1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528
|
----------------
--Functions contained here but not exported:
----------------
-- blackBoxSolve
-- verifyTarget
-- verifyStart
-- globalStayCoords
-- globalSwapCoords
-- caseSwapStay
-- verifyParent
-- solveCases
-- resolveNode
----------------
blackBoxSolve = method();
blackBoxSolve(MutableHashTable,List,Matrix) := (node,
remaining'conditions'flags,coordX) -> (
--
-- DESCRIPTION :
-- If resolveNode runs with the options VERIFY'SOLUTIONS and BLACKBOX
-- then the problem is solved by the blackbox solver.
--
-- IN :
-- node :
-- node.flagM
-- remaining'conditions'flags
-- coordX : a matrix of zeros, ones, and variables for the local coordinates,
-- computed as the output of makeLocalCoordinates.
--
-- OUT :
-- node.SolutionsSuperSet are the solutions computed by the blackbox solver.
--
all'polynomials := makePolynomials(node.FlagM * coordX,
remaining'conditions'flags);
polynomials := squareUpPolynomials(numgens ring coordX, all'polynomials);
-- time and keep track of the expensive part of the computation
blckbxtime1 := cpuTime();
Soluciones:=solveSystem flatten entries polynomials;
blckbxtime2 := cpuTime();
<< "-- blackbox solving cpuTime: " << (blckbxtime2 - blckbxtime1) << endl;
node.SolutionsSuperset = apply(
select(
-- After finish with the timing, remove the previous part
-- and the next line; and uncomment the following line
-- (deleting the line after that)
Soluciones,
-- time solveSystem flatten entries polynomials,
s-> norm sub(gens all'polynomials,matrix s)
<= ERROR'TOLERANCE * norm matrix s *
norm sub(last coefficients gens all'polynomials,FFF)
), -- end of select
ss-> (map(FFF,ring coordX,matrix ss)) coordX
); -- end of apply
);
verifyTarget = method();
verifyTarget(Matrix,List) := (polys, targetSolutions) -> (
--
-- DESCRIPTION :
-- Verifies the solutions at the end of the homotopy.
--
-- IN :
-- polys : matrix of polynomials;
-- startSolutions : solutions that should vanish as polys.
--
scan(targetSolutions, p->assert (
s := matrix p;
norm sub(polys,matrix{{1_FFF}}| s)
< ERROR'TOLERANCE * max{1,norm s}
* norm sub(last coefficients polys,FFF)
) -- end assert
) -- end scan
);
verifyStart = method();
verifyStart(Matrix,List) := (polys, startSolutions) -> (
--
-- DESCRIPTION :
-- Verifies the solutions at the start of the homotopy.
--
-- IN :
-- polys : matrix of polynomials;
-- startSolutions : solutions that should vanish as polys.
--
scan(startSolutions, s->assert (
norm sub(polys,matrix{{0_FFF}|s})
< ERROR'TOLERANCE * max{1,norm matrix{s}}
* norm sub(last coefficients polys,FFF)
) -- end assert
) -- end scan startSolutions
);
globalStayCoords = method();
globalStayCoords(MutableHashTable,Sequence,Sequence,Sequence) := (father,
rings,redchk,rnM) -> (
--
-- DESCRIPTION :
-- Returns the global coordinates for the homotopy in the stay case, which is
-- case II in the paper. By global coordinates, we mean the Steifel coordinates MX.
--
-- IN :
-- father : the current father to the node,
-- rings : the homotopy ring Rt, the Xt, and the symbol t,
-- redchk : the checkers red and red'sorted,
-- red'sorted is just the rows containing red checkers
-- rnM : the critical row r, the dimension n, and flag M.
--
-- OUT :
-- returns the M YtCoords(t) as needed in the stay homotopy.
