
--                      IsResolved => false
--
-- G = first Game.Children -- this is a Hash table with the first node below the root from above
--              we can now test the recursive call of playCheckers 
--              NOTE: the key Fathers has value a list of sequences of fathers and movetypes 
--
-- These are the values in G
--    	  Board =  [{4, 5, 3, 2, 1, 0}, {infinity, infinity, 5, 3, 1, infinity}]
--    	  Children = {MutableHashTable{...5...}}
--    	  CriticalRow = 3
--        Fathers = {([{5, 4, 3, 2, 1, 0}, {infinity, infinity, 5, 3, 1, infinity}], {2, 2, 0})}
--    	  IsResolved = false
--
-- playCheckers(G.Board, first first G.Fathers, last first G.Fathers, first Q.Children)
--    o =  MutableHashTable{Board => [{4, 5, 3, 2, 1, 0}, {infinity, infinity, 5, 3, 1, infinity}]}
--                       Children => {MutableHashTable{...5...}}
--                       CriticalRow => 3
--                       Fathers => {(MutableHashTable{...5...}, {2, 2, 0})}
--                       IsResolved => false
-------------------------------------


-----------------
--- makeLocalCoordinates
--
-- Translates a checkerboard
-- configuration into a matrix with
-- 0's, 1's and variables
-----------------
-- input: an array of black and red checkers
--        in the form [ ListofPositionsBlack, ListofPositionsRed ]
-- output: a matrix with local coordinates
-----------------
-- example:
--
-- blackCheckersPosition = {0,1,3,4,5,2};
-- redCheckersPosition = {0, NC, NC, 4, NC, NC};
--
-- makeLocalCoordinates [blackCheckersPosition, redCheckersPosition]
--   o = | 1 0       |
--       | 0 x_(1,1) |
--       | 0 0       |
--       | 0 x_(3,1) |
--       | 0 1       |
--       | 0 0       |
-- 
-----------------
makeLocalCoordinates = method(TypicalValue => MutableMatrix)
makeLocalCoordinates Array := blackred ->(
  blackposition := first blackred;
  redposition := last blackred;
  VAR := symbol VAR;
  n := #redposition; -- n is the size of the board
  -- we find how many black checkers are in northwest to a given red
  rowsred := sort select(redposition, r->r=!=NC);
  colsred := apply(rowsred, r -> position(redposition, j-> j == r));
  E := new MutableHashTable;
    for r to #rowsred-1 do(
      E#(rowsred#r,r) = 1;
      variablerows := take(blackposition,colsred#r+1);
      variablerows = select(variablerows, b-> b< rowsred#r);
      scan(variablerows, j->(
        if member(j,rowsred) and position(redposition, i-> i == j) < colsred#r then
	  variablerows = delete(j,variablerows);
      ));
      scan(variablerows, col-> (
        E#(col,r)=VAR;
      ));
   );
   x:= symbol x;
   R:=FFF[apply(select(sort keys E, k-> E#k===VAR), k-> x_k)];
   X := mutableMatrix(R,n,#rowsred);
   scan(keys E, k-> X_k = if E#k === 1 then 1 else x_k);
   matrix X
)

load "NumericalSchubertCalculus/LR-resolveNode.m2"

---------------
-- solveSchubertProblem
---------------
-- Function that solves a Schubert problem
-- by first taking two of the conditions,
-- then create a tree/Dag (with nodes) by playing a 
-- checker game, then resolve the node numerically
-- using homotopies, and gluing the solutions to each
-- node
---------------
-- input:
--    SchPblm := list of Schubert conditions with general flags
--               {(partition_List, flag_Matrix),...}
--    k,n := the Grassmannian G(k,n)
--    (option) LinAlgebra [default = true] 
--             move to user flags via Linear Algebra (if false via homotopy continuation)
-- output:
--    list of solutions
---------------
solveSchubertProblem = method(Options=>{LinearAlgebra=>true})
solveSchubertProblem(List,ZZ,ZZ) := o -> (SchPblm,k,n) ->(
    -- SchPblm is a list of sequences with two entries  a condition and a flag
    -- Check that it does indeed form a Schubert problem, and convert the conditions to partitions (if they were brackets)
    SchPblm = ensurePartitions(SchPblm,k,n);

