1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554
|
-- -*- coding: utf-8 -*-
newPackage(
"Points",
Version => "3.0",
Date => "29 June 2008, revised by DE June 2016, revised by FG and JWS June 2018",
Authors => {
{Name => "Mike Stillman", Email => "mike@math.cornell.edu", HomePage => "http://www.math.uiuc.edu/Macaulay2/"},
{Name => "Gregory G. Smith", Email => "ggsmith@mast.queensu.ca"},
{Name => "Stein A. Strømme", Email => "stromme@math.uib.no"},
{Name => "David Eisenbud", Email => "de@msri.org"},
{Name => "Federico Galetto", Email => "galetto.federico@gmail.com", HomePage => "http://math.galetto.org"},
{Name => "Joseph W. Skelton", Email => "jskelton@tulane.edu"}
},
Headline => "sets of points",
Keywords => {"Examples and Random Objects"},
PackageExports => {"LexIdeals"},
DebuggingMode => false
)
export {
-- Points in affine space
"affinePointsMat",
"affinePoints",
"affinePointsByIntersection",
"affineMakeRingMaps",
---------
-- points in projective space
"randomPointsMat",
"AllRandom",
"points",
"randomPoints",
"omegaPoints",
"expectedBetti",
"minMaxResolution",
---------------------------------------------------------------------
-- FG: fat points, and new projective points (v3)
---------------------------------------------------------------------
"affineFatPoints",
"affineFatPointsByIntersection",
"projectivePoints",
"VerifyPoints",
"projectivePointsByIntersection",
"projectiveFatPointsByIntersection",
"projectiveFatPoints"
}
///
restart
loadPackage("Points", Reload=>true)
randomPointsMat
omegaPoints
///
affineMakeRingMaps = method (TypicalValue => List)
affineMakeRingMaps (Matrix, Ring) := List => (M,R) -> (
K := coefficientRing R;
pts := entries transpose M;
apply(pts, p -> map(K, R, p))
)
addNewMonomial = (M,col,monom,maps) -> (
-- M is an s by s+1 matrix, s=#points
-- monom is a monomial
-- maps is a list of s ring maps, which will give the values
-- of the monom at the points
-- replaces the 'col' column of M with the values of monom
-- at the s points.
scan(#maps, i -> M_(i,col) = maps#i monom)
)
affinePointsByIntersection = method(TypicalValue => List)
affinePointsByIntersection (Matrix,Ring) := (M,R) -> (
flatten entries gens gb intersect apply (
entries transpose M, p -> ideal apply(#p, i -> R_i - p#i)))
reduceColumn = (M,Mchange,H,c) -> (
-- M is a mutable matrix
-- Mchange is either null, or a matrix with same number of columns as M
-- H is a hash table: H#r == c if column c has pivot for row r
-- returns true if the element reduces to 0
r := numRows M - 1;
while r >= 0 do (
a := M_(r,c);
if a != 0 then (
-- is there a pivot?
if not H#?r then (
b := 1/a; -- was 1//a
columnMult(M, c, b);
if Mchange =!= null then columnMult(Mchange, c, b);
H#r = c;
return false;
)
else (
pivotc := H#r;
columnAdd(M, c, -a, pivotc);
if Mchange =!= null then columnAdd(Mchange, c, -a, pivotc);
));
r = r-1;
);
true
)
affinePointsMat = method()
affinePointsMat(Matrix,Ring) := (M,R) -> (
-- The columns of M form the points. M should be a matrix of size
-- n by s, where n is the number of variables of R
--
K := coefficientRing R;
s := numgens source M;
-- The local data structures:
-- (P,PC) is the matrix which contains the elements to be reduced
-- Fs is used to evaluate monomials at the points
-- H is a hash table used in Gaussian elimination: it contains the
-- pivot columns for each row
-- L is the sum of monomials which is still to be done
-- Lhash is a hashtable: Lhash#monom = i means that only
-- R_i*monom, ..., R_n*monom should be considered
-- G is a list of GB elements
-- inG is the ideal of initial monomials for the GB
Fs := affineMakeRingMaps(M,R);
P := mutableMatrix map(K^s, K^(s+1), 0);
H := new MutableHashTable; -- used in the column reduction step
Lhash := new MutableHashTable; -- used to determine which monomials come next
L := 1_R;
Lhash#L = 0; -- start with multiplication by R_0
thiscol := 0;
inG := trim ideal(0_R);
inGB := forceGB gens inG;
Q := {}; -- the list of standard monomials
--ntimes := 0;
while (L = L % inGB) != 0 do (
--ntimes = ntimes + 1;
--if #Q === s then print "got a basis";
--print("size of L = "| size(L));
-- First step: get the monomial to consider
monom := someTerms(L,-1,1);
L = L - monom;
-- Now fix up the matrix P
addNewMonomial(P,thiscol,monom,Fs);
isLT := reduceColumn(P,null,H,thiscol);
if isLT then (
-- we add to G, inG
inG = inG + ideal(monom);
inGB = forceGB gens inG;
)
else (
-- we modify L, Lhash, thiscol, and also PC
Q = append(Q, monom);
L = L + sum apply(toList(Lhash#monom .. numgens R - 1), i -> (
newmon := monom * R_i;
Lhash#newmon = i;
newmon));
thiscol = thiscol + 1;
)
);
--print("ntimes "|ntimes|" std+inG "|#Q + numgens inG);
stds := transpose matrix{Q};
A := transpose matrix{apply(Fs, f -> f stds)};
(A, stds)
)
affinePoints = method()
affinePoints (Matrix,Ring) := (M,R) -> (
-- The columns of M form the points. M should be a matrix of size
-- n by s, where n is the number of variables of R
K := coefficientRing R;
s := numgens source M;
-- The local data structures:
-- (P,PC) is the matrix which contains the elements to be reduced
-- Fs is used to evaluate monomials at the points
-- H is a hash table used in Gaussian elimination: it contains the
-- pivot columns for each row
-- L is the sum of monomials which is still to be done
-- Lhash is a hashtable: Lhash#monom = i means that only
-- R_i*monom, ..., R_n*monom should be considered
-- G is a list of GB elements
-- inG is the ideal of initial monomials for the GB
Fs := affineMakeRingMaps(M,R);
P := mutableMatrix map(K^s, K^(s+1), 0);
PC := mutableMatrix map(K^(s+1), K^(s+1), 0);
for i from 0 to s-1 do PC_(i,i) = 1_K;
H := new MutableHashTable; -- used in the column reduction step
Lhash := new MutableHashTable; -- used to determine which monomials come next
L := 1_R;
Lhash#L = 0; -- start with multiplication by R_0
thiscol := 0;
G := {};
inG := trim ideal(0_R);
inGB := forceGB gens inG;
Q := {}; -- the list of standard monomials
nL := 1;
while L != 0 do (
-- First step: get the monomial to consider
L = L % inGB;
monom := someTerms(L,-1,1);
L = L - monom;
-- Now fix up the matrices P, PC
addNewMonomial(P,thiscol,monom,Fs);
columnMult(PC, thiscol, 0_K);
PC_(thiscol,thiscol) = 1_K;
isLT := reduceColumn(P,PC,H,thiscol);
if isLT then (
-- we add to G, inG
inG = inG + ideal(monom);
inGB = forceGB gens inG;
g := sum apply(toList(0..thiscol-1), i -> PC_(i,thiscol) * Q_i);
G = append(G, PC_(thiscol,thiscol) * monom + g);
)
else (
-- we modify L, Lhash, thiscol, and also PC
Q = append(Q, monom);
f := sum apply(toList(Lhash#monom .. numgens R - 1), i -> (
newmon := monom * R_i;
Lhash#newmon = i;
newmon));
nL = nL + size(f);
L = L + f;
thiscol = thiscol + 1;
)
);
-- print("number of monomials considered = "|nL);
(Q,inG,G)
)
---------------------------------------------------------------------
