1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191
|
///////////////////////////////////////////////////////////////////////
//
// Examples for primary decomposition
//
///////////////////////////////////////////////////////////////////////
needsPackage "PrimaryDecomposition"
-- 'clear' is now defined in primdecomp.m2, for ease of use.
(I = clear I; time res coker gens I) -- seconds
(I = clear I; time primaryDecomposition I) --
(I = clear I; time minimalPrimes I) --
(I = clear I; time associatedPrimes(I,Strategy=>1)) --
(I = clear I; time associatedPrimes(I,Strategy=>2)) --
(I = clear I; time radical I) --
(I = clear I; time topComponents I) --
(I = clear I; time removeLowestDimension I) --
(I = clear I; time (I : ideal vars R)) --
(I = clear I; time saturate(I, ideal vars R)) --
////////////////////////////////////////////////////////////////////////
// a starter: 5 Komponenten
//6 variables, 12 generators in degree 5 and 17 in degree 6
//min_ass_prim_l : 0 sec
//prim_dec_tree_charsets: 2 sec
//newMinAssPrimes : sec
//minAssPrimes : 1 sec
//decomp : 6 sec/15
////////////////////////////////////////////////////////////////////////
R = ZZ/32003[a,b,c,d,e,f]
I = ideal(
a^2*c*d*f^2,
b^2*c*d*f^2,
a^2*b*d*f^2,
b^3*d*f^2,
a^3*d*f^2,
a*b^2*d*f^2,
a^2*c*d*e,
b^2*c*d*e,
a^2*b*d*e,
b^3*d*e,
a^3*d*e,
a*b^2*d*e,
a^2*c*d^2,
b^2*c*d^2,
a^2*b*d^2,
b^3*d^2,
a^3*d^2,
a*b^2*d^2,
a^2*c^2*f^2,
b^2*c^2*f^2,
a^2*b*c*f^2,
b^3*c*f^2,
a^3*c*f^2,
a*b^2*c*f^2,
a^2*b^2*f^2,
b^4*f^2,
a^3*b*f^2,
a*b^3*f^2,
a^4*f^2)
(I = clear I; time primaryDecomposition I) -- 4.89 [24.67 seconds] (5 components) (2020: 0.0026501 seconds)
(I = clear I; time minimalPrimes I) -- .3 [1.92 - 2.99]
(I = clear I; time radical I) -- 2.48 [30.48]
(I = clear I; time topComponents I) -- .22 [2.67]
(I = clear I; time removeLowestDimension I) -- .46 [14.81]
(I = clear I; time (I : ideal vars R)) -- .09 [0.57]
(I = clear I; time saturate(I, ideal vars R)) -- .07 [0.53]
(I = clear I; time associatedPrimes I) -- 1.35
elapsedTime primaryDecomposition comodule I -- 0.867021 seconds
///////////////////////////////////////////////////////
//Sturmfels: 16 Komponenten
// The permanents of a generic 3x3-matrix
// 9 variables, 9 generators in degree 2
//min_ass_prim_l : 11 sec
//prim_dec_tree_charsets: 37 sec
//newMinAssPrimes : sec
//minAssPrimes : 9 sec
//decomp : 30 sec/75
//////////////////////////////////////////////////////
R = ZZ/32003[b,s,t,u,v,w,x,y,z]
I = ideal(
b*v+s*u,
b*w+t*u,
s*w+t*v,
b*y+s*x,
b*z+t*x,
s*z+t*y,
u*y+v*x,
u*z+w*x,
v*z+w*y)
(I = clear I; time res coker gens I) -- .07 [0.76]
(I = clear I; time primaryDecomposition I) -- 58.76 [256.0 seconds (roughly 89-99 sec with Singular)] (2020: 2.95525 seconds)
-- 343.24 seconds now [4/23/97]. what happened?
-- with debugging: 296.08 sec????
-- with fastgb.m2: 223.87!
-- fastgb.m2, sorting mingens: 219.83, 213.57
(I = clear I; time minimalPrimes I) -- 4.14 [33.72 (used to be) 48.3 seconds]
-- (the char sets takes about 20 sec)
-- Singular time = 31 seconds
(I = clear I; time radical I) -- ????
(I = clear I; time topComponents I) -- .59
(I = clear I; time removeLowestDimension I) -- .46 [2.49]
(I = clear I; time (I : ideal vars R)) -- .12 [0.59]
(I = clear I; time saturate(I, ideal vars R)) -- .13 [1.62]
elapsedTime primaryDecomposition comodule I -- 1.82998 seconds
////////////////////////////////////////////////////////////
//J_S/Y: 11 Komponenten
// 3 variables, 5 generators of degree 5,
// 3 of degree 6 and 2 of degree 7 (inhomogeneous)
//min_ass_prim_l : 1 sec
//prim_dec_tree_charsets: 3 sec
//newMinAssPrimes : sec
//minAssPrimes : 0 sec
//decomp : 4 sec/10
////////////////////////////////////////////////////////////
R = ZZ/32003[x,y,z]
I = ideal(
x*y^2*z^2-x*y^2*z+x*y*z^2-x*y*z,
x*y^3*z+x*y^2*z,
x*y^4-x*y^2,
x^2*y*z^2-x^2*y*z,
x^2*y^3-x^2*y^2,
x^4*z^3-x^4*z^2+2*x^3*z^3-2*x^3*z^2+x^2*z^3-x^2*z^2,
x^2*y^2*z,
x^4*y*z+x^3*y*z,
2*x^4*y^2+6*x^3*y^2+6*x^2*y^2+x*y^3+x*y^2,
x^5*z+x^4*z^2+x^4*z+2*x^3*z^2-x^3*z+x^2*z^2-x^2*z,
x^6*y+3*x^5*y+3*x^4*y+x^3*y)
(I = clear I; time res coker gens I) -- .13 [0.47 seconds]
(I = clear I; time primaryDecomposition I) -- 6.61 [22.54 seconds] (2020: 0.435623 seconds)
(I = clear I; time minimalPrimes I) -- .23 [0.8 sec]
(I = clear I; time radical I) -- 2.1 [8.48 sec]
(I = clear I; time topComponents I) -- .4 [0.98 sec]
