1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847
|
-- documentation of the package PHCpack
doc ///
Key
PHCpack
Headline
a package for Polynomial Homotopy Continuation
Description
Text
This package provides an interface to the software {\tt PHCpack}, a
general-purpose polynomial system solver that uses homotopy continuation.
The main method is a numerical blackbox solver,
implemented for Laurent systems. The package also provides a fast mixed
volume computation, the ability to filter solutions, extract real
solutions, or track solution paths defined by a polynomial homotopy.
For positive dimensional solution sets, we can
compute a numerical irreducible decomposition.
The software {\tt PHCpack} itself is available at
@HREF"http://www.math.uic.edu/~jan/download.html"@.
This site provides source code and its executable version {\tt phc}.
To use the methods from this package, the user must have the executable
program {\tt phc} available, preferably in the execution path.
The functions in this package call the {\tt phc} executable,
behind the scenes, with appropriate input options, and save
intermediate output to temporary files.
For convenience, the file names are displayed, and the commands that
are invoked are documented under "Consequences" for each function.
Below is a simple example using the most popular function,
the numerical blackbox solver.
Example
R = CC[x,y,z]
system = {y-x^2,z-x^3,x+y+z-1}
solns = solveSystem(system)
numSolns = #solns
solns/print
Text
We see that there are three solutions to the above system.
Each solution is of type @TO Point@ and contains diagnostic information
about the quality of the solution.
Example
oneSoln = solns_0
peek oneSoln
Text
The value of {\tt LastT} is the end value of the continuation parameter:
if it equals 1, then the solver reached the end of the path properly.
Caveat
{\bf 1.} If you are having trouble installing the package,
check whether the path to your PHCpack executable was set correctly.
You can check this by typing the following command:
options PHCpack
If it is wrong, you can update it by putting the absolute path
into the {\tt init-PHCpack.m2} file,
For example, if the executable {\tt phc} is located in C:/cygwin/PHC,
then the line inside the {\tt init-PHCpack.m2} file will look like this:
"path" => "C:/cygwin/PHC/" .
Alternately, the path could be set when loading the package
using the following command:
loadPackage ("PHCpack",
Configuration=>{"path"=>"C:/cygwin/PHC/","PHCexe"=>"./phc"})
{\bf 2.} If the package SimpleDoc is not found when
installing {\tt PHCpack.m2}, see questions and answers 6, 7, and 8
on the Macaulay2 web site.
{\bf 3.} The current version 1.8 of PHCpack.m2 was developed with version
1.9 of Macaulay2 and with version 2.4.17 of phc.
///;
-------------------
-- versionNumber --
-------------------
doc ///
Key
versionNumber
(versionNumber,Nothing)
Headline
returns the version number and release date of phc
Usage
versionNumber(null)
versionNumber(,Verbose=>true)
Inputs
null:Nothing
Outputs
:Sequence
The sequence on return contains two strings.
The first string on return is the version number.
The second string on return is the release date.
Description
Text
The version number and release date of the executable phc
are important for consistency between the methods in this
package and preparing the input batch files for the executable phc.
A successful run of this method verifies whether the location
of the executable phc is in the execution path.
Example
v = versionNumber(null)
print v_0
print v_1
///;
doc ///
Key
[versionNumber,Verbose]
Headline
option to print the output of phc --version to screen
Usage
cascade(...,Verbose=>Boolean)
Description
Text
Use {\tt Verbose=>true} to see the output of {\tt phc --version}.
///;
-------------
-- CASCADE --
-------------
doc ///
Key
cascade
(cascade,List)
Headline
runs a cascade of homotopies to get witness sets for the variety
Usage
cascade L
Inputs
L:List
of polynomials
Outputs
:NumericalVariety
containing the witness sets for each pure-dimensional variety
contained in zero set of L.
Consequences
Item
Writes the system to temporary file
Item
Invokes the command {\tt phc -c} (with option 0)
Item
Stores output of phc in temporary file
Item
Parses and outputs the solutions.
Description
Text
Given a list of generators of an ideal I, this function creates an
embedding and then runs a cascade of homotopies. The output is a
@TO NumericalVariety @ that contains
a @TO WitnessSet@ for each pure dimensional variety contained in V(I).
Example
R = CC[x,y,z];
L = { z*(x+y), z*(x-y) };
WitSets = cascade(L)
W=first WitSets#2
Text
The function {\tt cascade} extends the ring of the inputted system
with slack variables beginning with zz. Each witness
set in contains the equations, points, and slices of the embedded
system.
Example
W#Equations
W#Points
W#Slice
Caveat
Coefficient ring of the polynomial system must be of type @TO ComplexField@.
SeeAlso
constructEmbedding
numericalIrreducibleDecomposition
///;
-- options for cascade and numericalIrreducibleDecomposition
doc ///
Key
StartDimension
Headline
optional input for cascade and numericalIrreducibleDecomposition
Description
Text
Optional argument for {\tt cascade}
and {\tt numericalIrreducibleDecomposition}.
These methods search for positive dimensional components starting
at the {\tt StartDimension}
and then considering all the subsequent lower dimensions.
The default value for {\tt StartDimension} is the number of variables
in the system minus one.
If the user has a good idea about the top dimension, using a smaller
{\tt StartDimension} than the default will reduce the computational time.
Usage
cascade(..., StartDimension => ZZ) or numericalIrreducibleDecomposition(..., StartDimension =>ZZ)
///;
doc ///
Key
[cascade,StartDimension]
Headline
Option to specify the dimension to begin searching for positive dimensional components
Usage
cascade(...,StartDimension=>ZZ)
///;
doc ///
Key
[cascade,Verbose]
Headline
option to specify whether additional output is wanted
Usage
cascade(...,Verbose=>Boolean)
Description
Text
Use {\tt Verbose=>true} for additional output which includes the
input and solution file names used by {\tt phc -c}.