    twoconds := take(SchPblm,2);
    remaining'conditions'flags := drop(SchPblm,2);
    -- take the first two conditions
    l1:=verifyLength(first first twoconds,k);
    l2:=verifyLength(first last twoconds,k);
    F1:=promote(last first twoconds,FFF);
    F2:=promote(last last twoconds,FFF);
    resetGGstash(); -- resets GGstash in LR-makePolynomials.m2    
    Slns:={};
    checkPartitionsOverlap := (l1+reverse l2)/(i->n-k-i);
    if min(checkPartitionsOverlap) < 0 then
       Slns
    else(
	if DBG>1 then print "solveSchubertProblem: transforming flags to (M,Id,...)";
	-- resolveNode expects flags to be the following list:
	--  flagM, Id, F3'....  
	--
	-- we compute the linear transformations s.t.
	-- A*F1 = FlagM*T1
	-- A*F2 = ID * T2
	ID := id_(FFF^n);
	-- 
	-- There is a fundamental difference between the case
	-- with only two conditions and the one with 3 or more Schubert conditions
	--
	LocalFlags1 := {F1,F2};
	flgM := matrix;
	local LocalFlags2;
	if #remaining'conditions'flags == 0 then (
	    flgM = ID;
	    LocalFlags2 = {flgM, rsort ID};
	) else (
	    flgM = MovingFlag'at'Root n;
	    LocalFlags2 = {flgM, ID};
	    );
	At1t2 := moveFlags2Flags(LocalFlags1,LocalFlags2); --Gets the transformations A, T1, T2
	A := first At1t2;	    
	-- we update the given flags F3 ... Fm
	-- to F3' .. Fm' where Fi' = A*Fi
	new'remaining'conditions'flags := apply(
	    remaining'conditions'flags, CF->(
		(C,F):=CF;
		(C,A*F)
	    ));
	newDag := playCheckers(l1,l2,k,n);
	resolveNode(newDag, new'remaining'conditions'flags);
	conds := {l1,l2};
	-- resolveNode gives a solution in local coords
	-- of {l1}*{l2} w.r.t {FlagM, Id}
	-- we multiply the solution S by FlagM
	-- and we obtain a solution of the Sch. problem
	-- {l1,...,lm} with respect to
	-- {FlagM, Id, F3',...,Fm'}
	--
	--  we need to make a change of coordinates back to the user-defined flags
	-- that is, send (FlagM,Id)-->(F1,F2), which is done by A^(-1)	
	-------------------------------
	--############ Fork to decide if you want to do this
	-- change of flags via homotopy or via Linear Algebra
	-- ########################################
	if o.LinearAlgebra then(
	    Ainv := solve(A,ID);
	    Ainv*flgM*newDag.Solutions
	    )else(
	    -- #### NOW THIS IS BROKEN!! because is was based on wrong math
	    -- we need to use homotopy to transform the solutions to the
	    -- user defined flags.
	    --
	    -- A is the matrix above such that
	    --          A*F1 = FlagM*T1 (representing the same flag as F1)
	    --          A*F2 = ID*T2 (representing the same flag as F2)
	    --LocalFlags1 := {F1,F2}; 
	    --LocalFlags2:= {flgM,ID};
	    T1 := At1t2_1;    
	    T2 := At1t2_2;    
	    scan(remaining'conditions'flags, c-> (
		    conds = append(conds, first c);
		    LocalFlags2 = append(LocalFlags2, A*(last c));
		    LocalFlags1 = append(LocalFlags1, last c);
		    ));
    	    if DBG>1 then (
	    	print "solutions obtained at the root of a node";
	    	print newDag.Solutions;    	    	
	    	print "this are the transformations that we apply";
		print "before calling changeFlags:";
		print(flgM);
	    	print(flgM*newDag.Solutions);
	    	);
	    changeFlags(flgM*newDag.Solutions, -- these are matrices in absolute coordinates
	    	(conds, LocalFlags2, LocalFlags1), OneHomotopy=>false
		)
	    ) --
	)
    )-- end of solveSchubertProblem