(I = clear I; time removeLowestDimension I) -- .68 [3.58 sec]
(I = clear I; time (I : ideal vars R)) -- .07 [0.27 sec]
(I = clear I; time saturate(I, ideal vars R)) -- .09 [0.41 sec]
elapsedTime primaryDecomposition comodule I -- 0.532823 seconds
/////////////////////////////////////////////////////////////
//ST_S/Y: 4 Komponenten
// 9 variables, 4 generators of degree 2
//min_ass_prim_l : 3 sec
//prim_dec_tree_charsets: 24 sec
//newMinAssPrimes : sec
//minAssPrimes : 1 sec
//decomp : 12 sec/29
////////////////////////////////////////////////////////////
R = ZZ/32003[b,s,t,u,v,w,x,y,z]
I = ideal(
s*u-b*v,
t*v-s*w,
v*x-u*y,
w*y-v*z)
(I = clear I; time res coker gens I) -- 0.00 [0.05]
(I = clear I; time primaryDecomposition I) -- 20.28 [136.46 (with lots of debug output)] (2020: 0.950533 seconds)
-- fastgb 86.32
-- Singular92i: 45 sec
(I = clear I; time minimalPrimes I) -- 1.11 [7.19 sec]
(I = clear I; time radical I) -- 5.01
(I = clear I; time topComponents I) -- .18
(I = clear I; time removeLowestDimension I) -- .2
(I = clear I; time (I : ideal vars R)) -- .06
(I = clear I; time saturate(I, ideal vars R)) -- .04
elapsedTime primaryDecomposition comodule I -- 0.699619 seconds
/////////////////////////////////////////////////////////////
//Bu_S/Y (Wang2): 10 Komponenten
// Example Bu von S/Y, 8 variables, 1 generator of degree 1,
//1 of degree 2, 2 of degree 3, 4 of degree 4 (inhomogeneous)
//min_ass_prim_l : 3 sec
//prim_dec_tree_charsets: 231 sec
//newMinAssPrimes : sec
//minAssPrimes : sec
//decomp : sec/
/////////////////////////////////////////////////////////////
R = ZZ/32003[a,b,c,d,e,f,g,h]
I = ideal(
h+f+e-d-a,
2*f*b+2*e*c+2*d*a-2*a^2-a-1,
3*f*b^2+3*e*c^2-3*d*a^2-d+3*a^3+3*a^2+4*a,
6*g*e*b-6*d*a^2-3*d*a-d+6*a^3+6*a^2+4*a,
4*f*b^3+4*e*c^3+4*d*a^3+4*d*a-4*a^4-6*a^3-10*a^2-a-1,
8*g*e*c*b+8*d*a^3+4*d*a^2+4*d*a-8*a^4-12*a^3-14*a^2-3*a-1,
12*g*e*b^2+12*d*a^3+12*d*a^2+8*d*a-12*a^4-18*a^3-14*a^2-a-1,
-24*d*a^3-24*d*a^2-8*d*a+24*a^4+36*a^3+26*a^2+7*a+1)
elapsedTime primaryDecomposition I -- 19.2477 seconds
elapsedTime primaryDecomposition minimalPresentation I -- 17.8112 seconds
elapsedTime associatedPrimes comodule I -- 11.7443 seconds
elapsedTime primaryDecomposition comodule I -- +29.3355 seconds
elapsedTime associatedPrimes comodule minimalPresentation I -- 5.41741 seconds
elapsedTime primaryDecomposition comodule minimalPresentation I -- +31.4491 seconds
/////////////////////////////////////////////////////////////
//Go_S/Y: 3 Komponenten (equidimensional)
//17 variables, 19 generators of degree 2 (inhomogeneous)
//min_ass_prim_l : 4 sec
//prim_dec_tree_charsets: 25 sec
//newMinAssPrimes : sec
//minAssPrimes : 125 sec
//decomp : 125 sec/240
////////////////////////////////////////////////////////////
//M2 initial time : 151.47 sec !! Need to fix this badly!!
//////////////////////////////////////////////////////////
R = ZZ/32003[a,b,c,d,e,f,g,h,j,k,l,x,n,o,p,q,y]
I = ideal(
d*k,
e*g+d*j+c*k+l,
b*h,
e*l,
b*f+b*g+a*h+d*h+b*k+h+o,
a*f+d*f+a*g+d*g+c*h+e*h+b*j+a*k+d*k+b*l+f+g+k+x+n+q,
c*f+e*f+c*g+e*g+a*j+d*j+c*k+e*k+a*l+d*l+j+l+p+y-1,
c*j+e*j+c*l+e*l,
e*j+c*l+2*e*l,
e*f+e*g+d*j+c*k+2*e*k+a*l+2*d*l+l+y,
d*f+d*g+e*h+a*k+2*d*k+b*l+k+q,
d*h+b*k,
e*k+d*l,
2*c*j+e*j+c*l,
c*f+2*c*g+e*g+a*j+d*j+c*k+2*j+l+p,
a*g+d*g+c*h+b*j+f+2*g+k+n,
b*g+h,
e*j+c*l,
d*g+k)
(I = clear I; time res coker gens I) -- TOO LONG at moment
(I = clear I; time primaryDecomposition I) -- alas, doesn't yet work... (2020: 1.44395 seconds)
(I = clear I; time minimalPrimes I) -- 35.68
(I = clear I; time radical I) --
(I = clear I; time topComponents I) --
(I = clear I; time removeLowestDimension I) --
(I = clear I; time (I : ideal vars R)) -- 29.9 sec
(I = clear I; time saturate(I, ideal vars R)) -- 48.48 sec
elapsedTime associatedPrimes comodule I -- ?, > 11 seconds
M = comodule minPres I
elapsedTime associatedPrimes M -- 0.0695831 seconds
elapsedTime primaryDecomposition M -- +0.0521103 seconds
/////////////////////////////////////////////////////////////
//Wang:
//17 variables, 4 generators of degree 1,7 of degree 2
//min_ass_prim_l : 17 sec
//prim_dec_tree_charsets: nach einer Stunde bei 200 MB abgebrochen
//newMinAssPrimes : sec
//minAssPrimes : sec
//decomp : sec/
////////////////////////////////////////////////////////////
Factorisation over algebraic function field required!