-- YtCoords are the Stiefel Coordinates used in the homotopy
-- Note: Xt is used for the Stiefel coordinates Y_{\cbd} in the ring [t]
-- Also, Xt = YtCoords(t=0)
--
(Rt, Xt, t) := rings;
(red, red'sorted) := redchk;
(r, n, M) := rnM;
YtCoords := map(Rt^n,Rt^0,{}); -- an empty column vector
-- V(t) = M YtCoords(t) ... we write everything in terms of M
scan(#red'sorted, j-> YtCoords = YtCoords |
if isRedCheckerInRegionE(position(red, i->i==red'sorted#j),father)
-- column of the j-th red checker on the board
then (
submatrix(Xt,{0..n-1},{j})
) else (
submatrix(Xt,{0..r},{j})
|| submatrix(Xt,{r+1},{j})-t*submatrix(Xt,{r},{j})
|| submatrix(Xt, {r+2..n-1}, {j})
)
);
result := promote(M,Rt) * YtCoords;
if DBG>1 then (
<< "via M*" << YtCoords << " = " << result
<< " where M = " << promote(M,Rt) << endl;
);
result
);
globalSwapCoords = method();
globalSwapCoords(MutableHashTable,Sequence,Sequence,Sequence) := (father,
rings,checkers,rsnM) -> (
--
-- DESCRIPTION :
-- Returns the global coordinates for the homotopy in the swap case, case III in paper
--
-- IN :
-- father : the current father to the node,
-- rings : the homotopy ring Rt, the Xt, and the symbol t,
-- checkers : the checkers black, red and red'sorted,
-- rsnM : the critical row r, the index s, the dimension n, and flag M.
--
-- OUT :
-- returns the M YtCoords as needed in the swap homotopy.
-- YtCoords are the Stiefel coordinates used in the homotopy, depends on t
--
(Rt, Xt, t) := rings;
(black, red, red'sorted) := checkers;
(r, s, n, M) := rsnM;
YtCoords := map(Rt^n,Rt^0,{}); -- an empty column vector
-- V(t) = M YtCoords(t) ... we write everything in terms of M
bigR := red'sorted#(s+1); -- row of the second moving red checker
rightmost'col'B := position(black, j->j==r);
leftmost'col'A := position(black, j->j==r+1)+1;
-- check if the black checker in the i'th row is in region A
isRegionA := i -> position(black, i'->i'==i) >= leftmost'col'A;
-- check if the black checker in the i'th row is in region B
isRegionB := i -> position(black, i'->i'==i) <= rightmost'col'B;
-------- Frank/Abr. revision Oct. 2016
scan(#red'sorted, j -> YtCoords = YtCoords |
if j == s then
(
-- note: this part can be optimized for speed
transpose matrix { apply(n, i -> (
if i==r then Xt_(r+1,s+1)
else if i==r+1 then -t*Xt_(r+1,s+1)
else if isRegionA i then -t*Xt_(i,s+1)
else if isRegionB i then Xt_(r+1,s+1)*Xt_(i,s)
else 0)) }
) else
(
submatrix(Xt, {0..n-1}, {j})
)
); -- end scan red'sorted
----------------
result := promote(M,Rt) * YtCoords;
if DBG>1 then (
<< "via M*" << YtCoords << " = " << result
<< " where M = " << promote(M,Rt) << endl;
);
result
);
caseSwapStay = method();
caseSwapStay(MutableHashTable,List,Matrix,Sequence) := (node,
remaining'conditions'flags,coordX,
r'Mdprime'father'movetype'black'red'red'sorted) -> (
--
-- DESCRIPTION :
-- Applies a homotopy in the cases of swap or stay. II, III(a), and III(b) from the paper.
-- In all of these, there is a red checker in the critical row, r
--
-- IN :
-- node : see the resolveNode documentation for all items
-- remaining'conditions'flags : pairs of conditions and flags
-- coordX : local coordinates
-- movetype'red'red'sorted is a sequence that contains
-- (0) r : index of the CriticalRow
-- (1) Mdprime : M'' in the solveCases below
-- (2) father : the current father node
-- (3) movetype : to decide which case applies (position in 3x3 array of questions
-- where red checker is in critical diagonal, critical row
-- (4) black : black checkers
-- (5) red : the red checkers
-- (6) red'sorted : sorted red checkers
-- stored into a sequence to bypass the annoying limitation that
-- Macaulay2 methods can have no more than 4 arguments.
--
-- OUT :
-- returns solutions for assignment to father'Solutions.
