1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
|
-- -*- M2-comint -*- hash: 1886230761
i1 : QQ[x,y,z];
i2 : sys = {y-x^2, z-x^3, (x+y+z-1)/x};
i3 : describe ring ideal sys
o3 = frac/QQ[x..z, Degrees => {3:1}, Heft => {1}, MonomialOrder => {MonomialSize => 32}, DegreeRank => 1]\
| {GRevLex => {3:1} } |
\ {Position => Up } /
i4 : convertedSys = toLaurentPolynomial(sys,w);
i5 : printWidth = 300;
i6 : toString convertedSys
o6 = {y-x^2, z-x^3, -w_0^(-1)+z*w_0^(-1)+y*w_0^(-1)+x*w_0^(-1), w_0-x}
i7 : ring ideal convertedSys
o7 = QQ {x..z, w }
0
o7 : PolynomialRing
i8 : describe oo
o8 = QQ {x..z, w , Degrees => {4:1}, MonomialOrder => {Weights => {4:-1} }, DegreeRank => 1, Inverses => true, Global => false}
0 {MonomialSize => 32}
{GroupRevLex => 4 }
{Position => Up }
i9 : P = QQ[x,y,z];
i10 : f = (x*y + z^2*y) / y
2
o10 = z + x
o10 : frac P
i11 : liftable(f,P)
o11 = true
i12 : lift(f,P)
2
o12 = z + x
o12 : P
i13 :
|