-- FG: fat points, and new projective points (v3)
---------------------------------------------------------------------
-- FG: fat points by intersection
-- INPUT: a matrix M whose columns are coordinates of points,
-- a list mults of multiplicities, and a polynomial ring R
-- OUTPUT: gb of the ideal of the fat point scheme
affineFatPointsByIntersection = method(TypicalValue => List)
affineFatPointsByIntersection (Matrix,List,Ring) := (M,mults,R) -> (
flatten entries gens gb intersect apply (
entries transpose M, mults,
(p,m) -> (ideal apply(#p, i -> R_i - p#i))^m))
-- FG: affine Buchberger-Möller algorithm for fat points
-- INPUT: a matrix M whose columns are coordinates of points,
-- a list mults of multiplicities, and a polynomial ring R
-- OUTPUT: a list containing 1) a list of standard monomials (i.e.,
-- monomials forming a basis of the quotient ring), 2) the initial
-- ideal, and 3) the gb of the ideal of the fat point scheme
-- NOTE: the idea is to reuse the Buchberger-Möller algorithm for
-- reduced points, but instead of simply evaluating polynomials at
-- points, their partial derivatives are also evaluated to ensure
-- vanishing. By Zariski-Nagata, this is the desired ideal.
-- This may not be the most efficient strategy. For further ideas,
-- see Abbott, Kreuzer, Robbiano, Computing zero-dimensional schemes,
-- J. Symbolic Comput., doi:10.1016/j.jsc.2004.09.001
-- WARNING: for reduced points (i.e., when mults is a list of 1s)
-- this performs slightly worse than the original function
affineFatPoints = method()
affineFatPoints (Matrix,List,Ring) := (M,mults,R) -> (
-- obtain all monomials later used for differentiation
-- sort in increasing order by degree (then monomial order)
diffops := flatten entries sort basis(0,max mults - 1,R);
-- this says how many derivatives to use for each point
cutoffs := apply(mults,m -> sum(m, i -> binomial((dim R)-1+i,i)));
s := sum cutoffs;
-- FG: most of the code below is from the affinePoints method
-- The local data structures:
-- (P,PC) is the matrix which contains the elements to be reduced
-- Fs is used to evaluate monomials at the points
-- H is a hash table used in Gaussian elimination: it contains the
-- pivot columns for each row
-- L is the sum of monomials which is still to be done
-- Lhash is a hashtable: Lhash#monom = i means that only
-- R_i*monom, ..., R_n*monom should be considered
-- G is a list of GB elements
-- inG is the ideal of initial monomials for the GB
K := coefficientRing R;
Fs := affineMakeRingMaps(M,R);
P := mutableMatrix map(K^s, K^(s+1), 0);
PC := mutableMatrix map(K^(s+1), K^(s+1), 0);
for i from 0 to s-1 do PC_(i,i) = 1_K;
H := new MutableHashTable; -- used in the column reduction step
Lhash := new MutableHashTable; -- used to determine which monomials come next
L := 1_R;
Lhash#L = 0; -- start with multiplication by R_0
thiscol := 0;
G := {};
inG := trim ideal(0_R);
inGB := forceGB gens inG;
Q := {}; -- the list of standard monomials
nL := 1;
while L != 0 do (
-- First step: get the monomial to consider
L = L % inGB;
monom := someTerms(L,-1,1);
L = L - monom;
-- Now fix up the matrices P, PC
-- FG: old code called another function addNewMonomial
-- FG: I include code here to better evaluate derivatives
partials := apply(diffops, del -> diff(del,monom));
-- FG: evaluate partials at point up to cutoff
c := 0;
for i to #Fs-1 do (
for j to cutoffs_i-1 do (
P_(c+j,thiscol) = Fs#i (partials_j);
);
c = c + cutoffs_i;
);
-- FG: remaining code is the same as for reduced points
columnMult(PC, thiscol, 0_K);
PC_(thiscol,thiscol) = 1_K;
isLT := reduceColumn(P,PC,H,thiscol);
if isLT then (
-- we add to G, inG
inG = inG + ideal(monom);
inGB = forceGB gens inG;
g := sum apply(toList(0..thiscol-1), i -> PC_(i,thiscol) * Q_i);
G = append(G, PC_(thiscol,thiscol) * monom + g);
)
else (
-- we modify L, Lhash, thiscol, and also PC
Q = append(Q, monom);
f := sum apply(toList(Lhash#monom .. numgens R - 1), i -> (
newmon := monom * R_i;
Lhash#newmon = i;
newmon));
nL = nL + size(f);
L = L + f;
thiscol = thiscol + 1;
)
);
-- print("number of monomials considered = "|nL);
(Q,inG,G)
)
-- FG: Buchberger-Möller for projective points
-- INPUT: a matrix M whose columns are projective coordinates of
-- points, and a polynomial ring R
-- OUTPUT: a list containing 1) the initial ideal,
-- and 2) the gb of the ideal of the set of points
projectivePoints = method(Options => {VerifyPoints => true})
projectivePoints (Matrix,Ring) := opts -> (M,R) -> (
if opts.VerifyPoints then M = removeBadPoints M;
-- FG: the code is mostly like the affine case
-- but now we proceed degree by degree
K := coefficientRing R;
s := numgens source M;
Fs := affineMakeRingMaps(M,R);
G := {};
inG := trim ideal(0_R);
inGB := forceGB gens inG;
deg := 1;
while not stoppingCriterion(deg,inG,s) do (
L := sum flatten entries basis(deg,R);
L = L % inGB;
P := mutableMatrix map(K^s, K^(s+1), 0);
PC := mutableMatrix map(K^(s+1), K^(s+1), 0);
for i from 0 to s-1 do PC_(i,i) = 1_K;
H := new MutableHashTable; -- used in the column reduction step
thiscol := 0;
Q := {}; -- list of standard monomials of current degree
while L != 0 do (
-- First step: get the monomial to consider
monom := someTerms(L,-1,1);
L = L - monom;
-- Now fix up the matrices P, PC
addNewMonomial(P,thiscol,monom,Fs);
columnMult(PC, thiscol, 0_K);
PC_(thiscol,thiscol) = 1_K;
isLT := reduceColumn(P,PC,H,thiscol);
if isLT then (
-- we add to G, inG
inG = inG + ideal(monom);
g := sum apply(toList(0..thiscol-1), i -> PC_(i,thiscol) * Q_i);
G = append(G, PC_(thiscol,thiscol) * monom + g);
)
else (
-- add to standard monomials
Q = append(Q, monom);
thiscol = thiscol + 1;
)
);
inGB = forceGB gens inG;
-- proceed with next degree
deg = deg + 1;
);
(inG,G)
)
-- FG: stopping criterion for projective BM
-- INPUT: an integer deg for the current degree,
-- a monomial ideal inG (initial ideal of the ideal of points as
-- computed so far), and an integer multPts which is the degree of
-- the point scheme, i.e., the sum of the degrees of all the points
-- OUTPUT: true if the Hilbert function of the initial ideal is
-- equal to the expected degree for the given points (this is when
-- the BM algorithm should stop)
-- TO DO: implement better stopping criterion from Abbot, Kreuzer, Robbiano
stoppingCriterion = (deg,inG,multPts) -> (
-- if the initial ideal is zero, then continue
if zero inG then return false else
-- otherwise stop when multiplicity is attained
hilbertFunction(deg,inG) == multPts
)
-- FG: remove zero and duplicate points
-- INPUT: a matrix M whose columns are projective coordinates of
-- points
-- OUTPUT: a matrix obtained from M by removing zero columns and
-- columns that are not scalar multiples of previous columns
-- NOTE: if these points are not removed, the projective BM
-- algorithm above will not terminate!