The output file of {\tt phc} contains timings for the stages
in the cascade of homotopies.
///;
doc ///
Key
[numericalIrreducibleDecomposition,StartDimension]
Headline
Option to specify the dimension to begin searching for positive dimensional components
Usage
numericalIrreducibleDecompositon(...,StartDimension=>ZZ)
///;
doc ///
Key
[numericalIrreducibleDecomposition,Verbose]
Headline
option to specify whether additional output is wanted
Usage
numericalIrreducibleDecomposition(...,Verbose=>Boolean)
Description
Text
The value of the Verbose option (by default set to false)
is passed to the methods cascade and factorWitnessSet.
The output file of {\tt phc} contains timings for all stages
in the numerical irreducible decomposition.
///;
-------------------------
-- CONSTRUCT EMBEDDING --
-------------------------
doc ///
Key
constructEmbedding
(constructEmbedding,List,ZZ)
Headline
constructs an embedding of a polynomial system
Usage
constructEmbedding(f,k)
Inputs
f:List
of polynomials
k:ZZ
the expected (top) dimension of the solution set of f
Outputs
:List
entries are polynomials containing the original system with k
random linear polynomials and k slack variables
Consequences
Item
Writes the system to temporary files
Item
Extends the ring with slack variables
Item
Uses surplus variables when the initial system is overconstrained
Item
Invokes the command {\tt phc -c} (with option 1).
Item
Stores output of phc in temporary file
Item
Parses and outputs the solutions.
Description
Text
To compute generic points of a k-dimensional solution set of a
polynomial system, we add k random linear equations to the system.
Example
R = CC[x,y,z];
f = { x^2 - y, x^3 - z };
fe1 = constructEmbedding(f,1);
toString fe1
Text
Note that the ring of the original system is extended with
k slack variables. Solutions of the embedded system with
zero values for the slack variables are candidate generic points.
If the input system is overdetermined (there are more equations
than unknowns), then as many surplus variables are introduced as
the difference between the number of equations and the number of
variables. Surplus variables start with ss.
Example
R = CC[x,y,z];
f = { x^2-y, x^3-z, x*y-z, x*z-y^2 };
fe1 = constructEmbedding(f,1);
toString fe1
Text
In the example above, the system f has four equations in three unknowns,
constructEmbedding adds one surplus variable and one slack variable.
Only solutions with zero values for the surplus variable are relevant.
///;
-- options for constructEmbedding
doc ///
Key
[constructEmbedding,Verbose]
Headline
option to specify whether additional output is wanted
Usage
constructEmbedding(...,Verbose=>Boolean)
Description
Text
Use {\tt Verbose=>true} for additional output which includes the
input and solution file names used by {\tt phc -c}.
///;
------------
-- FACTOR --
------------
doc ///
Key
factorWitnessSet
(factorWitnessSet,WitnessSet)
Headline
applies monodromy to factor a witness set into irreducible components
Usage
factorWitnessSet(w)
Inputs
w:WitnessSet
properly embedded with slack variables
Outputs
:List
a list of witness sets, every element of the list is irreducible
Consequences
Item
writes the system to temporary files,
Item
invokes the command {\tt phc -f} (with option 2),
Item
uses monodromy to factor,
Item
uses default settings of path trackers ,
Item
stores output of phc in temporary file,
Item
parses and outputs the solutions.
Description
Text
A witness set is irreducible if there exists a path between any two of
its generic points that does not pass
through a singularity.
We illustrate the factorization via the twisted cubic and a line.
Example
R = CC[x,y,z]; f = {(x^2-y)*(x-1), x^3 - z};
(w,ns) = topWitnessSet(f,1);
w
L = factorWitnessSet(w)
SeeAlso
numericalIrreducibleDecomposition
///;
-- options for factorWitnessSet
doc ///
Key
[factorWitnessSet,Verbose]
Headline
option to specify whether additional output is wanted
Usage
factorWitnessSet(...,Verbose=>Boolean)
Description
Text
Use {\tt Verbose=>true} for additional output which includes the
input and solution file names used by {\tt phc -f}.
///;
----------------------
-- isCoordinateZero --
----------------------
doc ///
Key
isCoordinateZero
(isCoordinateZero,AbstractPoint,ZZ,RR)
Headline
checks if coordinate has absolute value less than a given tolerance
Usage
isCoordinateZero(sol,k,tol)
Inputs
sol:AbstractPoint
solution to a polynomial system
k:ZZ
index of coordinate
tol:RR
tolerance on the absolute value of the k-th coordinate
Outputs
:Boolean
true if the k-th coordinate of solution has absolute value less than tol,
false otherwise
Description
Text
A solution has a zero k-th coordinate when the abs function
evaluates to a number less than the given tolerance.
Example
R = CC[x,y];
f = { x^3*y^5 + y^2 + x^2*y, x*y + x^2 - 1};
fSols = solveSystem(f, randomSeed=>3);
fSols/print
isCoordinateZero(fSols_0,1,1.0e-10)
Text
Good values for the tolerance are relative to the accuracy
and the condition number of the solution.
To improve the accuracy of a solution, apply
@TO refineSolutions@ with a higher working precision.
SeeAlso
refineSolutions
zeroFilter
nonZeroFilter
///;
---------------------------
-- IS WITNESS SET MEMBER --
---------------------------
doc ///
Key
isWitnessSetMember
(isWitnessSetMember,WitnessSet,AbstractPoint)
Headline
tests whether a point belongs to a solution set
Usage
isWitnessSetMember(W,p)
Inputs
W:WitnessSet
positive dimensional, properly embedded with slack variables
p:AbstractPoint
Outputs
:Boolean
true if p is a member of the solution set of W,
false otherwise
Consequences
Item
Invokes the command {\tt phc -f} (with option 1)
Description
Text
Uses numerical homotopy methods to test whether the point p belongs
to the variety associated to the witness set W.