--
(r, M'', father, movetype, black, red, red'sorted)
:= r'Mdprime'father'movetype'black'red'red'sorted;
n := #node.Board#0;
M := node.FlagM;
R := ring coordX;
t := symbol t;
Rt := (coefficientRing R)[t,gens R]; -- homotopy ring
mapRtoRt := map(Rt,R,drop(gens Rt,1));
Xt := mapRtoRt coordX; -- "homotopy" X
s := position(red'sorted, i->i==r);
-- Column of red checker in the critical row
local M'X'; -- homotopy in global coordinates
-- (produced by each case) these are used only in SWAP cases
if member(movetype,{{2,0,0},{2,1,0},{1,1,0}}) then ( -- stay case, case II in paper
M'X' = globalStayCoords(father,(Rt,Xt,t),(red,red'sorted),(r,n,M))
) -- end case "STAY"
else
if member(movetype, {{1,0,0},{1,1,1},{0,0,0},{0,1,0}}) then
( -- case SWAP(middle row)
M'X' = globalSwapCoords(father,(Rt,Xt,t),(black,red,red'sorted),
(r,s,n,M))
) -- end case SWAP(middle row)
-- implementing this case separately
-- gives lower degree polynomials
-- else if member(movetype,{{0,0,0},{0,1,0}})
-- then (-- case SWAP(top row)
-- )
else
error "an unaccounted case";
if DBG>0 then timemakePolys1 := cpuTime();
strategy :=
if all(remaining'conditions'flags/first, c->#c==1) and
#remaining'conditions'flags*numrows M'X' <= 30
then "lifting" else "Pluecker";
(all'polys,startSolutions) := makePolynomials(M'X', remaining'conditions'flags,
apply(node.Solutions, X->toRawSolutions(coordX,X)), --start solutions
Strategy=>strategy
);
if DBG>0 then (
timemakePolys2 := cpuTime();
<< "-- time to make equations: "
<< (timemakePolys2-timemakePolys1)<<endl;
);
polys := squareUpPolynomials(numgens ring all'polys-1, all'polys);
-- check at t=0
if VERIFY'SOLUTIONS then verifyStart(polys, startSolutions);
-- track homotopy and plug in the solution together with t=1 into Xt
(ti,targetSolutions) := toSequence elapsedTiming trackHomotopyNSC(polys,startSolutions);
statsIncrementTrackingTime ti;
if DBG>0 then (
<< " -- trackHomotopy time = " << ti << " sec."
<< " for " << node.Board << endl;
);
apply(targetSolutions, sln -> (
x'sln := if strategy != "lifting"
then matrix sln else (matrix sln)_{0..numgens R-1};
M''X'' := (map(FFF,Rt,matrix{{1}}|x'sln)) M'X';
X'' := inverse M'' * M''X'';
if not member(movetype,{{2,0,0},{2,1,0},{1,1,0}}) then ( -- SWAP CASE
k := numgens source X'';
X'' = X''_{0..s}| X''_{s}+X''_{s+1}| X''_{s+2..k-1};
-- we substitute the s+1 column for the vector w_{s+1}
redCheckersColumnReduce2(normalizeColumn(X'',r,s),father)
)
else
normalizeColumn(X'',r,s)
) -- end second argument of apply
) -- end apply targetSolutions
);
verifyParent = method();
verifyParent(MutableHashTable,List) := (father, parent'solutions) -> (
--
-- DESCRIPTION :
-- Verifies the solutions computed at the parent node.
-- This verification is called when the flag VERIFY'SOLUTIONS
-- is on when solveCases is running.
--
-- IN :
-- father : parent node of the current node in solveCases,
-- parent'solutions : solutions computed by solveCases.
--
-- OUT :
-- verifies that all solutions fits the pattern of the parent.
--
parentX := makeLocalCoordinates father.Board;
parentXlist := flatten entries parentX;
scan(parent'solutions, X'''-> (
-- check that solutions fit the parent's pattern
a := flatten entries X''';
scan(#a, i ->
if not (
(abs a#i < ERROR'TOLERANCE and parentXlist#i == 0)
or (abs(a#i-1) < ERROR'TOLERANCE and parentXlist#i == 1)
or (parentXlist#i != 0 and parentXlist#i != 1)
)
then error "a solution does not fit the expected pattern (numerical error occurred)"
); -- end scan on #a
) -- end of second argument of scan
) -- end scan parent'solutions
);
solveCases = method();
solveCases(MutableHashTable,List,Matrix) := (node,
remaining'conditions'flags,coordX) -> (
--
-- DESCRIPTION :
-- Solves the nine cases in the Littlewood-Richardson homotopies.