removeBadPoints = M -> (
-- remove zero columns
N := compress M;
-- remove columns that define same projective points
lastcol := numColumns(N)-1;
thiscol := 0;
while thiscol < lastcol do (
L := toList(thiscol+1..lastcol);
dupcols := select(L,i->rank(N_{thiscol,i})<2);
N = submatrix'(N,dupcols);
lastcol = lastcol - #dupcols;
thiscol = thiscol + 1;
);
return N;
)
-- FG: projective points by intersection
-- INPUT: a matrix M whose columns are coordinates of points,
-- and a polynomial ring R
-- OUTPUT: gb of the ideal of the projective points
projectivePointsByIntersection = method(TypicalValue => List)
projectivePointsByIntersection (Matrix,Ring) := (M,R) -> (
flatten entries gens gb intersect apply (
entries transpose M,
p -> (trim minors(2,matrix{gens R,p}))
)
)
-- FG: projective fat points by intersection
-- INPUT: a matrix M whose columns are coordinates of points,
-- a list mults of multiplicities for each point,
-- and a polynomial ring R
-- OUTPUT: gb of the ideal of the projective fat point scheme
projectiveFatPointsByIntersection = method(TypicalValue => List)
projectiveFatPointsByIntersection (Matrix,List,Ring) := (M,mults,R) -> (
flatten entries gens gb intersect apply (
entries transpose M, mults,
(p,m) -> ((trim minors(2,matrix{gens R,p}))^m)
)
)
-- FG: remove zero and duplicate points
-- INPUT: a matrix M whose columns are projective coordinates of
-- points, and a list mults of multiplicities for those points
-- OUTPUT: a matrix obtained from M by removing zero columns and
-- columns that are not scalar multiples of previous columns,
-- and a list of multiplicities for the points in the new matrix
-- NOTE: if a point appears more than once with different
-- multiplicities, the largest multiplicity is retained
removeBadFatPoints = (M,mults) -> (
-- remove zero columns and their multiplicities
lastcol := numColumns(M)-1;
zeroVec := 0_(target M);
nonzerocols := {};
for i to lastcol do (
if M_i != zeroVec then nonzerocols = append(nonzerocols,i);
);
N := submatrix(M,nonzerocols);
newmults := new MutableList from mults_nonzerocols;
-- remove columns that define same projective points
-- and their multiplicities
lastcol = numColumns(N)-1;
thiscol := 0;
while thiscol < lastcol do (
L := toList(thiscol+1..lastcol);
dupcols := select(L,i->rank(N_{thiscol,i})<2);
N = submatrix'(N,dupcols);
newmults#thiscol = max apply({thiscol}|dupcols,i->newmults#i);
for i in reverse dupcols do (
newmults = drop(newmults,{i,i})
);
lastcol = lastcol - #dupcols;
thiscol = thiscol + 1;
);
return (N,new List from newmults);
)
-- FG: Buchberger-Möller for projective fat points
-- INPUT: a matrix M whose columns are projective coordinates of
-- points, a list mults of multiplicities for those points,
-- and a polynomial ring R
-- OUTPUT: a list containing 1) the initial ideal,
-- and 2) the gb of the ideal of the set of fat points
-- NOTE: for small sets of points this can perform much worse than
-- simply intersecting. The first example where I saw an advantage
-- (of 1 sec) was for 30 points in P^5 with multiplicities 1,2,3
projectiveFatPoints = method(Options => {VerifyPoints => true})
projectiveFatPoints (Matrix,List,Ring) := opts -> (M,mults,R) -> (
if opts.VerifyPoints then (M,mults) = removeBadFatPoints (M,mults);
K := coefficientRing R;
diffops := flatten entries sort basis(0,max mults - 1,R);
-- this says how many derivatives to use for each point
cutoffs := apply(mults,m -> sum(m, i -> binomial((dim R)-1+i,i)));
s := sum cutoffs;
Fs := affineMakeRingMaps(M,R);
G := {};
inG := trim ideal(0_R);
inGB := forceGB gens inG;
deg := 1;
schemedegree := sum(mults,m -> binomial((dim R)-2+m,m-1));
while not stoppingCriterion(deg,inG,schemedegree) do (
L := sum flatten entries basis(deg,R);
L = L % inGB;
P := mutableMatrix map(K^s, K^(s+1), 0);
PC := mutableMatrix map(K^(s+1), K^(s+1), 0);
for i from 0 to s-1 do PC_(i,i) = 1_K;
H := new MutableHashTable; -- used in the column reduction step
thiscol := 0;
Q := {}; -- list of standard monomials of current degree
while L != 0 do (
-- First step: get the monomial to consider
monom := someTerms(L,-1,1);
L = L - monom;
partials := apply(diffops, del -> diff(del,monom));
-- FG: evaluate partials at point up to cutoff
c := 0;
for i to #Fs-1 do (
for j to cutoffs_i-1 do (
P_(c+j,thiscol) = Fs#i (partials_j);
);
c = c + cutoffs_i;
);
columnMult(PC, thiscol, 0_K);
PC_(thiscol,thiscol) = 1_K;
isLT := reduceColumn(P,PC,H,thiscol);
if isLT then (
-- we add to G, inG
inG = inG + ideal(monom);
g := sum apply(toList(0..thiscol-1), i -> PC_(i,thiscol) * Q_i);
G = append(G, PC_(thiscol,thiscol) * monom + g);
)
else (
-- add to standard monomials
Q = append(Q, monom);
thiscol = thiscol + 1;
)
);
inGB = forceGB gens inG;