Although W should be properly embedded, p should be given in the
coordinates of the original system.
Example
R = CC[x11,x22,x21,x12,x23,x13];
system = {x11*x22-x21*x12,x12*x23-x22*x13};
V = numericalIrreducibleDecomposition (system);
W = first V#4;
isWitnessSetMember(W, point{{0,0,0,0,0,0}})
///;
-- options for isWitnessSetMember
doc ///
Key
[isWitnessSetMember,Verbose]
Headline
option to specify whether additional output is wanted
Usage
isWitnessSetMember(...,Verbose=>Boolean)
Description
Text
Use {\tt Verbose=>true} for additional output, which includes the
input and solution file names used by {\tt phc}.
Example
R = CC[x11,x22,x21,x12,x23,x13];
system = {x11*x22-x21*x12,x12*x23-x22*x13};
V = numericalIrreducibleDecomposition (system);
W = first V#4;
isWitnessSetMember(W, point{{0,0,0,0,0,0}})
///;
-----------------
-- mixedVolume --
-----------------
doc ///
Key
mixedVolume
(mixedVolume, List)
Headline
computes mixed volume of a polynomial system
Usage
mv = mixedVolume(S)
(mv,sv) = mixedVolume(S,StableMixedVolume => true)
(mv,q,qsols) = mixedVolume(S,StartSystem => true)
(mv,sv,q,qsols) = mixedVolume(S,StableMixedVolume => true,StartSystem => true)
(mv,q,qsols) = mixedVolume(S,StartSystem => true,numThreads=4)
Inputs
S:List
whose entries are the polynomials of a square system
Outputs
mv:ZZ
the mixed volume of the system S
sv:ZZ
the stable mixed volume of the system S
q:List
whose entries are polynomials in a random coefficient system,
used as a start system for the homotopy
qSols:List
whose entries are solutions of the start system q
Consequences
Item
Writes the system to temporary files
Item
Invokes the command {\tt phc -m} (with option 4)
Item
Stores output of phc in temporary file
Item
Parses and outputs the solutions.
Description
Text
The mixed volume of a polynomial system $S:=\{f_1,\dots,f_n\}$
is defined as follows:
Let $P_1,\dots,P_n$ be the Newton polytopes
of $f_1,\dots,f_n$, i.e., $P_i$ is the convex hull of the exponents
of the monomials in the support of $f_i$.
The mixed volume of $S$ is
$$ \sum_{1\leq h\leq n}
\sum_{1\leq i_1\dots\leq i_h\leq n} (-1)^{n-h}V_n(P_{i_1}+\dots+P_{i_h}),
$$
where $V_n$ denotes the $n$-dimensional Euclidean volume.
Bernstein's theorem (D. N. Bernstein,{\em The number of roots of
a system of equations}, Functional. Anal. Appl 9 (1975), no. 3, 183-185),
a generalization of the classical Bezout's theorem, shows that for
a zero-dimensional system,
the mixed volume provides an upper bound on the number of complex
isolated roots.
If the coefficients of the system are sufficiently generic,
the mixed volume is a sharp bound.
Example
R = CC[x,y];
f = { x^3*y^5 + y^2 + x^2*y, x*y + x^2 - 1};
I=ideal f;
dim I
degree I
m = mixedVolume(f) -- counts the number of complex roots in the torus (without zero components)
(mv,sv) = mixedVolume(f,StableMixedVolume=>true)
(mv,q,qsols) = mixedVolume(f,StartSystem=>true);
q --let's take a look at the start system:
qsols --and its solutions:
Text
{\em Note that only those solutions with nonzero components
are shown, even if StableMixedVolume is true. See the end of
the temporary output file for the solutions with zero components.}
The method
{\tt mixedVolume} calls an Ada translation of ACM TOMS Algorithm 846:
{\em MixedVol: a software package for mixed-volume computation}
by Tangan Gao, T. Y. Li, Mengnien Wu,
@HREF { "http://portal.acm.org/citation.cfm?doid=1114268.1114274" ,
"ACM TOMS" }@
31(4):555-560, 2005.
SeeAlso
StableMixedVolume
StartSystem
///;
-- general options
doc ///
Key
randomSeed
Headline
seed for the random number generators
Description
Text
To avoid singularities during complex path following,
the homotopy methods use a random constant.
Different runs with solveSystem, trackPaths,
or mixedVolume (with StartSystem set to true) may
therefore lead to the solutions listed in a different order.
Fixing the value of randomSeed leads to reproducible runs.
///;
doc ///
Key
computingPrecision
Headline
flag to switch to double double or quad double precision
Description
Text
By default, all computations occur in hardware double precision.
While this precision could be large enough to obtain accurate
results, for larger problems, one may need to increase the
precision to double double or to quad double precision.
Setting the value of computingPrecision to 2 changes the
precision in the path trackers to double double.
Setting the value of computingPrecision to 4 changes the
precision in the path trackers to quad double.
To compensate for the cost overhead of the higher precision,
it is useful to run the multithreaded versions of the path
trackers, see the option numThreads.
///;
doc ///
Key
interactive
Headline
flag to run phc -p or phc -m in interactive mode
Description
Text
There are too many options for the path trackers in phc -p
to wrap them properly within the trackPaths() method.
With interactive turned on, the user can tune all parameters
of the path trackers, in the same way as running phc -p.