R = ZZ/32003[a,b,c,d,f,g,h,k,l,s,t,u,v,w,x,y,z]
I = ideal(
-a*b-a*d+2*a*h,
a*d-b*d-c*f-2*a*h+2*b*h+2*c*k,
a*b-a*d-2*b*h+2*d*h-2*c*k+2*f*k+2*g*l,
a*c-2*c*s-a*t+2*b*t,
a*c-c*s-2*a*t+b*t,
-d-3*s+4*u,
-f-3*t+4*v,
-g+4*w,
-a+2*x,
-b^2-c^2+2*b*x+2*c*y,
-d^2-f^2-g^2+2*d*x+2*f*y+2*g*z)
-- 6 components
elapsedTime primaryDecomposition minimalPresentation I -- 131.985 seconds
elapsedTime associatedPrimes comodule I -- ?, > 100 seconds
elapsedTime associatedPrimes comodule minimalPresentation I -- 20.9314 seconds
elapsedTime primaryDecomposition comodule minimalPresentation I -- +3.19141 seconds
//////////////////////////////////////////////////////////
//Horrocks: 6 Komponenten
// The zero-scheme of a general section of the
// Horrocks bundle on P^5
// 6 variables, 14 generators of degree 4, 19 of degree 5
//min_ass_prim_l : 13 sec
//prim_dec_tree_charsets: 16 sec
//newMinAssPrimes : sec
//minAssPrimes : 5 sec
//decomp : 5 sec/13
//////////////////////////////////////////////////////////
//M2 initial time : 67 sec
//////////////////////////////////////////////////////////
R = ZZ/32003[a,b,c,d,e,f]
I = ideal(
a*d*e*f+3/2*b*e^2*f-1/2*c*e*f^2,
a*d^2*f+5/4*b*d*e*f+1/4*c*d*f^2,
a*d^2*e+3/4*b*d*e^2+7/4*c*d*e*f,
a*c*d*e+3/2*b*c*e^2-1/2*c^2*e*f,
a*c*d^2+5/4*b*c*d*e+1/4*c^2*d*f,
a*b*d*f+3/2*b^2*e*f-1/2*b*c*f^2,
a*b*d*e+3/4*b^2*e^2-a*c*d*f+1/2*b*c*e*f-1/4*c^2*f^2,
a*b*d^2+3/4*b^2*d*e+7/4*b*c*d*f,
a*b*c*d+3/2*b^2*c*e-1/2*b*c^2*f,
a^2*d*f+5/4*a*b*e*f+1/4*a*c*f^2,
a^2*d*e+3/4*a*b*e^2+7/4*a*c*e*f,
a^2*d^2-9/16*b^2*e^2+2*a*c*d*f-9/8*b*c*e*f+7/16*c^2*f^2,
a^2*c*d+5/4*a*b*c*e+1/4*a*c^2*f,
a^2*b*d+3/4*a*b^2*e+7/4*a*b*c*f,
b*c^3*d+1/4*c*d^3*e,
b^2*c^2*e-1/3*b*c^3*f+2/3*c*d^2*e*f,
b^2*c^2*d-1/2*a*d^4-3/8*b*d^3*e-1/8*c*d^3*f,
b^3*c*e-1/3*b^2*c^2*f+2/3*b*d^2*e*f,
b^3*c*d+3/4*b*d^3*f,
a*c^3*e-1/3*c*d*e^3,
a*c^3*d-3/4*b*c^3*e-1/2*c*d^2*e^2+1/4*c^4*f,
a*b*c^2*f-c*d*e*f^2,
a*b*c^2*e-c*d*e^2*f,
a*b^2*c*f-b*d*e*f^2,
a*b^3*f-3*b*d*f^3,
a*b^3*d+3/4*b^4*e-1/4*b^3*c*f-3/2*b*d^2*f^2,
a^2*c^2*e-2/3*a*d*e^3-1/2*b*e^4+1/6*c*e^3*f,
a^2*b*c*f+3/2*b*e^2*f^2-1/2*c*e*f^3,
a^2*b*c*e+3/2*b*e^3*f-1/2*c*e^2*f^2,
a^2*b^2*f-2*a*d*f^3+3/2*b*e*f^3-1/2*c*f^4,
a^3*c*e+4/3*a*e^3*f,
a^3*b*f+4*a*e*f^3,
a^4*d+3/4*a^3*b*e+1/4*a^3*c*f-2*a*e^2*f^2)
(I = clear I; time res coker gens I) -- .03
(I = clear I; time primaryDecomposition I) -- 11.58 [67.26 sec (lots of debug output)] (2020: 0.645988 seconds)
-- fastgb 54.94
(I = clear I; time minimalPrimes I) -- 6.65 [25.69 sec]
(I = clear I; time radical I) -- ????
(I = clear I; time topComponents I) -- .58
(I = clear I; time removeLowestDimension I) -- .46
(I = clear I; time (I : ideal vars R)) -- .17
(I = clear I; time saturate(I, ideal vars R)) -- .15
elapsedTime primaryDecomposition comodule I; -- 0.548052 seconds
//////////////////////////////////////////////////////////
//Arnborg-Lazard: 14 Komponenten
//min_ass_prim_l : 4 sec
//prim_dec_tree_charsets: 20 sec
//newMinAssPrimes : sec
//minAssPrimes : 1 sec
//decomp : 1 sec/2
//////////////////////////////////////////////////////////
//M2 initial time : core dump
//////////////////////////////////////////////////////////
R = ZZ/32003[x,y,z]
I = ideal(
x^2*y*z+x*y^2*z+x*y*z^2+x*y*z+x*y+x*z+y*z,
x^2*y^2*z+x^2*y*z+x*y^2*z^2+x*y*z+x+y*z+z,
x^2*y^2*z^2+x^2*y^2*z+x*y^2*z+x*y*z+x*z+z+1)
XXX
(I = clear I; time res coker gens I) -- .25
(I = clear I; time primaryDecomposition I) -- PROBLEMS: figure it out. (2020: 3.78713 seconds)
(I = clear I; time minimalPrimes I) -- 3.01 [12.0 sec (or actually around 144 sec??)]
(I = clear I; time radical I) -- 16.03
(I = clear I; time topComponents I) -- 2.58
(I = clear I; time removeLowestDimension I) -- .5
(I = clear I; time (I : ideal vars R)) -- .17
(I = clear I; time saturate(I, ideal vars R)) -- .17
elapsedTime primaryDecomposition comodule I -- 0.696629 seconds
restart
load "c3primedec.m2"
time newminimalPrimes I
gbTrace 3
C = PDinitialize(I,1)
time PDnext C;
time PDdonode C;
time PDnext C;
peek C
//////////////////////////////////////////////////////////
//Schwarz: 12 Komponenten
//min_ass_prim_l : nach 2 Stunden und 150 MB abgebrochen
//prim_dec_tree_charsets: nach 2 Stunden und 150 MB abgebrochen
//newMinAssPrimes : sec
//minAssPrimes : 28 sec
//decomp : 28 sec/38
//////////////////////////////////////////////////////////
R = ZZ/32003[a,b,c,d,e,h]
I = ideal(
-a*b-b^2-2*d*e-2*c*h,
-a*c-2*b*c-e^2-2*d*h,
-c^2-a*d-2*b*d-2*e*h,
-2*c*d-a*e-2*b*e-h^2,
-d^2-2*c*e-a*h-2*b*h)
elapsedTime primaryDecomposition I -- 3.9397 seconds
elapsedTime primaryDecomposition comodule I -- 1.5859 seconds
//////////////////////////////////////////////////////////
//Katsura4: 9 Komponenten
//min_ass_prim_l : 5 sec
//prim_dec_tree_charsets: 10 sec
//newMinAssPrimes : sec
//minAssPrimes : 2 sec
//decomp : 2 sec/4
//////////////////////////////////////////////////////////
//Factorisation over algebraic function field required!
