File: pieri.m2

package info (click to toggle)
macaulay2 1.21%2Bds-3
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 133,096 kB
  • sloc: cpp: 110,377; ansic: 16,306; javascript: 4,193; makefile: 3,821; sh: 3,580; lisp: 764; yacc: 590; xml: 177; python: 140; perl: 114; lex: 65; awk: 3
file content (298 lines) | stat: -rw-r--r-- 10,415 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
export {   
   "solveSimpleSchubert"
   }
----------------
--Functions contained here but not exported:
----------------
-- generateChildren
-- positionVariableChildren
-- precookPieriHomotopy
-- solveEasy
-- trackSimpleSchubert

protect StartSolutions
protect Memoize

solutionsHash := new MutableHashTable;

-------------------------
-- Pieri Homotopy Code --
--------------------------
-- Authors: Anton Leykin
--          Abraham Martin del Campo
--
-- Date:  October 29, 2009
--
-- Last Update: October, 2016
------------------------------------
-- Littlewood-Richardson Homotopy --
------------------------------------
-- Authors: Anton Leykin
--          Abraham Martin del Campo
--          Frank Sottile
--          Jan Verschelde
--
-- Date: April 5, 2012
--
-- Last Update: October 16, 2015
------------------------------------

-- needsPackage "NumericalAlgebraicGeometry"
-- we need to use GAP's package

--------------------------------
-- Numerical Pieri Homotopies --
--------------------------------

---------------------
-- generateChildren
---------------------
-- Generate partitions for 
-- Children problems of a 
-- partition 'm' 
---------------------
-- Input:
--    kn     - sequence of integers (k,n)
--    l,m    - partitions
-- Output:
--    a list of children partitions for m (i.e. multiplying m by one box)
----------------------
generateChildren = method(TypicalValue=>List)
generateChildren(Sequence, List, List) := (kn, l, m) -> (
     (k,n):=kn;
     L := apply(#m, i->if n-k-l#(k-i-1)>=m#i+1 then take(m,i)|{m#i+1}|drop(m,i+1));
     select(L, a-> a=!=null and a==reverse sort a)
)
-------------------
-- positionVariableChildren
-------------------
-- find the position where you need
-- to add a solution of the children problem
-- to have a solution of the parent problem
------------------
-- Input:
--    kn    - sequence of integers (k,n)
--    l,m,v - partitions where v is a children
--            partition of m
-- Output:
--    the position where m gets modified to get to v?
---------------------------
positionVariableChildren = method(TypicalValue=>ZZ)
positionVariableChildren(Sequence,List,List,List):=(kn,l,m,v)->(
   -- kn is a sequence (k,n)
   -- l, m are partitions
   -- v is a children partition of m 
   (k,n) := kn;
   i := maxPosition(v-m);
   t := apply(i+1, j->plus(n-k-m_(j)-l_(k-j-1)));
   sum(t)
)

-----------------------
-- precookPieri
--
-- creates a special matrix G_\mu
-- and attach it to E_{\mu\lambda}
----------------------- 
-- Input:
--       kn   - sequence of integers (k,n)
--       l,m  - partitions each given as a list
-- Output:
--       F    - an nxn matrix with the skewySchubert variety E
--              on top, and a matrix G of size n-k x n in the shape
--              of a specific Affine patch of Gr(n-k,n)
-----------------------
precookPieriHomotopy = method(TypicalValue=>List)
precookPieriHomotopy(Sequence,List,List) := (kn,l,m)->(
     -- k and n are the integers defining the Grassmannian G(k,n)
     -- l and m are partitions of n
     (k,n) := kn;
     l = verifyLength(l, k);
     m = verifyLength(m, k);
     E := skewSchubertVariety(kn,l,m);
     ------------
     -- d is the number of variables i.e. the codimension of the Schubert variety E_{l,m}
     ------------
     d := (k*(n-k)-sum(l)-sum(m));
     S := FFF[vars(53..d+52)];
     T:= apply(#m, i->n-k+i-m#i);
     -- P is a list with the indices where the special flag has ones
     P:=toList(set toList(0..n-1)-T);
     G:=mutableMatrix(S,n-k,n);
     apply(#P, j->G_(j,P#j)=1);
     F:=matrix E || sub(matrix G, ring E);
     return F;
)