The option interactive is also supported to run the
polyhedral homotopies to solve random coefficient systems
with phc -c, in the mixedVolume function with the option
StartSystem set to true.
///;
-- options for mixedVolume
doc ///
Key
StableMixedVolume
Headline
optional input for computation of the stable mixed volume
Description
Text
Put {\tt StableMixedVolume=>true} as an argument in the
function @TO mixedVolume@ to count solutions in affine space.
///;
doc ///
Key
StartSystem
Headline
optional input to construct and solve a random coefficient system
Description
Text
Put {\tt StartSystem=>true} as an argument in the
function @TO mixedVolume@ to tell the method to use polyhedral
homotopies. Polyhedral homotopies solve a system with the same Newton
polytopes as the original system and with random complex coefficients.
This random coefficient system can serve as a start system to solve the
original input system.
///;
doc ///
Key
[mixedVolume, StartSystem]
Headline
optional input for computation of mixed volume by solving a random coefficient system
Usage
mixedVolume(...,StartSystem=>Boolean)
///;
doc ///
Key
[mixedVolume, StableMixedVolume]
Headline
optional input for computation of the stable mixed volume
Usage
mixedVolume(...,StableMixedVolume=>Boolean)
///;
doc ///
Key
[mixedVolume,Verbose]
Headline
option to specify whether additional output is wanted
Usage
mixedVolume(...,Verbose=>Boolean)
Description
Text
Use {\tt Verbose=>true} for additional output which includes the
input and solution file names used by {\tt phc}.
The output file of {\tt phc} contains timings for the mixed volume
and provides details about the mixed-cell configuration.
///;
doc ///
Key
[mixedVolume,numThreads]
Headline
option to set the number of threads when solving a start system
Usage
solveSystem(...,StartSystems=>true,numThreads=>ZZ)
Description
Text
Use {\tt numThreads=>4} to run the path trackers with 4 threads.
///;
doc ///
Key
[mixedVolume,interactive]
Headline
option to switch to the interactive mode of phc -m
Usage
solveSystem(...,interactive=>true)
///;
-------------------
-- nonZeroFilter --
-------------------
doc ///
Key
nonZeroFilter
(nonZeroFilter,List,ZZ,RR)
Headline
returns solutions with coordinate larger than given tolerance
Usage
nonZeroSols = nonZeroFilter(sols,k,tol)
Inputs
sols:List
solutions of a polynomial system
k:ZZ
index to a coordinate of a solution
tol:RR
tolerance on the abs value of the k-th coordinate
Outputs
nonZeroSols:List
solutions with k-th coordinate larger than the given tolerance
Description
Text
A solution has its k-th coordinate non-zero when the abs function
evaluates to a number greater than the given tolerance.
Example
R = CC[x,y];
f = { x^3*y^5 + y^2 + x^2*y, x*y + x^2 - 1};
fSols = solveSystem(f, randomSeed=>3);
fSols/print
nonZeroSols = nonZeroFilter(fSols,1,1.0e-10);
nonZeroSols / print
Text
Here is another system where we filter solutions with `large enough' first coordinate:
Example
f = {x^2+y^2,y*x+x};
fSols = solveSystem(f);
fSols/print
zeroSols = zeroFilter(fSols,0,1.0e-10);
zeroSols/print
Text
Good values for the tolerance are relative to the accuracy
and the condition number of the solution.
To improve the accuracy of a solution, apply
@TO refineSolutions@ with a higher working precision.
The method returns the complement of the result of @TO zeroFilter@.
SeeAlso
refineSolutions
zeroFilter
///;
---------------------------------------
-- numericalIrreducibleDecomposition --
---------------------------------------
doc ///
Key
numericalIrreducibleDecomposition
(numericalIrreducibleDecomposition,List)
Headline
finds the irreducible components of the zero set of a system of polynomials
Usage
numericalIrreducibleDecomposition (system)
Inputs
system:List
a system of polynomials, with no more equations than indeterminates
Outputs
:NumericalVariety
containing a witness set for each irreducible component
Consequences
Item
This function calls @TO cascade@ and @TO factorWitnessSet@.
Description
Text
Given a list of generators of an ideal I, this function returns
a @TO NumericalVariety@ with a
@TO WitnessSet@ for each irreducible component of V(I).
Example
R=CC[x11,x22,x21,x12,x23,x13,x14,x24];
system={x11*x22-x21*x12,x12*x23-x22*x13,x13*x24-x23*x14};
V=numericalIrreducibleDecomposition(system)
WitSets=V#5; --witness sets are accessed by dimension
w=first WitSets;
w.cache.IsIrreducible
Text
In the above example we found three components of dimension five, we can check the
solution using symbolic methods.
Example
R=QQ[x11,x22,x21,x12,x23,x13,x14,x24];
system={x11*x22-x21*x12,x12*x23-x22*x13,x13*x24-x23*x14};
PD=primaryDecomposition(ideal(system))
for i from 0 to 2 do print ("dim =" | dim PD_i | " " | "degree=" | degree PD_i)
SeeAlso
cascade
factorWitnessSet
solveSystem
///;
---------------------
-- refineSolutions --
---------------------
doc ///
Key
refineSolutions
(refineSolutions,List,List,ZZ)
Headline
refines solutions of a system by increasing working precision
Usage
newSols = refineSolutions(f,sols,dp)
Inputs
f:List
a system of polynomials
sols:List
solutions of the system f, each of type @TO AbstractPoint@
(from a previous calculation)
dp:ZZ
the number of decimal places in working precision
Outputs
newSols:List
the solutions {\tt sols} of {\tt f} refined to increased
precision of {\tt dp} decimal places
Consequences
Item
writes a system to a temporary file,
Item
invokes the command {\tt phc -v} (with option 3),
Item
stores phc output in a temporary file,
Item
parses and prints the refined solutions.