--
-- IN :
-- node : see the resolveNode documentation for all items
-- remaining'conditions'flags : pairs of conditions and flags
-- coordX : local coordinates
--
-- OUT :
-- node : the Solutions are computed.
--
n := #node.Board#0;
black := first node.Board;
scan(node.Fathers, father'movetype ->
(
(father, movetype) := father'movetype;
r := father.CriticalRow;
-- The critical row r and the next one r+1 are where the black checkers are moving.
-- These are where all of the action in the homotopy is.
red := last father.Board;
red'sorted := sort delete(NC, red);
M := node.FlagM;
-- The moving flag is modified. In the paper, this is the flag M' defined on
-- page 12 (Reference needs to be put in)
M'':= M_{0..(r-1)} | M_{r} - M_{r+1} | M_{r}| M_{(r+2)..(n-1)};
-- Defined the flag for the next level if it is empty
if not father.?FlagM then father.FlagM = M'';
-- If that flag exists, checks it equals this one, for consistency.
assert (father.FlagM == M'');
if DBG>1 then (
<< "-- FROM " << node.Board << " TO " << father.Board << endl;
<< "using this move: " << movetype<<endl;
<< "from "<< node.FlagM * makeLocalCoordinates(node.Board)
<< " to "<< father.FlagM * makeLocalCoordinates(father.Board) << endl;
<< "starting with these solutions: " << node.Solutions << endl << endl;
);
if DBG>0 then tparents1:=cpuTime();
parent'solutions := -- this is where the main action happens
if node.Solutions == {} then
{} -- means: not implemented
else if movetype#1 == 2 then ( -- case movetype = (_,2). The conditions on the k-plane do not change.
-- This is case I in Section 3.3.1 in the paper, and it is just a coordinate change,
-- see Equation (???) on page 13.
-- The paper uses Y for the Stiefel coordinates, and only a single '.
apply(node.Solutions, X -> (
X'' := (X^{0..r-1}) || (-X^{r+1})
|| (X^{r}+X^{r+1}) ||( X^{r+2..n-1});
-- These coordinates are not in echelon form if there is a red checker in row r+1.
-- We need to check for this and if so, get its column.
j := position(red'sorted, i-> i == r+1);
-- If so, then we need to divide the jth column by the entry in position (r+1,j) to put the
-- coordinates in echelon form
if j =!= null then
redCheckersColumnReduce2(normalizeColumn(X'',r+1,j), father)
else X'' )
) -- end apply to node.Solutions
) -- end case movetype = (_,2)
else -- The other cases require a homotopy, and were implemented in caseSwapStay
caseSwapStay(node, remaining'conditions'flags, coordX,
(r, M'',father, movetype, black, red, red'sorted));
if VERIFY'SOLUTIONS then
verifyParent(father, parent'solutions);
if not father.?Solutions then father.Solutions = {};
father.Solutions = father.Solutions | parent'solutions;
if DBG>0 then (
tparents2:=cpuTime();
<< "-- time of performing one checker move: "
<< (tparents2 - tparents1) << endl;
);
)
) -- end scan node.Fathers
);
resolveNode = method();
resolveNode(MutableHashTable,List) := (node,remaining'conditions'flags) -> (
--
-- DESCRIPTION :
-- This method resolves a node in the Littlewood-Richardson homotopy.
--
-- IN :
-- node : the node contains nine items
-- (1) Board represents a checkerboard, stored as two vectors,
-- defining the location of the black and white checkers;
-- (2) CriticalRow is either a number or "leaf" if at the leaf,
-- the number is the position of the black checker that moves;
-- (3) flagM is the moving flag;
-- (4) IsResolved is a boolean;
-- (5) Solutions is a list of solutions in local coordinates;
-- (6) Children points to the children of the node;
-- (7) Fathers contains the ancestors of the node;
-- (8) movetype is a list to connect the node to its fathers
-- (9) SolutionsSuperSet is made when the BLACKBOX option is on.
-- remaining'conditions'flags : the remaining pairs of conditions
-- and flags.