R = ZZ/32003[w,t,u,x,y,z]
I = ideal(
2*x^2+2*y^2+2*z^2+2*t^2+u^2-u,
x*y+2*y*z+2*z*t+2*t*u-t,
2*x*z+2*y*t+t^2+2*z*u-z,
2*x*t+2*z*t+2*y*u-y,
2*x+2*y+2*z+2*t+u-1)
elapsedTime primaryDecomposition I -- 1.57136 seconds
elapsedTime primaryDecomposition minimalPresentation I -- 1.44268 seconds
elapsedTime primaryDecomposition comodule I -- 0.501794 seconds
elapsedTime primaryDecomposition comodule minimalPresentation I -- 0.448015 seconds
//////////////////////////////////////////////////////////
//Katsura5: 6 Komponenten
//min_ass_prim_l : nach 70 Minuten bei 5 MB abgebrochen
//prim_dec_tree_charsets: nach 70 Minuten bei 5 MB abgebrochen
//newMinAssPrimes : sec
//minAssPrimes : 15 sec
//decomp : 15 sec/
//////////////////////////////////////////////////////////
R = ZZ/32003[x,y,z,t,u,v,w]
I = ideal(
2*x^2+2*y^2+2*z^2+2*t^2+2*u^2+v^2-v,
x*y+y*z+2*z*t+2*t*u+2*u*v-u,
2*x*z+2*y*t+2*z*u+u^2+2*t*v-t,
2*x*t+2*y*u+2*t*u+2*z*v-z,
t^2+2*x*v+2*y*v+2*z*v-y,
2*x+2*y+2*z+2*t+2*u+v-1)
elapsedTime primaryDecomposition I -- 1.61477 seconds
elapsedTime primaryDecomposition minimalPresentation I -- 1.66211 seconds
elapsedTime primaryDecomposition comodule I -- 1.34095 seconds
elapsedTime primaryDecomposition comodule minimalPresentation I -- 0.792373 seconds
//////////////////////////////////////////////////////////
//Cyclic roots 5 homog: 25 Komponenten
//min_ass_prim_l : 31 sec
//prim_dec_tree_charsets: nach 2 Stunden und 295 MB abgebrochen
//newMinAssPrimes : sec
//minAssPrimes : 55 sec
//decomp : 85 sec/124
//////////////////////////////////////////////////////////
//Factorisation over algebraic function field required!
R = ZZ/32003[a,b,c,d,e,h]
I = ideal(
a+b+c+d+e,
d*e+1*c*d+1*b*c+1*a*e+1*a*b,
c*d*e+1*b*c*d+1*a*d*e+1*a*b*e+1*a*b*c,
b*c*d*e+1*a*c*d*e+1*a*b*d*e+1*a*b*c*e+1*a*b*c*d,
a*b*c*d*e-h^5)
(I = clear I; time res coker gens I) -- 6.66 sec (is a complete intersection).
(I = clear I; time primaryDecomposition I) -- (2020: 23.2279 seconds)
(I = clear I; time minimalPrimes I) -- 47.32 (probably missing components...)
(I = clear I; time radical I) --
(I = clear I; time topComponents I) --
(I = clear I; time removeLowestDimension I) --
(I = clear I; time (I : ideal vars R)) --
(I = clear I; time saturate(I, ideal vars R)) --
elapsedTime primaryDecomposition minimalPresentation I -- 20.3554 seconds
elapsedTime primaryDecomposition comodule I -- 17.8611 seconds
elapsedTime primaryDecomposition comodule minimalPresentation I -- 14.8029 seconds
//////////////////////////////////////////////////////////
//Cyclic roots 5: 20 Komponenten
//min_ass_prim_l : nach 90 min und 85 MB abgebrochen
//prim_dec_tree_charsets: nach 90 min und 85 MB abgebrochen
//newMinAssPrimes : sec
//minAssPrimes : 12 sec
//decomp : 12 sec/28
//////////////////////////////////////////////////////////
R = ZZ/32003[a,b,c,d,e]
I = ideal(
a+b+c+d+e,
d*e+1*c*d+1*b*c+1*a*e+1*a*b,
c*d*e+1*b*c*d+1*a*d*e+1*a*b*e+1*a*b*c,
b*c*d*e+1*a*c*d*e+1*a*b*d*e+1*a*b*c*e+1*a*b*c*d,
a*b*c*d*e-1)
elapsedTime primaryDecomposition I -- 9.21096 seconds
elapsedTime primaryDecomposition minimalPresentation I -- 9.1964 seconds
elapsedTime primaryDecomposition comodule I -- 4.12646 seconds
elapsedTime primaryDecomposition comodule minimalPresentation I -- 4.00272 seconds
//////////////////////////////////////////////////////////
//Cyclic roots 4: 8 Komponenten
//min_ass_prim_l : 1 sec
//prim_dec_tree_charsets: 3 sec
//newMinAssPrimes : sec
//minAssPrimes : 1 sec
//decomp : 3 sec/8
//////////////////////////////////////////////////////////
//Factorisation over algebraic function field required!
R = ZZ/32003[a,b,c,d]
I = ideal(
a+b+c+d,
1*c*d+1*b*c+1*a*b+a*d,
1*b*c*d+1*a*b*c+a*b*d+a*c*d,
1*a*b*c*d-1)
elapsedTime primaryDecomposition I -- 0.739036 seconds
elapsedTime primaryDecomposition minimalPresentation I -- 0.738273 seconds
elapsedTime primaryDecomposition comodule I -- 0.304861 seconds
elapsedTime primaryDecomposition comodule minimalPresentation I -- 0.290187 seconds
//////////////////////////////////////////////////////////
//Kahn4: 1 Komponente
//min_ass_prim_l : 1 sec
//prim_dec_tree_charsets: 10 sec
//newMinAssPrimes : sec
//minAssPrimes : 4 sec
//decomp : 4 sec/9
//////////////////////////////////////////////////////////
R = ZZ/32003[a,b,c,d,e]
I = ideal(
a^4-b^4,
b^4-c^4,
c^4-d^4,
d^4-e^4,
a^3*b+b^3*c+c^3*d+d^3*e+e^3*a)
(I = clear I; time res coker gens I) -- amazingly hard...C.I. so could write it down
-- but slanted degree: 261.09 (min betti nums buggy)
(I = clear I; time primaryDecomposition I) -- fastgb 27.31 (2020: 3.54374 seconds)
(I = clear I; time minimalPrimes I) -- 2.35
(I = clear I; time radical I) --
(I = clear I; time topComponents I) --
(I = clear I; time removeLowestDimension I) --
(I = clear I; time (I : ideal vars R)) --
(I = clear I; time saturate(I, ideal vars R)) --
elapsedTime primaryDecomposition comodule I -- 0.0883182 seconds / 3.29674 seconds
//////////////////////////////////////////////////////////
//Iarrobino: 1 Komponente
//min_ass_prim_l : 4 sec
//prim_dec_tree_charsets: 4 sec
//newMinAssPrimes : sec
//minAssPrimes : 0 sec
//decomp : 0 sec/0
//////////////////////////////////////////////////////////
R = ZZ/32003[u,v,w,x,y,z]
I = ideal(
x*y+y^2+u*z-w*z-x*z+y*z,
x^2-y^2+u*z-w*z-x*z+z^2,
w*y,
w*x-u*z+y*z,
w^2-y^2+u*z-z^2,
v*z-y*z-z^2,
v*y-y^2-w*z+x*z+y*z+z^2,
v*x-y^2+u*z+y*z-z^2,
v*w-y^2+u*z+y*z-z^2,
v^2+y^2+u*z-x*z-y*z-z^2,
u*y+y^2+y*z,
u*x-y^2+w*z-x*z-z^2,
u*w-y^2+u*z+y*z-z^2,
u*v-y^2-x*z+y*z,
u^2+y*z)
(I = clear I; time res coker gens I) -- 8.48
(I = clear I; time primaryDecomposition I) -- fastgb: 6.0 sec (2020: 0.0548841 seconds)
-- could notice: codim=numvars, homog, therefore
-- already primary to max ideal
(I = clear I; time minimalPrimes I) -- 5.36
(I = clear I; time radical I) --
(I = clear I; time topComponents I) --
(I = clear I; time removeLowestDimension I) --
(I = clear I; time (I : ideal vars R)) --
(I = clear I; time saturate(I, ideal vars R)) --
elapsedTime primaryDecomposition comodule I -- 0.0074666 seconds
//////////////////////////////////////////////////////////
//Marko: 30 Komponenten
//min_ass_prim_l : 763 sec
//prim_dec_tree_charsets: 778 sec
//newMinAssPrimes : sec
//minAssPrimes : 9 sec
//decomp : 9 sec/22
//////////////////////////////////////////////////////////
//Factorisation over algebraic function field required!