Description
Text
The user can specify the number of decimal places desired
to refine solutions.
Let us compute a square root with a working precision of 64 decimal
places:
Example
R = CC[x,y]; S = {x^2 - 1/3, x*y - 1}; ourRoots = solveSystem(S);
r0 = ourRoots#0#Coordinates#1
newRoots = refineSolutions(S,ourRoots,64)
newRoots#0 -- recall that solutions are of type Point
r1 = newRoots#0#Coordinates#1
///;
-- options for refineSolutions
doc ///
Key
[refineSolutions,Verbose]
Headline
option to specify whether additional output is wanted
Usage
refineSolutions(...,Verbose=>Boolean)
Description
Text
Use {\tt Verbose=>true} for additional output which includes the
input and solution file names used by {\tt phc -v}.
///;
-------------------------
-- solveRationalSystem --
-------------------------
doc ///
Key
solveRationalSystem
(solveRationalSystem,List)
Headline
approximates solutions to a rational system of equations
Usage
solveRationalSystem (f)
Inputs
f:List
a system of rational equations with a finite number of solutions
Outputs
:List
containing the solutions of f, each of type @TO Point@
Consequences
Item
converts the rational system into a Laurent system, invokes the
commands {\tt phc -b} and {\tt phc -z},
Item
adds slack variables if needed (i.e. if system is overdetermined),
Item
writes the system to temporary file,
Item
launches the blackbox solver,
Item
stores the output of phc in a temporary file,
Item
parses and outputs the solutions.
Description
Text
This function returns numerical approximations of all complex
solutions of a rational system.
The function converts the system to a Laurent
polynomial system and then calls {\tt PHCpack}'s blackbox solver.
Example
R = QQ[x,y,z];
system = {y-x^2, z-x^3, (x+y+z-1)/x};
sols = solveRationalSystem(system)
Text
The solutions are of type @TO Point@. Each point {\tt p} comes with cached
diagnostics. For example, {\tt p.cache.LastT} is the end value of the
continuation parameter; if it equals 1,
then the solver reached the end of the path properly.
Example
peek first sols
SeeAlso
solveSystem
toLaurentPolynomial
///;
-- options for solveRationalSystem
doc ///
Key
[solveRationalSystem,Verbose]
Headline
option to specify whether additional output is wanted
Usage
solveRationalSystem(...,Verbose=>Boolean)
Description
Text
Use {\tt Verbose=>true} for additional output which includes the
input and solution file names used by {\tt phc}.
///;
-----------------
-- solveSystem --
-----------------
doc ///
Key
solveSystem
(solveSystem, List)
Headline
a numerical blackbox solver
Usage
solveSystem(S)
solveSystem(S,numThreads=>4)
solveSystem(S,computingPrecision=>2)
solveSystem(S,randomSeed=>12345)
Inputs
S:List
contains a zero-dimensional system of polynomials with complex
coefficients
that contains at least as many equations as indeterminates
Outputs
:List
containing the solutions of S, each of type @TO Point@.
Consequences
Item
Writes the system to temporary file
Item
Adds slack variables if needed (i.e. if system is overdetermined)
Item
Invokes the command {\tt phc -b} (launches the blackbox solver)
Item
Stores output of phc in temporary file
Item
Parses and outputs the solutions.
Description
Text
Suppose we want numerical approximations of all complex isolated
solutions to the following system:
Example
R = CC[x,y,z]
S = {x+y+z-1, x^2+y^2, x+y-z-3}
Text
We call {\tt PHCpack}'s blackbox solver:
Example
L = solveSystem(S)
Text
The method {\tt solveSystem} prints the {\tt PHCpack} input and output file names
and returns two solutions. The solutions are of type @TO Point@, defined in @TO NAGtypes@.
Each point {\tt p} comes with cached diagnostics.
For example, {\tt p.cache.LastT} is the end value of the continuation parameter;
if it equals 1, then the solver reached the end of the path properly.
Example
oneSoln = L_0
peek oneSoln
Text
The method handles overdetermined systems by inserting slack variables.
Example
system = {y-x^2, z-x^3, x+y+z-1, x+y+ x^3 -1}
#system > numcols vars R --overdetermined system
solns = solveSystem(system);
numSolns = #solns
Caveat
The method {\tt solveSystem} does not check
the dimension of the system; it checks for number of equations instead.
So {\tt solveSystem} will return an error if there are less equations than unknowns
even if the system is zero-dimensional. In addition, if the system is square
but not zero-dimensional, the output is meaningless. Thus, it is suggested
that the user checks the dimension of the system before using
{\tt solveSystem}.
SeeAlso
solveRationalSystem
///;
-- options for solveSystem
doc ///
Key
[solveSystem,Verbose]
Headline
option to specify whether additional output is wanted
Usage
solveSystem(...,Verbose=>Boolean)
Description
Text
Use {\tt Verbose=>true} for additional output which includes the
input and solution file names used by {\tt phc}.
The output file of {\tt phc} contains timings for the stages
in the solver.
///;
doc ///
Key
[solveSystem,computingPrecision]
Headline
option to specify the working precision
Usage
solveSystem(...,computingPrecision=>ZZ)
Description
Text
Use {\tt computingPrecision=>2} for double double precision.
Use {\tt computingPrecision=>4} for quad double precision.
///;
doc ///
Key
[solveSystem,numThreads]
Headline
option to set the number of threads
Usage
solveSystem(...,numThreads=>ZZ)
Description
Text
Use {\tt numThreads=>4} to run the path trackers with 4 threads.
///;
doc ///
Key
[solveSystem,randomSeed]
Headline
option to set the seed of the random number generators
Usage
solveSystem(...,randomSeed=>ZZ)
Description
Text
Use {\tt randomSeed=>12345} to set the seed to 12345.