--------- March 24, 2013
-- created a linear homotopy
-- from one set of flags to another
-- by changing column by column
-- for each of the flags 
--
-- Later, we can speed up a little
-- by just creating the homotopy
-- between the flags, by changing
-- only the relevant parts of the 
-- flag...
--------------------------
---------------------------------
--- solutionToChart
---------------------------------
-- takes a solution matrix in global coordinates
-- and converts it into local coordinates to know
-- what the values of the variables of the local 
-- coordinates are, i.e., 
-- writes a solution Matrix in terms 
-- of the chart MX  (as a list of values 
-- of the parameters)
---
-- Input:
--    s -> a nxk matrix representing the 
--    	   solutions of the problem (in global coordinates ?)
--    MX -> the local coordinates of the checkerboard variety
--
-- Output: List of values for the variables in MX
--
---------------------------------
-- Example:
--
-- R = FFF[x_(1,1),x_(3,1)]
-- MX = matrix {{1,    0}, 
--              {0, x_(1,1)}, 
--              {0,    0}, 
--              {0, x_(3,1)}, 
--              {0,    1}, 
--              {0,    0}};
-- s =  promote(transpose matrix{
--                        {1,0,0,0,0,0},
--                        {1,3,5,7,1,0}},FFF);
--
-- solutionToChart(s,MX)
--         o = {.115385, .269231}
------
-- s2 = promote(transpose matrix{
--     	       	       	   {2,3,5,7,11,13},
--     	       	       	   {1,4,9,25,49,-1}},FFF);
-- solutionToChart(s2,MX)
--
--    	  o = {.0755344, .491155}
---------------------------------    
solutionToChart = method() -- writes s (a matrix solution) in terms the chart MX (as a list of values of the parameters)
solutionToChart(Matrix, Matrix) := (s,MX) -> (
    k := numcols s;
    n := numrows s;
    a := symbol a;
    RMX := ring MX;
    R := (coefficientRing RMX)[a_(1,1)..a_(k,k),gens RMX];
    G := genericMatrix(R,k,k);
    f := flatten entries(s*G - sub(MX,R)); -- linear system in nk vars 
    nk := n*k;
    nParameters := k^2+#gens RMX; -- number of parameters in f
    A := map(FFF^nk,FFF^nParameters,(i,j)->(f#i)_(R_j));
    b := map(FFF^nk,FFF^1,(i,j)->-(f#i)_(1_R));
    X := solve(A,b, ClosestFit=>true);
    drop(flatten entries X, k*k) -- drop a_(i,j) coordinates
    )
--------------------------
-- toRawSolutions
--
-- Function that takes solutions (in local coordinates) as nxk matrices
-- and writes them into a list of values corresponding to
-- the variables in the local coordinates coordX of the 
-- checkerboard variety 
--
-- !! This functions is used to express the solutions from
-- matrix form to list form when using homotopies !!
--------------------------
-- Input:
--    coordX -- matrix of 0s,1s, and variables representing
--              the local coordinates of the checkerboard variety
--    X -- an nxk matrix that is a solution of the current incidence problem
--
-- Output:
--    List of values that correspond to the variables in the local coordinates
-------------------------
toRawSolutions = method()
toRawSolutions(Matrix,Matrix) := (coordX,X) -> (
     a := flatten entries coordX;
     b := flatten entries X;
     delete(null, apply(#a, i->if a#i == 1 or a#i == 0 then null else b#i))
     )