R = ZZ/32003[a,b,c,d,e,f,g,h,k,o]
I = ideal(
o+1,
k^4+k,
h*k,
h^4+h,
g*k,
g*h,
g^3+h^3+k^3+1,
f*k,
f^4+f,
e*h,
e*f,
f^3*h^3+e^3*k^3+e^3+f^3+h^3+k^3+1,
e^3*g+f^3*g+g,
e^4+e,
d*h^3+d*k^3+d,
d*g,
d*f,
d*e,
d^3+e^3+f^3+1,
e^2*g^2+d^2*h^2+c,
f^2*g^2+d^2*k^2+b,
f^2*h^2+e^2*k^2+a)
elapsedTime primaryDecomposition I -- 4.23382 seconds
elapsedTime primaryDecomposition minimalPresentation I -- 4.13288 seconds
elapsedTime primaryDecomposition comodule I -- 2.65694 seconds
elapsedTime primaryDecomposition comodule minimalPresentation I -- 1.87443 seconds
/////////////////////////////////////////////////////////////
//Theo0: 11 Komponenten
//min_ass_prim_l : 5 sec
//prim_dec_tree_charsets: 10 sec
//newMinAssPrimes : sec
//minAssPrimes : 6 sec
//decomp : 8 sec/19
/////////////////////////////////////////////////////////////
R = ZZ/32003[a,b,c,d,e,f,g]
I = ideal(
d*f,
d*e^2,
d^2*e,
c*f+d*e,
c*e,
c^2*d+d^3*g,
b*e^2+b*f^2*g,
b*d*e,
b^5*d^3*g^2,
b^5*c^2*g^2,
a*f+b*e,
a*e-b*f*g,
a^2*b*g+b^3*g^2,
a^2*b^3*d^3,
a^2*b^3*c^2,
a^4*d^3*g^2,
b*f,
f^2,
a^4*c^2*g)
elapsedTime primaryDecomposition I -- 1.51251 seconds
elapsedTime primaryDecomposition comodule I -- 0.790623 seconds
//////////////////////////////////////////////////////////
//Theo1: 4 Komponenten
//min_ass_prim_l : 403 sec
//prim_dec_tree_charsets: nach 9 Stunden und 7 MB abgebrochen
//newMinAssPrimes : sec
//minAssPrimes : 1 sec
//decomp : 6 sec/9
//////////////////////////////////////////////////////////
R = ZZ/32003[b,c,d,e,f,g,u,v,w,x,y]
//wp(3,2,1,3,2,1,3,2,1,3,2);
I = ideal(
-2*d*g*y+d*e+4*c*f+b*g,
-2*d*w*y+d*u+4*c*v+b*w,
-d*g*x-4*d*f*y-4*c*g*y+2*c*e+2*b*f,
-d*w*x-4*d*v*y-4*c*w*y+2*c*u+2*b*v,
-2*d*f*x-2*c*g*x+b*e,
-2*d*v*x-2*c*w*x+b*u)
elapsedTime primaryDecomposition I -- 1.17009 seconds
elapsedTime associatedPrimes comodule I -- 69.4223 seconds
elapsedTime primaryDecomposition comodule I -- +0.116673 seconds
//////////////////////////////////////////////////////////
//Theo2: 3 Komponenten
//min_ass_prim_l : 2 sec
//prim_dec_tree_charsets: 3 sec
//newMinAssPrimes : sec
//minAssPrimes : 0 sec
//decomp : 1 sec/2
//////////////////////////////////////////////////////////
R = ZZ/32003[a,b,c,d,e,f,g]
I = ideal(
e*a-f*b*g,
f*a+b*e,
e*c-f*d*g,
f*c+d*e)
elapsedTime primaryDecomposition I -- 0.198419 seconds
elapsedTime primaryDecomposition comodule I -- 0.24645 seconds
//////////////////////////////////////////////////////////
//Theo3: 4 Komponenten
//min_ass_prim_l : 2 sec
//prim_dec_tree_charsets: 5 sec
//newMinAssPrimes : sec
//minAssPrimes : 1 sec
//decomp : 2 sec/7
//////////////////////////////////////////////////////////
R = ZZ/32003[a,b,c,d,e,f,g]
I = ideal(
f*e^2+f^3*g,
f*c+d*e,
f*a+b*e)
elapsedTime primaryDecomposition I -- 0.308439 seconds
elapsedTime primaryDecomposition comodule I -- 0.62386 seconds
//////////////////////////////////////////////////////////
//Theo4: 4 Komponenten
//min_ass_prim_l : 20 sec
//prim_dec_tree_charsets: nach einer Stunde abgebrochen
//newMinAssPrimes : sec
//minAssPrimes : 4 sec
//decomp : 4 sec/8
//////////////////////////////////////////////////////////
R = ZZ/32003[a,b,c,d,e,f,g,h]
I = ideal(
a*f+b*e+c*d-c*f*g,
a*e+b*d-b*f*g-c*e*g-c*f*h,
a*d-b*f*h-c*e*h)
elapsedTime primaryDecomposition I -- 0.359853 seconds
elapsedTime primaryDecomposition comodule I -- 0.277906 seconds
//////////////////////////////////////////////////////////
//Becker-Niermann: 2 Komponenten
//min_ass_prim_l : abgebrochen nach 1 Stunde und 33 MB
//prim_dec_tree_charsets: abgebrochen nach 1 Stunde und 33 MB
//newMinAssPrimes : sec
//minAssPrimes : 25 sec
//decomp : 25 sec/
//////////////////////////////////////////////////////////
R = ZZ/32003[x,y,z]
I = ideal(
x^2+x*y^2*z-2*x*y+y^4+y^2+z^2,
-x^3*y^2+x*y^2*z+x*y*z^3-2*x*y+y^4,
-2*x^2*y+x*y^4+y*z^4-3)
elapsedTime primaryDecomposition I; -- 0.396958 seconds
elapsedTime primaryDecomposition comodule I; -- 0.378588 seconds
//////////////////////////////////////////////////////////
//Vershelde-Cools: 3 Komponenten
//min_ass_prim_l : 2 sec
//prim_dec_tree_charsets: 2 sec
//newMinAssPrimes : sec
//minAssPrimes : 0 sec
//decomp : 0 sec/
//////////////////////////////////////////////////////////
R = ZZ/32003[x,y,z]
I = ideal(
17*y^6+49*y^5-9*y^4+41*x^2*z+12*y^3+33*y^2+11*y+73,
42*y^5+33*y^4+21*x^2*y+17*x^2*z+63*y^3+11*x*y+77*y^2+91*y+1,
26*y^2+44*x*z+12*y+9)
elapsedTime primaryDecomposition I -- 0.271382 seconds
elapsedTime primaryDecomposition comodule I -- 0.1308 seconds
//////////////////////////////////////////////////////////
//Caprasse4 : 19 Komponenten
//min_ass_prim_l : 7 sec
//prim_dec_tree_charsets: 38 sec
//newMinAssPrimes : sec
//minAssPrimes : 4 sec
//decomp : 4 sec/
//////////////////////////////////////////////////////////
//Factorisation over algebraic function field required!