-- proceed with next degree
deg = deg + 1;
);
(inG,G)
)
---------------------------------------------------------------------
-- FG: end of v3 code
---------------------------------------------------------------------
-----------------Homogeneous codes
randomPointsMat = method(Options =>{AllRandom =>false})
randomPointsMat(Ring, ZZ) := opts -> (R,n) -> (
d := numgens R;
if opts.AllRandom == true then return random(R^d, R^n);
m1 := id_(R^d)|transpose matrix(R,{toList(d:1)});
if n<=d+1 then return m1_(toList(0..n-1));
m3 := random(R^d,R^(n-d-1));
m1 | m3
)
points = (pointsmat) -> (
mm := vars ring pointsmat;
if rank source mm =!= rank target pointsmat then
error "wrong size matrix";
ids := toSequence apply(rank source pointsmat,
i -> image(mm * (syz transpose pointsmat_{i})));
ideal intersect ids
)
randomPoints = (r,n) -> (
x := symbol x;
R := ZZ/101[x_0 .. x_r];
pmat := randomPointsMat(R,n);
points pmat
)
testPoints = ()->(
a := symbol a;
b := symbol b;
c := symbol c;
R := ZZ/101[a,b,c];
pmat := matrix(R,{{1,0,0},{0,1,0},{0,0,1}});
assert(points pmat == image matrix(R, {{a*b, a*c, b*c}}))
)
omegaPoints = (pointsmat) -> (
dualmat := syz pointsmat;
s := (rank source dualmat)-1;
n := rank source pointsmat;
r := (rank target pointsmat)-1;
mm := vars ring pointsmat;
if rank source mm =!= r+1 then
error "wrong size matrix";
R := ring pointsmat;
mult := matrix(R, table(n, n^2,(i,j) -> (
if j//n==j%n and j%n==i then 1 else 0)));
prod := mult*((transpose pointsmat)**dualmat);
mm = (identity (R^{1}))**mm;
(mm**(identity (R^(s+1))))*(generators kernel prod)
)
testOmegaPoints = () -> (
R := ZZ/101[vars(0..6)];
testmat := random(R^7,R^11);
-- testmat = matrix(R, {{1,0,1,5},{0,1,1,11}});
w := omegaPoints(testmat);
assert(rank source w == 18 and rank target w == 4)
)
expectedBetti = (r,n) -> (
e := 1;
while binomial(r+e,e)<= n do e=e+1;
d := e-1;
a:=n-binomial(r+d,d);
toprow := apply(toList(1..r),i->
max((binomial(d+i-1,i-1))*(binomial(r+d,d+i))-a*(binomial(r,i-1)),
0));
bottomrow := apply(toList(1..r), i->
max(a*(binomial(r,i))-(binomial(d+i,i))*(binomial(r+d,d+i+1)),
0));
top := apply(toList(0..r),i -> (
if i == 0 then (0,{0},0)=>1 else
(i,{},d+i) => toprow#(i-1) ));
bottom := apply(toList(1..r),i -> (
(i,{},d+i+1) => bottomrow#(i-1) ));
new BettiTally from join(top, bottom)
)
///
restart
loadPackage("Points", Reload =>true)
expectedBetti(3,5)
minMaxResolution(3,5)
r=3;n=5
R = ZZ/2[x_(0..n-1)];
expectedBetti(r,n)
lexIdeal(R,{1,3,1})
betti resolution
///
minMaxResolution = (r,n) -> (
e := 1;
while binomial(r+e,e)<= n do e=e+1;
H := apply(e, i -> binomial(r+i-1,i));
H = append(H,n-binomial(r+e-1,e-1));
if last H =!= 0 then H = append(H,0);
x := symbol x;
R := ZZ/2[x_0..x_(r-1)];
<<"min"<<endl<< expectedBetti(r,n)<<endl;
<<"max"<<endl<<betti resolution lexIdeal(R,H)<<endl;
)
-- First examples where expected resolution fails.
-- December 25, 1995:
-- Unfortunately VERY slow in this system (the resolution is fast,
-- but the random number generation and intersections are very slow
-- for example the first uses 65 seconds of cpu time on a sparc 10!!
-- June 2016:
-- now first example takes .07 seconds on a mac air.
eg1 := ()->(
res randomPoints(6,11)
)
eg2 := ()->(
res randomPoints(7,12)
)
eg3 := ()->(
res randomPoints(8,13)
)
eg4 := ()->(
res randomPoints(10,16)
)
-- The following method should be much better:
eg := (r,n) -> (
-- print expectedBetti(r,n);
R := ZZ/31991[vars (0..r)];
w := omegaPoints(randomPointsMat(R,n));
-- betti resolution( w, DegreeLimit => 1)
)
beginDocumentation()
doc ///
Key
Points
Headline
A package for making and studying points in affine and projective spaces
Description
Text
The package has routines for points in affine and projective spaces. The affine
code, some of which uses the Buchberger-Moeller algorithm to more quickly
compute the ideals of points in affine space,
was written by Stillman, Smith and Stromme. The projective code was
written separately by Eisenbud and Popescu.
The purpose of the projective code was to find as many counterexamples
as possible to the minimal resolution conjecture; it was of use in the
research for the paper
"Exterior algebra methods for the minimal resolution conjecture",
by David Eisenbud, Sorin Popescu, Frank-Olaf Schreyer and Charles Walter
(Duke Mathematical Journal. 112 (2002), no.2, 379-395.)
The first few of these counterexamples are:
(6,11),
(7,12),
(8,13),
(10,16),
where the first integer denotes the ambient dimension and the second the
number of points. Examples are known in every projective space of dimension >=6
except for P^9.
In version 3.0, F. Galetto and J.W. Skelton added code to
compute ideals of fat points and projective points using
the Buchberger-Moeller algorithm.