-----------------------
-- solveInternalSimple
-----------------------
-- Uses Pieri homotopies to solve
-- a simple Schubert problem internally
-----------------------
-- Input:
--    kn   - a sequence of 2 integers (k,n) specifying Gr(k,n)
--    l,m  - Lists of two partitions indicating the non-simple Schubert conditions
--    G    - List of flags indicated by (n-k)xn matrices
------------------------
-- Note:   Solves the Schubert problem l,m,{1}^d in Gr(k,n)
--         w.r.t. the flags Id, rsort Id, G
------------------------
solveInternalSimple = method(TypicalValue=>List)
solveInternalSimple(Sequence,List,List,List) := (kn,l,m,G)->(
   -- l and m are partitions of n
   -- G is a flag
   (k,n) := kn;
   l = verifyLength(l, k);
   m = verifyLength(m, k);
   d := k*(n-k)-sum(l)-sum(m);
   E := skewSchubertVariety(kn,l,m);
   if solutionsHash#?{l,m,G} then(
   	 solutionsHash # {l,m,G}
   )
   else if d == 1 then (
      -- solve linear equation
      solutionsHash#{l,m,G} = solveEasy det (matrix E || sub(G#0, ring E), Strategy=>Cofactor)
   )
   else(
      -- generate the children problems
      L:=generateChildren(kn, l,m);
      
      -- once the children problems are solved
      -- store solutions in "start" 
      start := flatten(apply(L, p->(
         C := solveInternalSimple(kn,l,p,G);
         i := positionVariableChildren((k,n),l,m,p);
         apply(C,c->insert(i-1,0,c))
         )
      ));
      ---- Create the start system S  ----
      S := apply(take(G,d-1), g->det( matrix E || sub(g, ring E),Strategy=>Cofactor)) | {det(precookPieriHomotopy(kn,l,m), Strategy=>Cofactor)};
      ---- Create the target system T ----
      T := apply(take(G,d), g->det( matrix E || sub(g, ring E), Strategy=>Cofactor)); 
      newR := FFF(monoid[gens ring first S]);
      S = S/(s->sub(s,newR));
      T = T/(t->sub(t,newR));
      ------------------------
      -- make sure your starting set of solutions are in fact solutions
      -- of the Starting system S
      ------------------------
      assert all(start, s->norm sub(matrix{S},matrix{s}) < 1e-3);
      solutionsHash#{l,m,G} = track(S,T,start,NumericalAlgebraicGeometry$gamma=>exp(2*pi*ii*random RR)) / coordinates;
      ---------------------
      ---- make sure that you got solutions of the Target System --
      ---------------------
      assert all(solutionsHash#{l,m,G}, s->norm sub(matrix{T},matrix{s}) < 1e-3);
      solutionsHash#{l,m,G}
      )
)