///;
-------------------------
-- toLaurentPolynomial --
-------------------------
doc ///
Key
toLaurentPolynomial
(toLaurentPolynomial,List,Symbol)
Headline
converts a list of rational polynomials into Laurent polynomials
Usage
toLaurentPolynomial(system, w)
Inputs
system:List
a list of rational polynomials from the same ring
w:Symbol
a symbol to be used for new indexed variables
Outputs
:List
the same system converted to a Laurent polynomial system
Description
Text
This function converts a rational system to a Laurent polynomial system.
Example
QQ[x,y,z];
sys = {y-x^2, z-x^3, (x+y+z-1)/x};
describe ring ideal sys
Text
There are denominators, so the method will convert these:
Example
convertedSys = toLaurentPolynomial(sys,w);
Text
The system convertedSys is an equivalent system living in a Laurent polynomial ring.
For each denominator, a new variable was created starting with w.
Example
printWidth = 300;
toString convertedSys
ring ideal convertedSys
Text
Next, notice that the option "Inverses=>true" shows that this is a ring with negative exponents allowed:
Example
describe oo
Text
Note that if the system is already polynomial, or in Laurent
polynomial form, then {\tt toLaurentPolynomial} doesn't change it.
Of course, sometimes it is possible that the system is polynomial
"in disguise" as in line o10 in the following example:
Example
P = QQ[x,y,z];
f = (x*y + z^2*y) / y
liftable(f,P)
Text
But {\tt toLaurentPolynomial} detects this and simplifies the system.
Instead of creating Laurent polynomials,
it updates the system using the following:
Example
lift(f,P)
///;
-------------------
-- topWitnessSet --
-------------------
doc ///
Key
topWitnessSet
(topWitnessSet,List,ZZ)
Headline
returns a witness set and nonsolutions for the top dimensional solution set
Usage
(w,ns) = topWitnessSet(f,k)
Inputs
f:List
of polynomials expected to have a component of dimension k
k:ZZ
the expected (top) dimension of the solution set of f
Outputs
w:WitnessSet
for the k-dimensional solution set of f
ns:List
solutions with nonzero value for the slack variable (the nonsolutions)
Consequences
Item
Constructs an embedding using @TO constructEmbedding@,
which calls {\tt phc -c}
Item
Solves the system using @TO solveSystem@, which calls {\tt phc -b}
Item
Filters the solutions
Item
Constructs the witness set of appropriate dimension.
Description
Text
The method {\tt topWitnessSet} constructs an embedding
for the given polynomial system with the given dimension,
and then computes generic points on the solution set.
The computation of a witness set for the twisted cubic
is illustrated below.
Example
R = CC[x,y,z];
f = { x^2 - y, x^3 - z };
(w,ns) = topWitnessSet(f,1)
dim(w)
degree(w)
toString equations(w)
toString slice(w)
toString points(w)
Text
A witness set for the twisted cubic consists of the embedded system,
a random linear hyperplane to slice the space curve,
and three generic points. Observe that the value for the last
coordinate of all points equals (or is close to) zero.
This last coordinate corresponds to the added slack variable zzk.
Solutions with a nonzero value for the slack variable are called
nonsolutions. In the example above, the list of nonsolutions
returned in ns by {\tt topWitnessSet} was empty.
Often the solution of the embedded system leads to solutions
with nonzero slack variables, as illustrated in the next example.
Example
R = CC[x,y,z]; f = { (x^2-y)*(x-2), (x^3 - z)*(y-2), (x*y - z)*(z-2) }
(w,ns) = topWitnessSet(f,1);
dim(w)
degree(w)
#ns
Text
The example is constructed to contain not only the twisted cubic,
but also at least one isolated point (2,2,2).
This is reflected in the list of nonsolutions.
The nonsolutions may be used as start solutions in a cascade of
homotopies to find generic points on lower dimensional components.
SeeAlso
constructEmbedding
solveSystem
///;
-- options for topWitnessSet
doc ///
Key
[topWitnessSet,Verbose]
Headline
option to specify whether additional output is wanted
Usage
topWitnessSet(...,Verbose=>Boolean)
Description
Text
Use {\tt Verbose=>true} for additional output which includes the
input and solution file names used by {\tt phc -c}.
The output file of {\tt phc} contains information about the
application of the blackbox solver to the embedded system.
///;
----------------
-- trackPaths --
----------------
doc ///
Key
trackPaths
(trackPaths, List, List, List)
Headline
tracks paths defined by a typical homotopy between start and end systems
Usage
solsT = trackPaths(T,S,solsS)
Inputs
T:List
of polynomials, called the target system
S:List
of polynomials, called the start system
solsS:List
solutions of {\tt S}
Outputs
solsT:List
containing the solutions of {\tt T} that are at the ends of the paths
starting at {\tt solsS}
Consequences
Item
Writes the start system and its solutions to temporary files
Item
Invokes the command {\tt phc -p}
Item
After running {\tt phc -z}, stores output of phc in temporary file
Item
Parses and outputs the solutions.
Description
Text
A linear homotopy between target T and start S has the form
(1-Lambda)*S + Lambda*T = 0. The method {\tt trackPaths} tracks the
solution paths defined by the homotopy for Lambda going from 0 to 1.
In the example below, we first construct a start system using
polyhedral homotopies using @TO mixedVolume @.