------------------
-- normalizeColumn
------------------
--  this function multiplies a column C of 
--  a matrix by the multiplicative inverse of 
--  the element C_r at row r.
------------------
-- Input:
--     X'' - the matrix to be normalized
--     r   - the row of the elt that becomes 1
--     j - the column to be normalized
-----------------
normalizeColumn = method(TypicalValue => Matrix)
normalizeColumn(Matrix,ZZ,ZZ) := (X,r,j) -> (  
     k := numgens source X;
     if j=!=null then(
	  X = X_{0..j-1} | (1/X_(r,j))*X_{j}  | X_{j+1..k-1}; 
	  --X''_(r,j) =-1/(1+X_(r,j)); -- error in Ravi's notes: should be -X_(r+1,j)/(1+X_(r,j))
	  --X''_(r+1,j) = 1; -- this is correct, but is also already taken care of 
	  );
     matrix X
     )

-----------------
-- redCheckersColumnReduce
-----------------
-- This function reduce specific column
-- using elementary column operations
--
-- These reductions are necessary for the
-- change of coordinates in Ravi's notes
-----------------
redCheckersColumnReduce = method(TypicalValue => Matrix)
redCheckersColumnReduce(Matrix, MutableHashTable) := (X'', father) -> (
     k := numgens source X'';
     n := numgens target X'';
     red := delete(NC,last father.Board);
     redSorted := sort red;
     r := father.CriticalRow;
     j := position(redSorted, i-> i==r+1);
     if j=!=null then(
     	  X''  = mutableMatrix X'';
	  crit'col := position(red, i->i==r+1);
     	  for jj from j+1 to k-1 do 
	  -- reduce the columns for red checkers that have higher number and "see" the red checker in the row r+1
     	  if position(red, i->red#jj == i) > crit'col then ( 
	       c := X''_(r+1,jj)/X''_(r+1,j); 
	       scan(n, i->X''_(i,jj) = X''_(i,jj) - c*X''_(i,j))
	       )
	  );
     matrix X''
     )

redCheckersColumnReduceSwap = method(TypicalValue => Matrix)
redCheckersColumnReduceSwap(Matrix, MutableHashTable) := (X'', father) -> (
     k := numgens source X'';
     n := numgens target X'';
     red := delete(NC,last father.Board);
     redSorted := sort red;
     r := father.CriticalRow;
     j := position(redSorted, i-> i>=r+1);
     rowj := redSorted#j; -- the row of the lower swapped red checker (in the father)
     if j=!=null then(
     	  X''  = mutableMatrix X'';
	  for jj from j+1 to k-1 do(
	       -- reduce the columns for red checkers that have higher number and "see" the red checker in the row r+1
	       scan(n, i-> (
	       		 X''_(i,jj) = X''_(i,jj) - X''_(rowj,jj)*X''_(i,j);
	       		 ));
	       )
     	  );
     matrix X''
     )

redCheckersColumnReduce2 = method(TypicalValue => Matrix)
redCheckersColumnReduce2(Matrix, MutableHashTable) := (X'', father) -> (
     k := numgens source X'';
     n := numgens target X'';
     X''  = mutableMatrix X'';
     red := delete(NC,last father.Board);
     redSorted := sort red; -- numbers of the rows where red checkers are
     apply(#redSorted, r->( -- column r is to be reduced 
--	 -- find the redcheckers below that can see the current redChecker
--	 witnessReds:=select(drop(red,r), i->i>red#r);
--	 j:={};
--         scan(witnessReds, i-> j=append(j,position(redSorted, l-> l==i)));
     	 col'of'r'on'board := position(last father.Board, i->i==redSorted#r); 
	 reducers := select(0..r-1, 
	      j->position(last father.Board, i->i==redSorted#j)<col'of'r'on'board
	      );  
	 scan(reducers, j->(
	      		-- reduce the columns for red checkers that have higher number and "see" the red checker in the row r+1
			scan(n, i-> (
			     	  X''_(i,r) = X''_(i,r) - X''_(redSorted#j,r)*X''_(i,j);
			     	  ));
		   	));
	 ));
     matrix X''
     )