///
--documentation for the code for points in projective space
doc ///
Key
randomPoints
Headline
ideal of a random set of points
Usage
i = randomPoints(r,n)
Inputs
r:ZZ
ambient dimension
n:ZZ
number of points
Outputs
i:Ideal
ideal of the random points
Description
Text
The script defines a ring R with r+1 variables, and calls
points(R,randomPointsMat(R, n))
Example
betti res randomPoints(11,5)
SeeAlso
randomPointsMat
points
///
doc ///
Key
expectedBetti
Headline
The betti table of r points in Pn according to the minimal resolution conjecture
Usage
L = expectedBetti(r,n)
Inputs
r:ZZ
ambient dimension
n:ZZ
number of points
Outputs
L:List
Description
Text
The output is the smallest conceivable betti table for a set of
r points in P^n, which is predicted (incorrectly) by the minimal resolution conjecture.
Example
expectedBetti(11,5)
Caveat
The MRC is false, so these are sometimes not the actual betti numbers.
SeeAlso
expectedBetti
minMaxResolution
///
doc ///
Key
minMaxResolution
Headline
Min and max conceivable Betti tables for generic points
Usage
minMaxResolution(r,n)
Inputs
r:ZZ
ambient dimension
n:ZZ
number of points
Description
Text
prints betti tables corresponding to the minimal resolution conjecture
and to the lex ideal with the same Hilbert function
Example
minMaxResolution(3,5)
SeeAlso
expectedBetti
///
doc ///
Key
omegaPoints
Headline
linear part of the presentation of canonical module of points
Usage
m = omegaPoints pointsmat
Inputs
pointsmat:Matrix
matrix of ZZ, representing a set of points
Outputs
m:Matrix
linear part of the presentation matrix of the canonical module
Description
Text
given an r+1 x n matrix
over a ring with r+1 variables, interpreted as a set of
n points in P^r, the script produces the linear part
of the presentation matrix of w_{>=-1}, where w is the
canonical module of the cone over the points. It is
necessary for this to assume that no subset of n+1
of the points is linearly dependent. The presentation
is actually a presentation of w if the points do not
lie on a rational normal curve (so there are no
quadratic relations on w_{>=-1}) and impose independent
conditions on quadrics (so the homogeneous coordinate
ring is 3-regular, and w is generated in degree -1.
Example
R = ZZ/101[vars(0..4)]
p = randomPointsMat(R,11)
w = omegaPoints p
degree (R^1/(points p))
degree coker w
betti res (R^1/(points p))
betti res coker w
SeeAlso
///
doc ///
Key
randomPointsMat
(randomPointsMat, Ring, ZZ)
[randomPointsMat, AllRandom]
Headline
matrix of homogeneous coordinates of random points in projective space
Usage
m=randomPointsMat(R,n)
Inputs
R:Ring
homogeneous coordinate ring of projective space Pm
n:ZZ
number of points
Outputs
m:Matrix
of ZZ
Description
Text
Produces a random m+1 x n matrix of scalars, with columns representing the coordinates
of the point. The first m+1 x m+1 submatrix is the identity.
Example
R = ZZ/31991[vars(0..3)]
randomPointsMat(R,3)
randomPointsMat(R,3, AllRandom=>true)
randomPointsMat(R,7)
///
doc ///
Key
points
Headline
make the ideal of a set of points
Usage
i = points pointsMat
Inputs
pointsMat:Matrix
matrix whose columns are the homogeneous coordinates of the points
Outputs
i:Ideal
Description
Text
Example
R = ZZ/101[vars(0..4)]
pointsMat = randomPointsMat(R,11)
points pointsMat
SeeAlso
randomPointsMat
///
doc ///
Key
AllRandom
Headline
Option to randomPointsMat.
Description
Text
Default is false, in which case the first (up to) r+1 points
returned are the standard simplex; if true, all the points are random.
SeeAlso
randomPointsMat
///
---documentation for the affine code:
document {
Key => {affineMakeRingMaps, (affineMakeRingMaps,Matrix,Ring)},
Headline => "evaluation on points",
Usage => "affineMakeRingMaps(M,R)",
Inputs => {
"M" => Matrix => "in which each column consists of the coordinates of a point",
"R" => PolynomialRing => "coordinate ring of the affine space containing the points",
},
Outputs => {List => "of ring maps corresponding to evaluations at each point"},
"Giving the coordinates of a point in affine space is equivalent to giving a
ring map from the polynomial ring to the ground field: evaluation at the point. Given a
finite collection of points encoded as the columns of a matrix,
this function returns a corresponding list of ring maps.",
EXAMPLE lines ///
M = random(ZZ^3, ZZ^5)
R = QQ[x,y,z]
phi = affineMakeRingMaps(M,R)
apply (gens(R),r->phi#2 r)
phi#2
///
}
---the affine code documentation
document {
Key => {affinePoints, (affinePoints,Matrix,Ring)},
Headline => "produces the ideal and initial ideal from the coordinates
of a finite set of points",
Usage => "(Q,inG,G) = affinePoints(M,R)",
Inputs => {
"M" => Matrix => "in which each column consists of the coordinates of a point",
"R" => PolynomialRing => "coordinate ring of the affine space containing the points",
},
Outputs => {
"Q" => List => "list of standard monomials",
"inG" => Ideal => "initial ideal of the set of points",
"G" => List => "list of generators for Grobner basis for ideal of points"
},
"This function uses the Buchberger-Moeller algorithm to compute a grobner basis
for the ideal of a finite number of points in affine space. Here is a simple
example.",
EXAMPLE lines ///
M = random(ZZ^3, ZZ^5)
R = QQ[x,y,z]
(Q,inG,G) = affinePoints(M,R)
monomialIdeal G == inG
///,
PARA{},
"The Buchberger-Moeller algorithm in ",
TT "points", " may be faster than the alternative method using the intersection
of the ideals for each point.",
SeeAlso => {affinePointsByIntersection}
}
document {
Key => {affinePointsMat, (affinePointsMat,Matrix,Ring)},
Headline => "produces the matrix of values of the standard monomials
on a set of points",
Usage => "(A,stds) = affinePointsMat(M,R)",
Inputs => {
"M" => Matrix => "in which each column consists of the coordinates of a point",
"R" => PolynomialRing => "coordinate ring of the affine space containing the points",
},
Outputs => {
"A" => Matrix => "standard monomials evaluated on points",
"stds" => Matrix => "whose entries are the standard monomials",
},
"This function uses the Buchberger-Moeller algorithm to compute a the matrix ",
TT "A", " in which the columns are indexed by standard monomials, the rows are
indexed by points, and the entries are given by evaluation. The ordering of
the standard monomials is recorded in the matrix ", TT "stds", " which has a
single column.