Example
R = CC[x,y];
f = { x^3*y^5 + y^2 + x^2*y, x*y + x^2 - 1};
(m,q,qsols) = mixedVolume(f,StartSystem=>true);
fsols = trackPaths(f,q,qsols)
SeeAlso
gamma
interactive
intermediateSolutions
loadSettingsPath
saveSettingsPath
numThreads
seeProgress
tDegree
///;
-- options for trackPaths
doc ///
Key
gamma
Headline
the constant in the gamma trick, optional input for trackPaths
Description
Text
The `gamma trick' refers to the following idea:
If the solutions of the start system are regular,
then we avoid singular solutions
along the paths by multiplying the start system in the homotopy
with a random complex constant {\tt gamma}.
This option allows the user to give a specific value of this
gamma constant.
Example
R = CC[x,y];
f = { x^3*y^5 + y^2 + x^2*y, x*y + x^2 - 1};
(m,q,qsols) = mixedVolume(f,StartSystem=>true);
fsols = trackPaths(f,q,qsols,gamma => exp(ii*pi/3))
Text
Reference:
{A.J. Sommese, J. Verschelde, and C.W. Wampler. {\em Introduction
to numerical algebraic geometry.}
In: Solving Polynomial Equations. Foundations, Algorithms
and Applications, volume 14 of
Algorithms and Computation in Mathematics, pages 301-337.
Springer-Verlag, 2005.}
///;
doc ///
Key
[trackPaths,gamma]
Headline
Option to specify the value of the constant in the gamma trick
Usage
trackPaths(...,gamma=>CC)
///;
doc ///
Key
tDegree
Headline
the degree of the continuation parameter
Description
Text
By default, the homotopy is created with tDegree equal to 2.
This option allows the user to give another value for tDegree;
e.g., a linear homotopy between start system q and target system f
is of the form (1-t)*q + t*f.
In general, if tDegree is k, then the homotopy is
of the form (1-t)^k*q + t^k*f.
A reason for changing the tDegree would be the following:
higher degree homotopies ensure that the system doesn't change as fast
in the beginning and at the end of the homotopy;
that is, they force smaller step sizes in the beginning and end.
The default value, 2, is usually sufficient.
Example
R = CC[x,y];
f = { x^3*y^5 + y^2 + x^2*y, x*y + x^2 - 1};
(m,q,qsols) = mixedVolume(f,StartSystem=>true);
fsols = trackPaths(f,q,qsols,tDegree => 1)
///;
doc ///
Key
[trackPaths,tDegree]
Headline
Option to specify the degree of the continuation parameter
Usage
trackPaths(...,tDegree=>ZZ)
///;
doc ///
Key
numThreads
Headline
the number of threads in the path tracker
Description
Text
Tracking many solution paths is a pleasingly parallel computation.
A multithreaded path tracker has a number of threads working on
a queue of path tracking jobs. Every path tracking job can be
computed without communication overhead. For sufficiently large
problems, the speedup can as large as the number of threads.
///;
doc ///
Key
[trackPaths,numThreads]
Headline
Option to define the number of threads in the path tracker.
Usage
trackPaths(...,numThreads=>ZZ)
///;
doc ///
Key
seeProgress
Headline
flag to monitor the progress of the multithreaded path tracker
Description
Text
For a long path tracking job, one could check the progress of the
computation by checking the end of the output file.
A multithreaded path tracker no longer writes the solutions to the
output file as soon as they are computed. For path tracking jobs
that take a very long time, the lack of information on the progress
can be annoying. With seeProgess turned on, every thread will write
a message to screen for each path tracking job.
///;
doc ///
Key
[trackPaths,seeProgress]
Headline
Option to follow the progress of the multithreaded path tracker.
Usage
trackPaths(...,seeProgress=>Boolean)
///;
doc ///
Key
[trackPaths,interactive]
Headline
Option to run phc -p in interactive mode.
Usage
trackPaths(...,interactive=>Boolean)
///;
doc ///
Key
[trackPaths,Verbose]
Headline
option to specify whether additional output is wanted
Usage
trackPaths(...,Verbose=>Boolean)
Description
Text
Use {\tt Verbose=>true} for additional output which includes the
input and solution file names used by {\tt phc}.
The output file of {\tt phc} contains timings for the path tracker
and additional diagnostics for each path.
///;
doc ///
Key
intermediateSolutions
Headline
option of trackPaths to get all intermediate solutions on a path
Description
Text
By default, when this option is false, on return are only the
end points of each solution path.
With this option set to true, on return are all intermediate
solutions along a path. For large systems and/or complicated
solution paths, the list on return can be rather large.
///;
doc ///
Key
[trackPaths,intermediateSolutions]
Headline
option to get all intermediate solutions on a path
Usage
trackPaths(...,intermediateSolutions=>Boolean)
///;
doc ///
Key
saveSettingsPath
Headline
option of trackPaths to save the settings for a reproducible rerun
Description
Text
By default, this option is set to the empty string.
If the user provides a string that is not the empty string,
then the settings of the path tracker are saved for a rerun.
Calling trackPaths, giving the same string to loadSettingsPath,
enables a reproducible run.
///;
doc ///
Key
[trackPaths,saveSettingsPath]
Headline
option to save the settings of the path trackers for a reproducible rerun
Usage
trackPaths(...,saveSettingsPath=>String)
///;
doc ///
Key
loadSettingsPath
Headline
option of trackPaths to load the settings for a reproducible rerun
Description
Text
By default, this option is set to the empty string.
To apply the option, the user should give as string the argument
used for the option saveSettingsPath.
With this option, one gets a reproducible run.