-------------------
-- columnReduce
-------------------
-- Given a matrix of solutions in checkerboard 
-- coordinates (w.r.t lambda1,lambda2) we do
-- column row reduction to the solutions:
--
-- Given a solution matrix and the bracket (where 
-- the pivots are) makes 0's in the columns right to the pivots
-------------------
-- input:     S -- matrix of solutions
--    	      	    assumes the matrix lives in the Schubert cell for l with
--                  the standard flag, but not all pivots are 1.
--    	      b -- the bracket corresponding to the standard flag
--    	      	    this is just a list of the parts of the flag that are affected by a partition lambda
--    	      	    (equivalent to a partition with k parts of size <= n-k)
--            (the default bracket is  
-- output:  Sred  --matrix reduced
-------------------
columnReduce=method(TypicalValue=> Matrix )
columnReduce(Matrix,List) := (S,b)->(
    k := numColumns S;
    n := numRows S;
    -- we use the bracket instead of the partition
    -- b := output2bracket (redcheckers);
    -- b := partition2bracket(l,k,n);
    M:= S;
    apply(k-1, col->(
	    -- editing with respect to the pivot of the (col)th column
	    r := b_(col)-1; --row where the ith pivot is
	    a := S_(r,col); --most likely, this will be 1 (in our application because we always have the standard flag)
	    --rescale the column
	    N := M_{0..col-1}|a^(-1)*M_{col};
	    scan(col+1..k-1, j->(
		    a2 := S_(r,j);
		    N=N|(-a2*N_{col}+M_{j});
		    ));
	   M = N; 
	    ));
    return M
    )

TEST ///
load "NumericalSchubertCalculus/TST/columnReduce.m2"
///    

load "NumericalSchubertCalculus/LR-makePolynomials.m2"
load "NumericalSchubertCalculus/LR-ParameterHomotopy.m2"

-----------------------------
-- Tracks a homotopy
-----------------------------
-- Input: 
--    H -- a list of polynomials in k[xx,t];
--    S = {{...},...,{...}} -- a list of solutions to H at t=0
-- Output: 
--    T - a list of Points that are solutions to H at t=1
-- Caveat:
--    H should be _linear_ in t
------------------------------
trackHomotopyNSC = method(TypicalValue=>List)
trackHomotopyNSC (Matrix,List) := (H,S) -> (
     Rt := ring H;
     t := Rt_0;
     R := (coefficientRing Rt)[drop(gens Rt,1)];
     map't'0 := map(R, Rt, matrix{{0_FFF}}|vars R);
     map't'1 := map(R, Rt, matrix{{1_FFF}}|vars R);
     correctorTolerance := 0.1*getDefault NumericalAlgebraicGeometry$CorrectorTolerance;
     all'sols := select(
	 track(first entries map't'0 H, first entries map't'1 H, S,
	     NumericalAlgebraicGeometry$CorrectorTolerance=>correctorTolerance
	     ),
	 s->status s === Regular
	 );
     nAttempts := 3;
     while nAttempts > 0 and #all'sols < #S do (
     	 sols := track(first entries map't'0 H, first entries map't'1 H, S,
	     NumericalAlgebraicGeometry$CorrectorTolerance=>correctorTolerance
	     );
     	 all'sols = solutionsWithMultiplicity(all'sols|select(sols, s->status s===Regular));
	 nAttempts = nAttempts - 1;
	 correctorTolerance = 0.1 * correctorTolerance;
	 -* -- alternative rerun strategy: piecewise linear path 
   	    -- (gets other solutions though... need to sync between undegenerations?) 
     	 t' := exp(2*pi*ii*random RR);
	 H1 := sub(H,matrix{{t'*t}|drop(gens Rt,1)});
	 sols' := select(track(
		 first entries map't'0 H1, 
	     	 first entries map't'1 H1, 
	     	 S,
	     	 NumericalAlgebraicGeometry$CorrectorTolerance=>correctorTolerance
	     	 ), s->status s === Regular);
	 H2 := sub(H,matrix{{t+(1-t)*t'}|drop(gens Rt,1)});
     	 sols := select(track(
		 first entries map't'0 H2, 
	     	 first entries map't'1 H2, sols',
	     	 NumericalAlgebraicGeometry$CorrectorTolerance=>correctorTolerance
	     	 ), s->status s === Regular);
     	 all'sols = solutionsWithMultiplicity(all'sols|sols);
	 nAttempts = nAttempts - 1;
	 *-
	 );
     if #all'sols < #S then error "trackHomotopy: singularity encountered";
     if #all'sols > #S then error "trackHomotopy: more solutions found than expected";
     if VERIFY'SOLUTIONS then verifyTarget(H, all'sols);
     all'sols 
     )