Here is a simple
example.",
EXAMPLE lines ///
M = random(ZZ^3, ZZ^5)
R = QQ[x,y,z]
(A,stds) = affinePointsMat(M,R)
///,
Caveat => "Program does not check that the points are distinct.",
SeeAlso => {affinePoints},
}
document {
Key => {affinePointsByIntersection, (affinePointsByIntersection,Matrix,Ring)},
Headline => "computes ideal of point set by intersecting maximal ideals",
Usage => "affinePointsByIntersection(M,R)",
Inputs => {
"M" => Matrix => "in which each column consists of the coordinates of a point",
"R" => PolynomialRing => "coordinate ring of the affine space containing the points",
},
Outputs => {
List => "grobner basis for ideal of a finite set of points",
},
"This function computes the ideal of a finite set of points by intersecting
the ideals for each point. The coordinates of the points are the columns in
the input matrix ", TT "M", ".",
EXAMPLE lines ///
M = random(ZZ^3, ZZ^5)
R = QQ[x,y,z]
affinePointsByIntersection(M,R)
///,
SeeAlso => {affinePoints},
}
---------------------------------------------------------------------
-- FG: documentation for fat points and new projective points
---------------------------------------------------------------------
doc ///
Key
affineFatPoints
(affineFatPoints,Matrix,List,Ring)
Headline
produces the ideal and initial ideal from the coordinates of a finite set of fat points
Usage
(Q,inG,G) = affineFatPoints(M,mults,R)
Inputs
M:Matrix
in which each column consists of the coordinates of a point
mults:List
in which each element determines the multiplicity of the
corresponding point
R:Ring
coordinate ring of the affine space containing the points
Outputs
Q:List
list of standard monomials
inG:Ideal
initial ideal of the set of fat points
G:List
list of generators for Grobner basis for ideal of fat points
Description
Text
This function uses a modified Buchberger-Moeller algorithm to
compute a grobner basis for the ideal of a finite number of
fat points in affine space.
Example
R = QQ[x,y]
M = transpose matrix{{0,0},{1,1}}
mults = {3,2}
(Q,inG,G) = affineFatPoints(M,mults,R)
monomialIdeal G == inG
Text
This algorithm may be faster than
computing the intersection of the ideals of each fat point.
Example
K = ZZ/32003
R = K[z_1..z_5]
M = random(K^5,K^12)
mults = {1,2,3,1,2,3,1,2,3,1,2,3}
elapsedTime (Q,inG,G) = affineFatPoints(M,mults,R);
elapsedTime H = affineFatPointsByIntersection(M,mults,R);
G==H
Caveat
For reduced points, this function may be a bit slower than @TO "affinePoints"@.
SeeAlso
(affineFatPointsByIntersection,Matrix,List,Ring)
///
doc ///
Key
affineFatPointsByIntersection
(affineFatPointsByIntersection,Matrix,List,Ring)
Headline
computes ideal of fat points by intersecting powers of maximal ideals
Usage
affineFatPointsByIntersection(M,mults,R)
Inputs
M:Matrix
in which each column consists of the coordinates of a point
mults:List
in which each element determines the multiplicity of the
corresponding point
R:Ring
coordinate ring of the affine space containing the points
Outputs
:List
grobner basis for ideal of a finite set of fat points
Description
Text
This function computes the ideal of a finite set of fat points
by intersecting powers of the maximal ideals of each point.
Example
R = QQ[x,y]
M = transpose matrix{{0,0},{1,1}}
mults = {3,2}
affineFatPointsByIntersection(M,mults,R)
SeeAlso
(affineFatPoints,Matrix,List,Ring)
///
doc ///
Key
projectivePoints
(projectivePoints,Matrix,Ring)
Headline
produces the ideal and initial ideal from the coordinates of a finite set of projective points
Usage
(inG,G) = projectivePoints(M,R)
Inputs
M:Matrix
in which each column consists of the projective coordinates of a point
R:Ring
homogeneous coordinate ring of the projective space containing the points
Outputs
inG:Ideal
initial ideal of the set of projective points
G:List
list of generators for Grobner basis for ideal of projective points
Description
Text
This function uses a modified Buchberger-Moeller algorithm to
compute a grobner basis for the ideal of a finite number of
points in projective space.
Example
R = QQ[x_0..x_2]
M = random(ZZ^3,ZZ^5)
(inG,G) = projectivePoints(M,R)
monomialIdeal G == inG
Text
This algorithm may be faster than
computing the intersection of the ideals of each projective point.
Caveat
This function removes zero columns of @TT "M"@ and duplicate columns giving rise to the same projective point (which prevent the algorithm from terminating). The user can bypass this step with the option @TT "VerifyPoints"@.
SeeAlso
(projectivePointsByIntersection,Matrix,Ring)
///
doc ///
Key
VerifyPoints
Headline
Option to projectivePoints.
Description
Text
Default is true, in which case the function removes zero columns and duplicate columns giving rise to the same projective point.
SeeAlso
projectivePoints
///
doc ///
Key
[projectivePoints,VerifyPoints]
Headline
Option to projectivePoints.
Description
Text
Default is true, in which case the function removes zero columns and duplicate columns giving rise to the same projective point.
SeeAlso
projectivePoints
///
doc ///
Key
[projectiveFatPoints,VerifyPoints]
Headline
Option to projectiveFatPoints.
Description
Text
Default is true, in which case the function removes zero columns and duplicate columns giving rise to the same projective point.
For duplicate points, a single instance is retained with the largest multiplicity.
SeeAlso
projectiveFatPoints
///
doc ///
Key
projectivePointsByIntersection
(projectivePointsByIntersection,Matrix,Ring)
Headline
computes ideal of projective points by intersecting point ideals
Usage
projectivePointsByIntersection(M,R)
Inputs
M:Matrix
in which each column consists of the projective coordinates of a point
R:Ring
homogeneous coordinate ring of the projective space containing the points
Outputs
:List
grobner basis for ideal of a finite set of projective points
Description
Text
This function computes the ideal of a finite set of projective points
by intersecting the ideals of each point.
Example
R = QQ[x,y,z]
M = transpose matrix{{1,0,0},{0,1,1}}
projectivePointsByIntersection(M,R)
SeeAlso
(projectivePoints,Matrix,Ring)
///
doc ///
Key
projectiveFatPointsByIntersection
(projectiveFatPointsByIntersection,Matrix,List,Ring)
Headline
computes ideal of fat points by intersecting powers of point ideals
Usage
projectiveFatPointsByIntersection(M,mults,R)
Inputs
M:Matrix
in which each column consists of the projective coordinates of a point
mults:List
in which each element determines the multiplicity of the
corresponding point
R:Ring
homogeneous coordinate ring of the projective space containing the points
Outputs
:List
grobner basis for ideal of a finite set of fat points
Description
Text
This function computes the ideal of a finite set of fat points
by intersecting powers of the ideals of each point.