R = ZZ/32003[x,y,z,t]
I = ideal(
y^2*z+2*x*y*t-2*x-z,
-x^3*z+4*x*y^2*z+4*x^2*y*t+2*y^3*t+4*x^2-10*y^2+4*x*z-10*y*t+2,
2*y*z*t+x*t^2-x-2*z,
-x*z^3+4*y*z^2*t+4*x*z*t^2+2*y*t^3+4*x*z+4*z^2-10*y*t-10*t^2+2)
elapsedTime primaryDecomposition I -- 6.13223 seconds
elapsedTime primaryDecomposition comodule I -- 1.85292 seconds
//////////////////////////////////////////////////////////
//Moeller : 3 Komponenten
//min_ass_prim_l : 1 sec
//prim_dec_tree_charsets: 1 sec
//newMinAssPrimes : sec
//minAssPrimes : 1 sec
//decomp : 1 sec/
//////////////////////////////////////////////////////////
R = ZZ/32003[x,y,z,t,w]
I = ideal(
x^2+2*y^2+2*z^2+2*t^2-x,
2*x*y+2*y*z+2*z*t-y,
y^2+2*x*z+2*y*t-z,
x+2*y+2*z+2*t-1)
elapsedTime primaryDecomposition I -- 0.263748 seconds
elapsedTime primaryDecomposition comodule I -- 0.107378 seconds
//////////////////////////////////////////////////////////
//Cassou : 2 Komponenten
//min_ass_prim_l : 163 sec
//prim_dec_tree_charsets: nach 45 Minuten bei 16 MB abgebrochen
//newMinAssPrimes : sec
//minAssPrimes : 4 sec
//decomp : 4 sec/
//////////////////////////////////////////////////////////
Factorisation over algebraic function field required!
R = ZZ/32003[b,c,d,e,w]
I = ideal(
15*b^4*c*d^2+6*b^4*c^3+21*b^4*c^2*d-144*b^2*c-8*b^2*c^2*e-28*b^2*c*d*e-648*b^2*d+36*b^2*d^2*e+9*b^4*d^3-120,
30*c^3*b^4*d-32*d*e^2*c-720*d*b^2*c-24*c^3*b^2*e-432*c^2*b^2+576*e*c-576*d*e+16*c*b^2*d^2*e+16*d^2*e^2+16*e^2*c^2+9*c^4*b^4
+5184+39*d^2*b^4*c^2+18*d^3*b^4*c-432*d^2*b^2+24*d^3*b^2*e-16*c^2*b^2*d*e-240*c,
216*d*b^2*c-162*d^2*b^2-81*c^2*b^2+5184+1008*e*c-1008*d*e+15*c^2*b^2*d*e-15*c^3*b^2*e-80*d*e^2*c+40*d^2*e^2+40*e^2*c^2,
261+4*d*b^2*c-3*d^2*b^2-4*c^2*b^2+22*e*c-22*d*e)
elapsedTime primaryDecomposition I -- 0.210382 seconds
elapsedTime primaryDecomposition comodule I -- 0.299217 seconds
//////////////////////////////////////////////////////////
//mat3-2 : 2 Komponenten
//min_ass_prim_l : 202 sec
//prim_dec_tree_charsets: nach 100 Minuten bei 7 MB abgebrochen
//newMinAssPrimes : sec
//minAssPrimes : 1 sec
//decomp : 6 sec/
//////////////////////////////////////////////////////////
R = ZZ/32003[a,b,c,d,e,f,g,h,i]
I = ideal(
a^2+b*d+c*g,
a*b+b*e+c*h,
a*c+b*f+c*i,
a*d+d*e+f*g,
b*d+e^2+f*h,
c*d+e*f+f*i,
a*g+d*h+g*i,
b*g+e*h+h*i,
c*g+f*h+i^2)
(I = clear I; time res coker gens I) -- 1.32 (pd=9)
(I = clear I; time primaryDecomposition I) -- (2020: 1.24622 seconds)
(I = clear I; time minimalPrimes I) -- 481.42 sec
(I = clear I; time radical I) --
(I = clear I; time topComponents I) --
(I = clear I; time removeLowestDimension I) --
(I = clear I; time (I : ideal vars R)) -- .75
(I = clear I; time saturate(I, ideal vars R)) -- 1.25 sec
elapsedTime primaryDecomposition comodule I -- 0.281031 seconds
-- Here is the result of minimalPrimes I above:
-- {ideal | a+e+i fg-di -ce+bf bg+eh+hi ch-bi -eg+dh bd+e2+ei cg+ei+i2 fh-ei cd+ef+fi |}
//////////////////////////////////////////////////////////
//I8_S/Y : 9 Komponenten
//min_ass_prim_l : 2 sec
//prim_dec_tree_charsets: 10 sec
//newMinAssPrimes : sec
//minAssPrimes : 1 sec
//decomp : 39 sec/
//////////////////////////////////////////////////////////
R = ZZ/32003[a,b,c,d,e,f,g,h,j,k]
I = ideal(
(a-k)^9,
(a-k)^8*(a-b),
(a-k)^7*(a-c),
(a-k)^6*(a-d),
(a-k)^5*(a-e),
(a-k)^4*(a-f),
(a-k)^3*(a-g),
(a-k)^2*(a-h),
(a-k)*(a-j))
(I = clear I; time res coker gens I) -- 1.09
(I = clear I; time primaryDecomposition I) -- 35.11 sec (2020: 0.433618 seconds)
(I = clear I; time minimalPrimes I) -- .66 sec
(I = clear I; time radical I) --
(I = clear I; time topComponents I) --
(I = clear I; time removeLowestDimension I) --
(I = clear I; time (I : ideal vars R)) --
(I = clear I; time saturate(I, ideal vars R)) --
elapsedTime primaryDecomposition comodule I -- ?, > 10000 seconds
//////////////////////////////////////////////////////////
//parametric curve : 1 Komponenten
//min_ass_prim_l : 3030 sec
//prim_dec_tree_charsets: nach 2 Stunden mit 100 MB abgebrochen
//newMinAssPrimes : sec
//minAssPrimes : 0 sec
//decomp : 0 sec/
//////////////////////////////////////////////////////////
R = ZZ/32003[x,y,z,t]
I = ideal(
t^10-x,
t^31-t^6-t-y,
t^8-z)
elapsedTime primaryDecomposition I -- 0.0269395 seconds
elapsedTime primaryDecomposition comodule I -- 0.0185982 seconds
//////////////////////////////////////////////////////////
//Gerdt/Ge_S/Y : 9 Komponenten
//min_ass_prim_l : 266 sec
//prim_dec_tree_charsets: 272 sec
//newMinAssPrimes : sec
//minAssPrimes : 3 sec
//decomp : 9 sec/
//////////////////////////////////////////////////////////
R = ZZ/32003[t,u,v,w,x,y,z]
I = ideal(
y*w-1/2*z*w+t*w,
-2/7*u*w^2+10/7*v*w^2-20/7*w^3+t*u-5*t*v+10*t*w,
2/7*y*w^2-2/7*z*w^2+6/7*t*w^2-y*t+z*t-3*t^2,
-2*v^3+4*u*v*w+5*v^2*w-6*u*w^2-7*v*w^2+15*w^3+42*y*v,
-14*z*v-63*y*w+21*z*w-42*t*w+147*x,
-9/7*u*w^3+45/7*v*w^3-135/7*w^4+2*z*v^2-2*t*v^2-4*z*u*w+10*t*u*w-2*z*v*w-28*t*v*w+4*z*w^2+86*t*w^2-42*y*z+14*z^2+42*y*t-14*z*t-21*x*u+105*x*v-315*x*w,
