File: _to__Laurent__Polynomial.out

package info (click to toggle)
macaulay2 1.21%2Bds-3
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 133,096 kB
  • sloc: cpp: 110,377; ansic: 16,306; javascript: 4,193; makefile: 3,821; sh: 3,580; lisp: 764; yacc: 590; xml: 177; python: 140; perl: 114; lex: 65; awk: 3
file content (55 lines) | stat: -rw-r--r-- 1,259 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
-- -*- M2-comint -*- hash: 1886230761

i1 : QQ[x,y,z];

i2 : sys = {y-x^2, z-x^3, (x+y+z-1)/x};

i3 : describe ring ideal sys

o3 = frac/QQ[x..z, Degrees => {3:1}, Heft => {1}, MonomialOrder => {MonomialSize => 32}, DegreeRank => 1]\
         |                                                         {GRevLex => {3:1}  }                  |
         \                                                         {Position => Up    }                  /

i4 : convertedSys = toLaurentPolynomial(sys,w);

i5 : printWidth = 300;

i6 : toString convertedSys

o6 = {y-x^2, z-x^3, -w_0^(-1)+z*w_0^(-1)+y*w_0^(-1)+x*w_0^(-1), w_0-x}

i7 : ring ideal convertedSys

o7 = QQ {x..z, w }
                0

o7 : PolynomialRing

i8 : describe oo

o8 = QQ {x..z, w , Degrees => {4:1}, MonomialOrder => {Weights => {4:-1} }, DegreeRank => 1, Inverses => true, Global => false}
                0                                     {MonomialSize => 32}
                                                      {GroupRevLex => 4  }
                                                      {Position => Up    }

i9 : P = QQ[x,y,z];

i10 : f = (x*y + z^2*y) / y

       2
o10 = z  + x

o10 : frac P

i11 : liftable(f,P)

o11 = true

i12 : lift(f,P)

       2
o12 = z  + x

o12 : P

i13 :