File: big-chunk-TEST.m2

package info (click to toggle)
macaulay2 1.21%2Bds-3
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 133,096 kB
  • sloc: cpp: 110,377; ansic: 16,306; javascript: 4,193; makefile: 3,821; sh: 3,580; lisp: 764; yacc: 590; xml: 177; python: 140; perl: 114; lex: 65; awk: 3
file content (86 lines) | stat: -rw-r--r-- 2,420 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
restart 
debug needsPackage "NumericalSchubertCalculus"
setRandomSeed 0
-----------------------
-- 4 lines in P^3
SchPblm = {({1},id_(FFF^4)), 
    ({1},random(FFF^4,FFF^4)),
    ({1},random(FFF^4,FFF^4)), 
    ({1},random(FFF^4,FFF^4))};

solveSchubertProblem(SchPblm,2,4)

restart 
debug needsPackage "NumericalSchubertCalculus"
-- setRandomSeed 2

Pblm = {({1},id_(FFF^4)),
    ({1},rsort id_(FFF^4)), 
    ({1},transpose matrix {{1,1,1,1},{0,1,2,3},{0,0,2,6},{0,0,0,1}}),
    ({1},transpose matrix {{1,2,4,8}, {0,1,4,12}, {0,0,1,6}, {0,0,0,1}})}

solveSchubertProblem(Pblm, 2,4)
-- we need to make a column reduction
-- to see if these solutions are real
S = oo;
Sreduced = apply(S, s->(
	M1:= matrix{
	    {s_(0,0)^(-1), -s_(0,1)*s_(0,0)^-1},
	    {0, 1}};
	s1 := clean_0.001 s*M1;
	M2 := matrix{
	    {1,0},
	    {-s1_(3,0)*s1_(3,1)^-1 ,s1_(3,1)^-1 }
	    };
	s2 := clean(0.001, s1*M2);
	s2
	));
Sreduced


-- Problem (2,1)^3=2 in G(3,6)
SchPblm = {({2,1},random(FFF^6,FFF^6)), ({2,1},random(FFF^6,FFF^6)),({2,1},random(FFF^6,FFF^6))}
solveSchubertProblem(SchPblm,3,6)
-- not a simple tree

-- Problem (2,1)*(2)^3 = 2 in G(3,6) 
-- This problem has a non-trivial tree (not like the problem of 4 lines)
Pblm={({2},random(FFF^6,FFF^6)),
    ({2}, random(FFF^6,FFF^6)),
    ({2},random(FFF^6,FFF^6)), 
    ({2,1},random(FFF^6,FFF^6))}
solveSchubertProblem(Pblm,3,6)

-- Problem (1)*(2)*(2,1)^2 = 3 in G(3,6)
Pblm={({1},random(FFF^6,FFF^6)),
    ({2}, random(FFF^6,FFF^6)),
    ({2,1},random(FFF^6,FFF^6))}
solveSchubertProblem(Pblm,3,6)
-- code breaks here
----------------------


root = playCheckers({1},{1},2,4)
resolveNode(root, {({1},random(FFF^4,FFF^4)), ({1},random(FFF^4,FFF^4))})
assert(#root.Solutions==2)

root = playCheckers({2,1,0},{2,1,0},3,6)
time resolveNode(root, {({2,1,0},random(FFF^6,FFF^6))})
assert(#root.Solutions==2)
peek root
-- test code and assertions here
-- may have as many TEST sections as needed

-- Problem (2,1)^2*(1)*(2) = 3 in G(3,6)
root = playCheckers({2,1},{2,1},3,6)
time resolveNode(root, {({2},random(FFF^6,FFF^6)), ({1},random(FFF^6,FFF^6))})
assert(#root.Solutions==3)
peek root
printTree root
-- Problem (2,1)*(2)^3 = 2 in G(3,6) 
-- This problem has a non-trivial tree (not like the problem of 4 lines)
root = playCheckers({2},{2},3,6)
time resolveNode(root, {({2},random(FFF^6,FFF^6)), ({2,1},random(FFF^6,FFF^6))})
assert(#root.Solutions == 2)
peek root
printTree root