Example
R = QQ[x,y,z]
M = transpose matrix{{1,0,0},{0,1,1}}
mults = {3,2}
projectiveFatPointsByIntersection(M,mults,R)
SeeAlso
(projectiveFatPoints,Matrix,List,Ring)
///
doc ///
Key
projectiveFatPoints
(projectiveFatPoints,Matrix,List,Ring)
Headline
produces the ideal and initial ideal from the coordinates of a finite set of fat points
Usage
(inG,G) = projectiveFatPoints(M,mults,R)
Inputs
M:Matrix
in which each column consists of the projective coordinates of a point
mults:List
in which each element determines the multiplicity of the
corresponding point
R:Ring
homogeneous coordinate ring of the projective space containing the points
Outputs
inG:Ideal
initial ideal of the set of fat points
G:List
list of generators for Grobner basis for ideal of fat points
Description
Text
This function uses a modified Buchberger-Moeller algorithm to
compute a grobner basis for the ideal of a finite number of
fat points in projective space.
Example
R = QQ[x,y,z]
M = transpose matrix{{1,0,0},{0,1,1}}
mults = {3,2}
(inG,G) = projectiveFatPoints(M,mults,R)
monomialIdeal G == inG
Caveat
For small sets of points and/or multiplicities, this method might be slower than @TO "projectiveFatPointsByIntersection"@.
SeeAlso
(projectiveFatPointsByIntersection,Matrix,List,Ring)
///
TEST///
M = random(ZZ^3, ZZ^3)
M = id_(ZZ^3)
R = QQ[x,y,z]
(Q,inG,G) = affinePoints(M,R)
assert( G == {x+y+z-1, z^2-z, y*z, y^2-y})
///
TEST///
setRandomSeed 0
m = randomPoints(3,5)
R = ring m
assert(m == ideal(
R_1*R_3-R_2*R_3,R_0*R_3-R_2*R_3,R_1*R_2-R_2*R_3,R_0*R_2-R_2*R_3,R_0*R_1-R_2*R_3)
)
///
TEST///
setRandomSeed 0
R = ZZ/101[a,b,c]
p = randomPointsMat(R,6)
assert(omegaPoints p == R^{1}**matrix {{-36*a+36*b, 19*a-19*b, -30*a+30*c, 19*a-19*c}, {-49*a+b, 0, -24*a+c, 0}, {0,
32*a+b, 0, 32*a+c}}
)
///
TEST///
assert(
expectedBetti(3,5) == new BettiTally from {(0,{0},0) => 1, (1,{},2) => 5, (1,{},3) => 0, (2,{},3) => 5, (2,{},4)
=> 0, (3,{},4) => 0, (3,{},5) => 1}
)
///
TEST///
R = ZZ/11[vars(0..2)]
setRandomSeed 0
assert(
randomPointsMat(R,5) == R**matrix {{1, 0, 0, 1, -3}, {0, 1, 0, 1, 1}, {0, 0, 1, 1, 3}}
)
assert(randomPointsMat(R,3,AllRandom=>true) == R**matrix {{-4, 3, -3}, {-3, 3, -3}, {-1, -4, 5}})
///
TEST ///
R = ZZ/32003[vars(0..4), MonomialOrder=>Lex]
M = matrix(ZZ/32003, {{0, -9, 4, -2, -4, -9, -10, 6, -8, 0},
{1, 0, -10, 9, 3, -4, 1, 1, -10, -3},
{5, 7, -4, -5, -7, 7, 4, 6, -3, 2},
{2, 8, 6, -6, 4, 3, 8, -10, 7, 8},
{-9, -9, 0, 4, -3, 9, 4, 4, -4, -4}})
phi = affineMakeRingMaps(M,R)
apply (gens(R),r->phi#2 r)
assert ( {4, -10, -4, 6, 0} == apply (gens(R),r->phi#2 r) )
J = affinePointsByIntersection(M,R);
///
TEST ///
R = ZZ/32003[vars(0..4), MonomialOrder=>Lex]
M = matrix(ZZ/32003, {{0, -9, 4, -2, -4, -9, -10, 6, -8, 0},
{1, 0, -10, 9, 3, -4, 1, 1, -10, -3},
{5, 7, -4, -5, -7, 7, 4, 6, -3, 2},
{2, 8, 6, -6, 4, 3, 8, -10, 7, 8},
{-9, -9, 0, 4, -3, 9, 4, 4, -4, -4}})
phi = affineMakeRingMaps(M,R)
apply (gens(R),r->phi#2 r)
assert ( {4, -10, -4, 6, 0} == apply (gens(R),r->phi#2 r) )
J = affinePointsByIntersection(M,R);
C = affinePoints(M,R);
assert ( J == C_2 )
assert ( C_1 == ideal(e^6,d*e^3,d^2*e,d^3,c,b,a) )
assert ( C_0 == sort apply (standardPairs monomialIdeal C_2, p -> p#0) )
assert (
(affinePointsMat(M,R))#0 ==
matrix(ZZ/32003, {{1, -9, 81, -729, 6561, 4957, 2, -18, 162, 4}, {1, -9, 81, -729, 6561,
4957, 8, -72, 648, 64}, {1, 0, 0, 0, 0, 0, 6, 0, 0, 36}, {1, 4, 16, 64, 256, 1024,
-6, -24, -96, 36}, {1, -3, 9, -27, 81, -243, 4, -12, 36, 16}, {1, 9, 81, 729, 6561,
-4957, 3, 27, 243, 9}, {1, 4, 16, 64, 256, 1024, 8, 32, 128, 64}, {1, 4, 16, 64,
256, 1024, -10, -40, -160, 100}, {1, -4, 16, -64, 256, -1024, 7, -28, 112, 49}, {1,
-4, 16, -64, 256, -1024, 8, -32, 128, 64}})
)
assert ( first entries transpose (affinePointsMat(M,R))#1 == C_0 )
///
---------------------------------------------------------------------
-- FG: tests for projective and fat points (v3)
---------------------------------------------------------------------
TEST///
M = id_(ZZ^3)
R = QQ[x,y,z]
mults = {2,2,2}
(Q,inG,G) = affineFatPoints(M,mults,R)
assert( G == {x^2+2*x*y+y^2+2*x*z+2*y*z+z^2-2*x-2*y-2*z+1,
x*z^2+y*z^2+z^3-x*z-y*z-2*z^2+z, y^2*z+y*z^2-y*z, x*y*z,
x*y^2+y^3-y*z^2-x*y-2*y^2+y, z^4-2*z^3+z^2, y*z^3-y*z^2,