///;
doc ///
Key
[trackPaths,loadSettingsPath]
Headline
option to load the settings of the path trackers for a reproducible rerun
Usage
trackPaths(...,loadSettingsPath=>String)
///;
----------------
-- zeroFilter --
----------------
doc ///
Key
zeroFilter
(zeroFilter,List,ZZ,RR)
Headline
returns solutions with k-th coordinate less than the given tolerance
Usage
zeroSols = zeroFilter(sols,k,tol)
Inputs
sols:List
containing the solutions of a polynomial system
k:ZZ
index of a coordinate of a solution
tol:RR
tolerance on the absolute value of the k-th coordinate
Outputs
zeroSols:List
solutions with k-th coordinate less than the given tolerance
Description
Text
A solution has its k-th coordinate zero when the abs function
evaluates to a number less than or equal to the given tolerance.
Example
R = CC[x,y];
f = { x^3*y^5 + y^2 + x^2*y, x*y + x^2 - 1};
fSols = solveSystem(f, randomSeed=>3);
fSols/print
Text
There is one solution with zero second coordinate:
Example
zeroSols = zeroFilter(fSols,1,1.0e-10);
zeroSols / print
Text
Here is another system where we filter solutions with `small'
first coordinate:
Example
f = {x^2+y^2,y*x+x};
fSols = solveSystem(f);
fSols/print
zeroSols = zeroFilter(fSols,0,1.0e-10);
zeroSols/print
Text
Good values for the tolerance are relative to the accuracy
and the condition number of the solution.
To improve the accuracy of a solution, apply
@TO refineSolutions@ with a higher working precision.
SeeAlso
refineSolutions
nonZeroFilter
///;
---------------------
-- intersectSlice --
---------------------
doc ///
Key
intersectSlice
(intersectSlice,WitnessSet,List)
Headline
intersects a witness set by a slice
Usage
fSols = intersectSlice(w, slice)
Inputs
w:WitnessSet
a witness set for a solution set
slice:List
a list of linear equations
Outputs
fSols:List
solutions that satisfy w.Equations and the equations in the slice
Description
Text
A typical application is to find solutions for slices with
real coefficients.
Example
R=CC[a,b,c,d];
M=matrix for i to 2 list for j to 3 list random(1,R)+random(0,R);
I=minors(3,M);
f=flatten entries gens I;
(w,ns) = topWitnessSet(f,2);
slcmat = matrix applyTable (entries w.Slice, x->1_CC*realPart x);
Rtwo = ring w.Equations;
X = transpose matrix {gens Rtwo | {1_CC}};
slcRR = flatten entries (promote(slcmat,Rtwo) * X);
fsols = intersectSlice(w,slcRR)
SeeAlso
topWitnessSet
///;
------------------
-- realSlice1D --
------------------
doc ///
Key
realSlice1D
(realSlice1D, WitnessSet)
Headline
computes a real slice for a one dimensional witness set
Usage
slc = realSlice1D(w)
Inputs
w:WitnessSet
a witness set for a solution set
Outputs
slc:List
list of linear equations with the largest number of real solutions
Description
Text
A real slice is a set of linear equations with the largest number
of real solutions of the equations for a given witness set.
Example
R = CC[x,y,z];
-- twisted = {z^2-y, y*z-x, y^2-x*z};
-- (w, ns) = topWitnessSet(twisted, 1);
-- slc = realSlice1D(w);
-- solsRR = intersectSlice(w,slc)
-- for i to #solsRR-1 do print solsRR_i
SeeAlso
intersectSlice
///;
------------------
-- realSlice2D --
------------------
doc ///
Key
realSlice2D
(realSlice2D, WitnessSet)
Headline
computes a real slice for a two dimensional witness set
Usage
slc = realSlice2D(w)
Inputs
w:WitnessSet
a witness set for a solution set
Outputs
slc:List
list of linear equations with the largest number of real solutions
Description
Text
A real slice is a set of linear equations with the largest number
of real solutions of the equations for a given witness set.
Example
R = CC[x,y,z];
-- paraboloid = {z - x^2 - y^2};
-- (w, ns) = topWitnessSet(paraboloid, 2);
-- slc = realSlice2D(w, searchNpoints=>5);
-- solsRR = intersectSlice(w,slc)
-- for i to #solsRR-1 do print solsRR_i
SeeAlso
intersectSlice
///;
doc ///
Key
searchNpoints
Headline
option of realSlice1D
Description
Text
Before the line search, a discretization of the range of the slices
is computed. The value of searchNpoints sets the number of equidistant
points in this range of slices.
///;
doc ///
Key
[realSlice1D,searchNpoints]
Headline
option of realSlice1D
Usage
realSlice1D(...,searchNpoints=>Number)
///;
doc ///
Key
[realSlice2D,searchNpoints]
Headline
option of realSlice2D
Usage
realSlice2D(...,searchNpoints=>Number)
///;
doc ///
Key
searchDelta
Headline
option of realSlice1D
Description
Text
In the line search we need to set the width of the search interval.
After a discretization, the golden section search method is applied
to the interval [p - searchDelta, p + searchDelta], where p is the
point where the minimum value after the discretization was found.
///;
doc ///
Key
[realSlice1D,searchDelta]
Headline
option of realSlice1D
Usage
realSlice1D(...,searchDelta=>Number)
///;
doc ///
Key
[realSlice2D,searchDelta]
Headline
option of realSlice2D
Usage
realSlice2D(...,searchDelta=>Number)
///;
doc ///
Key
searchTolerance
Headline
option of realSlice1D
Description
Text
The golden section search method stops when the width of the current
interval which contains the minimum is smaller than searchTolerance.
For unimodal functions, searchTolerance will be the bound on the
accuracy of the location of the minimum.
///;
doc ///
Key
[realSlice1D,searchTolerance]
Headline
option of realSlice1D
Usage
realSlice1D(...,searchTolerance=>Number)
///;
doc ///
Key
[realSlice2D,searchTolerance]
Headline
option of realSlice2D
Usage
realSlice2D(...,searchTolerance=>Number)
///;
|