6/7*y*w^3-9/7*z*w^3+36/7*t*w^3-2*x*v^2-4*y*t*w+6*z*t*w-24*t^2*w+4*x*u*w+2*x*v*w-4*x*w^2+56*x*y-35*x*z+84*x*t,
2*u*v*w-6*v^2*w-u*w^2+13*v*w^2-5*w^3+14*y*w-28*t*w,
u^2*w-3*u*v*w+5*u*w^2+14*y*w-28*t*w,
-2*z*u*w-2*t*u*w+4*y*v*w+6*z*v*w-2*t*v*w-16*y*w^2-10*z*w^2+22*t*w^2+42*x*w,
28/3*y*u*w+8/3*z*u*w-20/3*t*u*w-88/3*y*v*w-8*z*v*w+68/3*t*v*w+52*y*w^2+40/3*z*w^2-44*t*w^2-84*x*w,
-4*y*z*w+10*y*t*w+8*z*t*w-20*t^2*w+12*x*u*w-30*x*v*w+15*x*w^2,
-y^2*w+1/2*y*z*w+y*t*w-z*t*w+2*t^2*w-3*x*u*w+6*x*v*w-3*x*w^2,
8*x*y*w-4*x*z*w+8*x*t*w)
elapsedTime primaryDecomposition I -- 1.45349 seconds
elapsedTime primaryDecomposition minimalPresentation I -- 1.55215 seconds
elapsedTime associatedPrimes comodule I -- 7.88573 seconds
elapsedTime associatedPrimes comodule minimalPresentation I -- 2.16607 seconds
elapsedTime primaryDecomposition comodule I -- +4.59695 seconds
elapsedTime primaryDecomposition comodule minimalPresentation I -- +1.3416 seconds
//////////////////////////////////////////////////////////
//Liu : 1 Komponenten
//min_ass_prim_l : 1 sec
//prim_dec_tree_charsets: nach 1 Stunde und 6 MB abgebrochen
//newMinAssPrimes : sec
//minAssPrimes : 1 sec
//decomp : 1 sec/
//////////////////////////////////////////////////////////
R = ZZ/32003[t,x,y,z,a]
I = ideal(
y*(z-t)-x+a,
z*(t-x)-y+a,
t*(x-y)-z+a,
x*(y-z)-t+a)
-- 3 components
elapsedTime primaryDecomposition I -- 0.236712 seconds
elapsedTime primaryDecomposition minimalPresentation I -- 0.185428 seconds
elapsedTime primaryDecomposition comodule I -- 0.126721 seconds
elapsedTime primaryDecomposition comodule minimalPresentation I -- 0.129961 seconds
-- Note: Singular's primdecGTZ() gives extremely complicated output
//////////////////////////////////////////////////////////
//Moeller2 : 27 Komponenten
//min_ass_prim_l : 14 sec
//prim_dec_tree_charsets: 58 sec
//newMinAssPrimes : sec
//minAssPrimes : 4 sec
//decomp : 23 sec/
//////////////////////////////////////////////////////////
R = ZZ/32003[a,b,c,d,u,v,w,x]
I = ideal(
a+b+c+d,
u+v+w+x,
3*(a*b+a*c+a*d+b*c+b*d+c*d)+2,
a*(v+w+x)+b*(u+w+x)+c*(u+v+x)+d*(u+v+w),
u*(b*c+b*d+c*d)+v*(a*c+a*d+c*d)+w*(a*b+a*d+b*d)+x*(a*b+a*c+b*c),
a*b*c+a*b*d+a*c*d+b*c*d,
a*b*c*x+a*b*w*d+a*v*c*d+u*b*c*d)
(I = clear I; time res coker gens I) --
(I = clear I; time primaryDecomposition I) -- (2020: 7.48868 seconds)
(I = clear I; time minimalPrimes I) --
(I = clear I; time radical I) --
(I = clear I; time topComponents I) --
(I = clear I; time removeLowestDimension I) --
(I = clear I; time (I : ideal vars R)) --
(I = clear I; time saturate(I, ideal vars R)) --
elapsedTime primaryDecomposition minimalPresentation I -- 6.22361 seconds
elapsedTime primaryDecomposition comodule I -- 20.8393 seconds
elapsedTime primaryDecomposition comodule minimalPresentation I -- 5.09512 seconds
//////////////////////////////////////////////////////////
//Hunecke1 : 12 Komponenten
//min_ass_prim_l : sec
//prim_dec_tree_charsets: sec
//newMinAssPrimes : sec
//minAssPrimes : 235 sec
//decomp : 1722 sec/
//////////////////////////////////////////////////////////
R = ZZ/32003[x,y,u,s,t,MonomialSize=>16]
I = ideal(
x^15,
y^15,
u^15,
u^5-x*y*(x-y)*(s*x-t*y))
(I = clear I; time res coker gens I) --
(I = clear I; time primaryDecomposition I) --
(I = clear I; time minimalPrimes I) --
(I = clear I; time radical I) --
(I = clear I; time topComponents I) --
(I = clear I; time removeLowestDimension I) --
(I = clear I; time (I : ideal vars R)) --
(I = clear I; time saturate(I, ideal vars R)) --
elapsedTime primaryDecomposition I; -- 17.8788 seconds
elapsedTime associatedPrimes comodule I -- 2.43017 seconds
elapsedTime primaryDecomposition comodule I; -- +242.126 seconds
//////////////////////////////////////////////////////////
//Huneke2 : 12 Komponenten
//min_ass_prim_l : sec
//prim_dec_tree_charsets: sec
//newMinAssPrimes : sec
//minAssPrimes : sec
//decomp : sec/
//////////////////////////////////////////////////////////
R = ZZ/3[x,y,u,s,t]
I = ideal(
x^27,
y^27,
u^27,
u^5-x*y*(x-y)*(s*x-t*y))
(I = clear I; time res coker gens I) -- 14.66
(I = clear I; time primaryDecomposition I) -- seconds
(I = clear I; time minimalPrimes I) --
(I = clear I; time radical I) --
(I = clear I; time topComponents I) --
(I = clear I; time removeLowestDimension I) --
(I = clear I; time (I : ideal vars R)) -- 33.27
(I = clear I; time saturate(I, ideal vars R)) --
elapsedTime primaryDecomposition I -- 1696.92 seconds
elapsedTime associatedPrimes comodule I -- 760 seconds
elapsedTime primaryDecomposition comodule I -- +43513.2 seconds
//////////////////////////////////////////////////////////
//Wang1 : 2 Komponenten
//min_ass_prim_l : 1 sec
//prim_dec_tree_charsets: 1 sec
//newMinAssPrimes : sec
//minAssPrimes : 0 sec
//decomp : 1 sec/
//////////////////////////////////////////////////////////
//Factorisation over algebraic function field required!