--
-- OUT :
-- node : the following items are modified
-- (3) flagM is the moving flag;
-- (4) IsResolved is the moving flag;
-- (5) Solutions is a list of solutions in local coordinates;
-- (8) SolutionsSuperSet is made when the BLACKBOX option is on.
-- remaining'conditions'flags : will be transformed.
--
if not node.IsResolved then (
n := #node.Board#0;
coordX := makeLocalCoordinates node.Board;
-- local coordinates X = (x_(i,j))
if numgens ring coordX == 0 then ( -- need to move this to playcheckers
assert(#remaining'conditions'flags == 0);
if DBG>0 then
print "resolveNode reached node of no remaining conditions";
node.Solutions = {lift(coordX,FFF)};
node.IsResolved = true;
node.FlagM= rsort id_(FFF^n);
) -- end if numgens ring coordX == 0
else if #remaining'conditions'flags == 0 then ( -- check consistency???
node.Solutions = {};
node.IsResolved = true;
node.FlagM = rsort id_(FFF^n);
)
else ( -- coordX has variables
black := first node.Board;
if node.Children == {} then
node.FlagM = matrix mutableIdentity(FFF,n) -- change here
else
scan(node.Children, c->resolveNode(c,remaining'conditions'flags));
if node.Children == {} then (
lambda := output2partition(last node.Board);
k := #lambda;
validpartition := true;
scan(lambda, i-> if i>n-k then validpartition = false);
if not validpartition then (
<< lambda << endl;
error( "partition above is not valid")
) else (
-- we take the next flag at the bottom of the checkerboard tree
(l3,F3) := first remaining'conditions'flags;
MM := lift(MovingFlag'at'Root n,FFF);
ID := id_(FFF^n);
(A,T1,T2) := moveFlags2Flags({MM,ID},{ID,F3});
Ainv := solve(A,ID);
newRemainingFlags := drop(remaining'conditions'flags,1);
newRemainingFlags = apply(newRemainingFlags,
CF->(
(C, F) := CF;
(C, Ainv*F)
)
);
if DBG>0 then print "-- making a recursive call to resolveNode";
if DBG>1 then (
print(node.Board);
print(lambda);
print("remaining conditions:");
print(remaining'conditions'flags);
);
new'l := output2partition last node.Board;
-- Abraham 15-Oct-2015:
l3 = verifyLength(l3,k);
checkPartitionsOverlap := (new'l+reverse l3)/(i->n-k-i);
if min(checkPartitionsOverlap) < 0 then (
node.Solutions = {};
node.IsResolved = true;
)else(
--
newDag := playCheckers(new'l,l3,k,n);
resolveNode(newDag,newRemainingFlags); -- recursive call
S := newDag.Solutions;
if DBG>1 then
<< "the previous level gets solution: " << S << endl;
brack := output2bracket last node.Board;
-- compute the bracket affecting the standard flag
-- we use the bracket for column reduction of the solutions;
if DBG>1 then << "the bracket" << brack << endl;
node.Solutions = if #newRemainingFlags > 0 then (
assert(MM == newDag.FlagM);
apply(S, s->columnReduce(A*MM*s,brack)) -- A is M^{-1} ???
) else (
MM = newDag.FlagM;
(A,T1,T2) = moveFlags2Flags({MM,ID},{ID,F3});
apply(S, s->columnReduce(A*MM*s,brack))
);
if DBG>1 then (
print "... and the transformed solutions are:";
print(node.Solutions);
print "-- end (recursive call to resolveNode)"
);
node.IsResolved = true
);--end else of the if checkPartitionsOverlap
); -- end else of the if not validpartition
); -- end if node.children == {}
solveCases(node,remaining'conditions'flags,coordX);
if VERIFY'SOLUTIONS and BLACKBOX then
blackBoxSolve(node,remaining'conditions'flags,coordX);
if VERIFY'SOLUTIONS and node.?SolutionsSuperset then (
-- check against the blackbox solutions
scan(node.Solutions, X->
assert(position(node.SolutionsSuperset,
Y->norm(Y-X)<ERROR'TOLERANCE) =!= null)
); -- end scan node.Solutions
);
); -- end coordX has variables
node.IsResolved = true;
); -- end if not node.IsResolve
);
|