------------------------
-- isRedCheckerInRegionE
------------------------
-- Binary function that tells if a given red checker, indicated by its row number,
--  lies in the `critical diagonal', also referred to as `Region E'.  This is explained in 
--  the paper.   This is equivalent to the column C of this red checker satisfying
--   a \leq C < b, where a is the column of the rising black checker and b that of 
--   the falling (these are in rows r and r+1, where r is the `critical row'
--
-- This function is needed to set up the homotopy in (at least) case II (again, see the paper).
----------------------------
-- Input: 
--     i = coordinates of a red checker
--     r = critical row
--     black = black checkers on the board
---------------------------
-- Example:
--
-- !! Show a better example!!
--
--blackCheckersPosition = {0,1,3,4,5,2};
--redCheckersPosition = {0, NC, NC, 4, NC, NC};
--
-- simNode = new MutableHashTable
-- simNode.Board =  [{0, 1, 2, 4, 5, 3}, {0, infinity, infinity, 4, infinity, infinity}]
-- simNode.CriticalRow = 2;
-- isRedCheckerInRegionE(1,simNode)
---------------------------
isRedCheckerInRegionE = method()
isRedCheckerInRegionE(ZZ,MutableHashTable) := (i,node) -> (
     r := node.CriticalRow;
     black := first node.Board;
     e0 := position(black, b->b==r+1);
     e1 := position(black, b->b==r);
     i < e1 and i >= e0
     )

-----------------------------
-- end Numerical LR-Homotopies
-----------------------------

-------------------
-- Documentation --
-------------------
beginDocumentation()
load "NumericalSchubertCalculus/doc.m2"
load "NumericalSchubertCalculus/PHCpack-LRhomotopies-doc.m2"

-------------------
-- Tests         --
-------------------
TEST ///
load "NumericalSchubertCalculus/TST/4lines.m2"
///
TEST ///
load "NumericalSchubertCalculus/TST/2e4-G26.m2"
///
TEST ///
load "NumericalSchubertCalculus/TST/21e3-G36.m2"
///
TEST ///
load "NumericalSchubertCalculus/TST/4LinesOsculating_changeFlags.m2"
///
end ---------------------------------------------------------------------
-- END OF THE PACKAGE
---------------------------------------------------------------------------
restart
check "NumericalSchubertCalculus"
installPackage "NumericalSchubertCalculus"
installPackage ("NumericalSchubertCalculus", RerunExamples=>true)
installPackage ("NumericalSchubertCalculus", RunExamples=>false)

--n = 6;
--SchubProb =  matrix{{3, 2,4,6}};
--(f, p, s) := LRtriple(n,SchubProb);
--(R, pols, sols, fixedFlags, movedFlag, solutionPlanes) = parseTriplet(f, p, s)
viewHelp NumericalSchubertCalculus
--first PieriHomotopies(2,2)