R = ZZ/32003[x,y,z,t]
I = ideal(
t^2+x*t^2-y*t-x*y*t+x*y+3*y,
x*t+z-x*y,
z*t-2*y^2-x*y-1)
elapsedTime primaryDecomposition I -- 0.0855847 seconds
elapsedTime primaryDecomposition comodule I -- 0.0686396 seconds
//////////////////////////////////////////////////////////
//Wang3 : Komponenten
//min_ass_prim_l : sec
//prim_dec_tree_charsets: sec
//newMinAssPrimes : sec
//minAssPrimes : sec
//decomp : sec/
//////////////////////////////////////////////////////////
//Factorisation over algebraic function field required!
R = ZZ/32003[y,a,b,c,m,n,o,p,q,s]
p*o*l*y p^1=(o+n)*(n+m)*(m+o)*p^2*q^2*s^2)
p*o*l*y p^2=p^1+c*(q^2*m-1)+b*(s^2*o-1)+a*(p^2*n-1))
I = ideal(
j*a*c*o*b(p^2)+i*d*e*a*l(y^2-p^1))
//////////////////////////////////////////////////////////
//Wang4 : Komponenten
//min_ass_prim_l : sec
//prim_dec_tree_charsets: sec
//newMinAssPrimes : sec
//minAssPrimes : sec
//decomp : sec/
//////////////////////////////////////////////////////////
R = ZZ/32003[x,y,z,t]
I = ideal(
x^2+y^2+z^2-t^2,
x*y+z^2-1,
x*y*z-x^2-y^2-z+1)
-- 1 component
elapsedTime primaryDecomposition I -- 0.0582853 seconds
elapsedTime primaryDecomposition comodule I -- 0.0602829 seconds
/////////////////////////////////////////////////////////////////////////////
//test
ring s=32003,(g,w,e,f,u,v,x,y),lp;
I = ideal(
(x^2)*w^3+(4*u*y^2-4*v*x*y)*w^2+(-4*u^2*y+6*u*v*x)*w+(u^3+8*u*v^2*y-8*v^3*x),
(x^2)*g^3+(4*e*y^2-4*f*x*y)*g^2+(-4*e^2*y+6*e*f*x)*g+(e^3+8*e*f^2*y-8*f^3*x))
// theo algemein==============================
int p=32003; //characteristic
i*n*t n=3)
i*n*t i)
r*i*n*g r=p,(x,e(0..n-1),a(0..n-1),c(0..n-1),b(0..n-2)),l*p)
p*o*l*y e=e(0)+e(n-1)*x^(n-1))
p*o*l*y a=a(0)+a(n-1)*x^(n-1))
p*o*l*y c=c(0)+c(n-1)*x^(n-1))
p*o*l*y b=b(0))
f*o*r(i=1)i<=n-2)i++)
{
e=e+e(i)*x^i)
a=a+a(i)*x^i)
c=c+c(i)*x^i)
b=b+b(i)*x^i)
}
i*d*e*a*l q=x^n+b)
a*t*t*r*i*b(q,"i*sSB",1))
p*o*l*y q*a=r*e*d*u*c*e(e*a,q))
p*o*l*y q*c=r*e*d*u*c*e(e*c,q))
r*i*n*g s=(p,e(0..n-1),a(0..n-1),c(0..n-1),b(0..n-2)),(x),l*p)
p*o*l*y q*a=i*m*a*p(r,q*a))
p*o*l*y q*c=i*m*a*p(r,q*c))
m*a*t*r*i*x m*a=c*o*e*f(q*a,x))
m*a*t*r*i*x m*c=c*o*e*f(q*c,x))
i*d*e*a*l i*d)
i*d*e*a*l j*d)
f*o*r(i=1)i<=n*c*o*l*s(m*a))i++)
{
i*d=i*d,m*a[2,i],m*c[2,i])
j*d=j*d,m*a[2,i])
}
i*d=s*i*m*p*l*i*f*y(i*d,2))
j*d=s*i*m*p*l*i*f*y(j*d,2))
s*e*t*r*i*n*g r)
i*d*e*a*l i*d=i*m*a*p(s,i*d))
i*d*e*a*l j*d=i*m*a*p(s,j*d))
LIB "p*r*i*m*d*e*c.l*i*b")
i*n*t a*a=t*i*m*e*r)
l*i*s*t p*r= d*e*c*o*m*p(i*d))
t*i*m*e*r-a*a)
t*e*s*tPr*i*m*a*r*y( p*r, i*d))
a*a=t*i*m*e*r)
l*i*s*t p*r= n*e*wMi*nAs*sPr*i*m*e*s(i*d))
t*i*m*e*r-a*a)
a*a=t*i*m*e*r)
l*i*s*t p*r= m*i*nAs*sPr*i*m*e*s(i*d))
t*i*m*e*r-a*a)
-- Local Variables:
-- compile-command: "make -C $M2BUILDDIR/Macaulay2/packages PrimaryDecomposition.installed "
-- End:
|