y^4-2*y^3+y^2})
assert(G == affineFatPointsByIntersection(M,mults,R))
///
TEST///
M = matrix {{1, 0, 0, 1}, {0, 1, 0, 1}, {0, 0, 1, 1}}
R = QQ[x,y,z]
(inG,G) = projectivePoints(M,R)
assert( G == {x*z-y*z, x*y-y*z, y^2*z-y*z^2})
assert(G == projectivePointsByIntersection(M,R))
///
TEST///
M = matrix {{1, 0, 0, 1}, {0, 1, 0, 1}, {0, 0, 1, 1}}
mults = {1,2,3,4}
R = QQ[x,y,z]
(inG,G) = projectiveFatPoints(M,mults,R)
assert( G == {x^4*z-3*x^3*y*z+3*x^2*y^2*z-x*y^3*z-x^3*z^2+3*x^2*y*z^2-3*x
*y^2*z^2+y^3*z^2, x^4*y-2*x^3*y^2+x^2*y^3-2*x^3*y*z+4*x^2*y^
2*z-2*x*y^3*z+x^2*y*z^2-2*x*y^2*z^2+y^3*z^2,
x^3*y*z^2-3*x^2*y^2*z^2+3*x*y^3*z^2-y^4*z^2-x^3*z^3+3*x^2*y*
z^3-3*x*y^2*z^3+y^3*z^3,
x^3*y^2*z-2*x^2*y^3*z+x*y^4*z-2*x^2*y^2*z^2+4*x*y^3*z^2-2*y^
4*z^2-x^3*z^3+4*x^2*y*z^3-5*x*y^2*z^3+2*y^3*z^3,
x^3*y^3-x^2*y^4-3*x^2*y^3*z+3*x*y^4*z+3*x*y^3*z^2-3*y^4*z^2-
x^3*z^3+4*x^2*y*z^3-6*x*y^2*z^3+3*y^3*z^3,
x^2*y^3*z^2-2*x*y^4*z^2+y^5*z^2-2*x^2*y^2*z^3+4*x*y^3*z^3-2*
y^4*z^3+x^2*y*z^4-2*x*y^2*z^4+y^3*z^4,
x^2*y^4*z-x*y^5*z-3*x*y^4*z^2+3*y^5*z^2-3*x^2*y^2*z^3+9*x*y^
3*z^3-6*y^4*z^3+2*x^2*y*z^4-5*x*y^2*z^4+3*y^3*z^4,
x^2*y^5-4*x*y^5*z+6*y^5*z^2-4*x^2*y^2*z^3+12*x*y^3*z^3-12*y^
4*z^3+3*x^2*y*z^4-8*x*y^2*z^4+6*y^3*z^4,
x*y^5*z^2-y^6*z^2-3*x*y^4*z^3+3*y^5*z^3+3*x*y^3*z^4-3*y^4*z^
4-x*y^2*z^5+y^3*z^5,
x*y^6*z-4*y^6*z^2-6*x*y^4*z^3+12*y^5*z^3+8*x*y^3*z^4-12*y^4*
z^4-3*x*y^2*z^5+4*y^3*z^5,
y^7*z^2-4*y^6*z^3+6*y^5*z^4-4*y^4*z^5+y^3*z^6})
assert(G == projectiveFatPointsByIntersection(M,mults,R))
///
end
-*
--test of affinePoints
TEST///
C = affinePoints(M,R);
assert ( J == C_2 )
assert ( C_1 == ideal(e^6,d*e^3,d^2*e,d^3,c,b,a) )
assert ( C_0 == sort apply (standardPairs monomialIdeal C_2, p -> p#0) )
assert (
(affinePointsMat(M,R))#0 ==
matrix(ZZ/32003, {{1, -9, 81, -729, 6561, 4957, 2, -18, 162, 4}, {1, -9, 81, -729, 6561,
4957, 8, -72, 648, 64}, {1, 0, 0, 0, 0, 0, 6, 0, 0, 36}, {1, 4, 16, 64, 256, 1024,
-6, -24, -96, 36}, {1, -3, 9, -27, 81, -243, 4, -12, 36, 16}, {1, 9, 81, 729, 6561,
-4957, 3, 27, 243, 9}, {1, 4, 16, 64, 256, 1024, 8, 32, 128, 64}, {1, 4, 16, 64,
256, 1024, -10, -40, -160, 100}, {1, -4, 16, -64, 256, -1024, 7, -28, 112, 49}, {1,
-4, 16, -64, 256, -1024, 8, -32, 128, 64}})
)
assert ( first entries transpose (affinePointsMat(M,R))#1 == C_0 )
///
*-
end--
uninstallPackage "Points"
restart
installPackage "Points"
viewHelp Points
check "Points"
----------------
--------------
toString C_1
restart
errorDepth = 0
uninstallPackage "Points"
installPackage "Points"
R = ZZ/32003[vars(0..4), MonomialOrder=>Lex]
M = matrix(ZZ/32003, {{0, -9, 4, -2, -4, -9, -10, 6, -8, 0},
{1, 0, -10, 9, 3, -4, 1, 1, -10, -3},
{5, 7, -4, -5, -7, 7, 4, 6, -3, 2},
{2, 8, 6, -6, 4, 3, 8, -10, 7, 8},
{-9, -9, 0, 4, -3, 9, 4, 4, -4, -4}})
phi = affineMakeRingMaps(M,R)
apply (gens(R),r->phi#2 r)
assert ( {4, -10, -4, 6, 0} == apply (gens(R),r->phi#2 r) )
phi#2
time J = affinePointsByIntersection(M,R)
transpose matrix{oo}
time C = points(M,R)
transpose gens ideal C_2
M = random(ZZ^3, ZZ^5)
R = QQ[x,y,z]
phi = affineMakeRingMaps(M,R)
apply (gens(R),r->phi#2 r)
phi#2
R = ZZ/32003[vars(0..4), MonomialOrder=>Lex]
M = random(ZZ^5, ZZ^150)
time J = affinePointsByIntersection(M,R);
transpose matrix{oo}
time C = points(M,R);
transpose gens ideal C_2
assert(J == C_2)
R = ZZ/32003[vars(0..4)]
K = ZZ/32003
R = K[vars(0..7), MonomialOrder=>Lex]
R = K[vars(0..7)]
M = random(K^8, K^500)
time C = points(M,R);
time J = affinePointsByIntersection(M,R);
assert(C_2 == J)
K = ZZ/32003
R = K[x_0 .. x_39]
M = random(K^40, K^80)
time C = points(M,R);
getColumnChange oo_0
apply(Fs, f -> f(a*b*c*d))
B = sort basis(0,2,R)
B = sum(flatten entries basis(0,2,R))
B = matrix{reverse terms B}
P = transpose matrix {apply(Fs, f -> f (transpose B))}
B * syz
transpose oo
-- column reduction:
P = mutableMatrix P
H = new MutableHashTable
reduceColumn(P,null,H,0)
reduceColumn(P,null,H,1)
P
reduceColumn(P,null,H,2)
reduceColumn(P,null,H,3)
reduceColumn(P,null,H,4)
reduceColumn(P,null,H,5)
reduceColumn(P,null,H,6)
reduceColumn(P,null,H,7)
reduceColumn(P,null,H,8)
reduceColumn(P,null,H,9)
P
reduceColumn(P,null,H,10)
reduceColumn(P,null,H,11)
reduceColumn(P,null,H,12)
P
M = matrix{{1,2,3,4}}
K = ZZ/32003
M ** K
|