-------------------------
-- solveSimpleSchubert
------------------------
-- Input:
--    SchPblm  - a Schubert problem given as a list
--               of the form {(cond_List, flag_Matrix), ...}
--    k,n      - integers that specify the Grassmannian Gr(k,n)
-- Output:
--    A list of kxn-matrices that are solutions to the problem
-------------------------
-- NOTE:  This way to call it is using the same input
--        as the LR-Homotopies. Here flags are complete (invertible square matrices)
-------------------------
solveSimpleSchubert = method(TypicalValue=>List)
solveSimpleSchubert(List,ZZ,ZZ) := (SchPblm,k,n)->(
   -- SchPblm is a an instance of a Schubert problem, which is a list of pairs (c,F) with c a Schubert conditions and F a flag
   -- Check that it does indeed form a Schubert problem, and convert the conditions to partitions (if they were brackets)
   SchPblm = ensurePartitions(SchPblm,k,n);
   -- set aside the first two conditions
   twoconds := take(SchPblm,2);
   remaining'conditions'flags := drop (SchPblm,2);
   l1 := verifyLength(first first twoconds, k);
   l2 := verifyLength(first last twoconds, k); 
   F1:= promote(last first twoconds, FFF);
   F2:= promote(last last twoconds, FFF);
   simplConds := remaining'conditions'flags/first;
   remaining'flags := remaining'conditions'flags/last;   
   --Slns:={};
   -- checks if it is a valid Simple Schubert problem
   checkSimpleSchubertProblem({l1,l2}|simplConds, k,n);
   checkPartitionsOverlap := (l1+reverse l2)/(i->n-k-i);
   if min(checkPartitionsOverlap) < 0 then
      {}
   else(
       ID:= id_(FFF^n);
       LocalFlags1 := {F1,F2}; 
       LocalFlags2 := {ID,rsort ID}; -- maybe goes ID, resort ID
       At1t2 := moveFlags2Flags(LocalFlags1, LocalFlags2);
       A := first At1t2;
       Ainv := solve(A,ID);
       -- we update the given flags F3 ... Fm
       -- to F3' .. Fm' where Fi' = A*Fi
       new'remaining'flags := A*remaining'flags;
       --new'remaining'flags := apply(remaining'flags, F-> A*F);
       -- we take the first n-k columns and transpose
       -- because SimpleSchubert solves wtr rowSpan and not colSpan
       flagsForSimple:= apply(new'remaining'flags, F->transpose F_{0..n-k-1});
       Sols := solveInternalSimple((k,n),l2,l1,flagsForSimple);
       E:= skewSchubertVariety((k,n),l2,l1);
       apply(Sols, s->Ainv*(transpose sub(E,matrix{s})))
       ) 
)


---------------------------
--      solveEasy
-----------------------------
---- function written to solve
---- a simple linear equation
-----------------------------
-- Input:
--     p   - a linear polynomial a*X + b
-- Output:
--    a list with the solution {{-b/a}}
------------------------------
solveEasy = method(TypicalValue=>CC)
solveEasy(RingElement) := (p)->(
   R:=ring p;
   var:=support p;
   b:=part(0,p);
   a:=p_(var_(0));
   -- print(p,a,b);
   {{toCC sub((-b)/a, coefficientRing R)}}
)


--------------------------------------
--- trackSimpleSchubert
--------------------------------------
---
--- A function to find solution from a specific instance 
--- of a Schubert problem using homotopy 
--- continuation starting from solving
--- another instance (hopefully easier) of
--- the Schubert problem, but with respect 
--- to a different flag
--------------------------------------
-- Input:
--      kn     - sequence of integers (k,n)
--      conds  - sequence with two partitions (l,m)
--      G, F   - List of flags, G is the starting set of Flags
--               and F is the target
---------------------------------------
trackSimpleSchubert = method(TypicalValue=>List, Options=>{Memoize => false, StartSolutions=>null})
trackSimpleSchubert(Sequence, Sequence, List, List) := o->(kn,cond,G,F) ->(
   -- G is the start flag and F the target flag
   -- k and n are integers defining the Grassmannian G(k,n)
   (k,n) := kn;
   -- l and m are partitions of n
   (l,m) := cond;
   Sols:= (if o.StartSolutions === null then solveInternalSimple(kn,l,m,G) else o.StartSolutions);
   E := skewSchubertVariety(kn,l,m);
   Start:=apply(G, g->det( matrix E || sub(g, ring E),Strategy=>Cofactor));
   Target:=apply(F,f->det( matrix E || sub(f, ring E),Strategy=>Cofactor));
   Ret:=track(Start,Target,Sols,NumericalAlgebraicGeometry$gamma=>exp(2*pi*ii*random RR)) / coordinates;
   if o.Memoize then solutionsHash#{l,m,F} = Ret;  
   return Ret;
)