File: PruneComplex.m2

package info (click to toggle)
macaulay2 1.21%2Bds-3
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 133,096 kB
  • sloc: cpp: 110,377; ansic: 16,306; javascript: 4,193; makefile: 3,821; sh: 3,580; lisp: 764; yacc: 590; xml: 177; python: 140; perl: 114; lex: 65; awk: 3
file content (443 lines) | stat: -rw-r--r-- 20,121 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
---------------------------------------------------------------------------
-- PURPOSE : Pruning chain complexes over polynomial and local rings.
--
-- PROGRAMMERS : Mahrud Sayrafi and Mike Stillman.
--
-- UPDATE HISTORY : created 4 January 2017; last update 25 October 2017.
--
-- NOTE : Everything here works in the local, graded, and inhomogeneous case.
--        Algorithms are implemented in both the Macaulay2 language and C++ for speed.
--        pruneComplex may not treat degrees of free modules correctly when working
--        on a free chain complex rather than a free resolution.
---------------------------------------------------------------------------
newPackage(
    "PruneComplex",
    Version => "1.0",
    Date => "January 14th, 2017",
    Authors => {
        {Name => "Mahrud Sayrafi", Email => "mahrud@berkeley.edu",   HomePage => "http://ocf.berkeley.edu/~mahrud/"},
        {Name => "Mike Stillman",  Email => "mike@math.cornell.edu", HomePage => "http://www.math.cornell.edu/~mike/"}
        },
    Headline => "pruning chain complexes over polynomial and local rings",
    Keywords => {"Commutative Algebra", "Homological Algebra"},
    AuxiliaryFiles => true
    )

importFrom_Core {
    "LocalRing",
    "raw",
    "rawDeleteColumns",
    "rawDeleteRows",
    "rawMutableComplex",
    "rawPruneBetti",
    "rawPruneComplex",
    "rawPruningMorphism",
    }

export {
    "toMutableComplex",
    "toChainComplex",
    "pruneComplex",
    "pruneUnit",
    "pruneDiff",
    "isScalar",
--    "findUnit",
--    "findAllUnits",
--    "findSparseUnit",
--    "isQuasiIsomorphism", -- see ChainComplexExtras.m2
--    "isCommutative",
--    "isAcyclic",
--    "isMinimal",
--    "freeRes",
--    "testM2",
--    "testEngine",
--  Options:
    "Direction", "PruningMap", "UnitTest"
    }

-- << "--------------------------------------------------------------------------------------" << endl;
-- << "-- The PruneComplex package is experimental.                                        --" << endl;
-- << "-- See the documentation and comments in the package to learn more.                 --" << endl;
-- << "--------------------------------------------------------------------------------------" << endl;

--=================================== Chain Complex Operations ===================================--
-- TODO see if the new Chain Complexes package can be incorporated

-- converts a ChainComplex into a list of mutable matrices
-- TODO: take an option to make sparse mutable matrices here
toMutableComplex = method()
toMutableComplex ChainComplex := C -> for i from min C to max C list mutableMatrix C.dd_(i+1)

-- Converts a list of mutable matrices into a ChainComplex.
-- TODO: make sure the information about source and target modules for general complexes are kept
toChainComplex = method()
toChainComplex List          :=  mComplex     -> (
    if #mComplex == 0 then error "toChainComplex: expected at least one differential map.";
    toChainComplex(mComplex, target matrix (mComplex#0))
    )
toChainComplex(List, Module) := (mComplex, F) -> (
    if #mComplex == 0 then error "toChainComplex: expected at least one differential map.";
    places := select(0..(length mComplex)-1, i -> mComplex_i != 0);
    len := if #places === 0 then 0 else max places - min places;
    chainComplex for i from 0 to len list (
        m := map(F, , matrix mComplex_i);
        F = source m; m)
    )

--=================================== Unit Finding Operations  ===================================--

isScalar = method()
isScalar RingElement := f -> f != 0 and liftable(f, coefficientRing ring f)

-- Returns the first unit in M after pos
-- A mutable matrix and a pair of coordinates -> a pair of coordinates for a unit or null
-- start scanning at this location, row by row, return the coordinates of the first unit or scalar
-- start from the beginning if no coordinate is given
-- caveat: how to find bigger than 1x1 units?
findUnit = method(Options => {UnitTest => isUnit})
findUnit Matrix                   :=
findUnit MutableMatrix            := opts ->  M                  -> findUnit(M, (0, 0), opts)
findUnit(Matrix, Sequence)        :=
findUnit(MutableMatrix, Sequence) := opts -> (M, pos) -> (
    -- start scanning at this location, row by row
    -- return the coordinates of the first unit or scalar
    (r, c) := pos;
    numrow := numRows M;
    numcol := numColumns M;
    if numcol == 0 or numrow == 0 then return null;
    func := opts.UnitTest;
    dl := debugLevel >= 3;
    for i from c to numcol - 1 do
      if func M_(r, i) then (if dl then <<"Unit "<<M_(r, i)<<" at "<<(r, i)<<endl; return (r, i));
    for j from r+1 to numrow - 1 do
      for i from 0 to numcol - 1 do
        if func M_(j, i) then (if dl then <<"Unit "<<M_(j, i)<<" at "<<(j, i)<<endl; return (j, i));
    )

-- Returns a list of all units
-- A mutable matrix -> List (of coordinates for all units or scalars in a matrix)
findAllUnits = method(Options => options findUnit)
findAllUnits Matrix        :=
findAllUnits MutableMatrix := opts -> M -> (
    -- return all units or scalars in a matrix
    lastpos := (0, -1);
    if numcols M == 0 or numrows M == 0 then return {};
    while (pos := findUnit(M, (lastpos_0, lastpos_1 + 1), opts)) =!= null list (lastpos = pos; pos)
    )

-- If matrix is over a local ring, return a matrix of number of terms in the numerator of each element;
-- if matrix is over a poly ring, return a matrix of number of terms of each element
sizeMatrix = method()
sizeMatrix Matrix        :=
sizeMatrix MutableMatrix := M -> (
    if instance(ring M, LocalRing)
      then matrix (entries M / (e->e/numerator/size))
      else matrix (entries M / (e->e/size))
    )

-- Returns the coordinates of the unit or scalar with the sparsest row and column in a matrix
-- A mutable matrix -> a coordinate pair and a complexity integer
-- lists all units, uses heuristics to calculate a complexity for each unit, then returns the simplest
-- uses different measures for poly ring and local ring; for poly ring returns the coordinates of the
-- unit with the sparsest row and column in a matrix; for local ring takes into account the sum of
-- number of terms in the numerators for all elements in row and column as well.
-- caveat: super time intensive
-- Note: if no unit found, returns ((-1,-1), infinity)
findSparseUnit = method(Options => {UnitTest => isUnit, Strategy => "NoSort"})
findSparseUnit Matrix :=
findSparseUnit MutableMatrix := opts -> M -> (
    if opts.Strategy =!= "NoSort" then (
      c := runHooks((findSparseUnit, MutableMatrix), (opts, M));
      if c =!= null then return c;
      );
    unit := findUnit (M, UnitTest => opts.UnitTest);
    if unit === null then (
      if debugLevel >= 3 then << "No units found." << endl;
      return ((-1, -1), infinity);
      );
    (unit, 0)
    )

-- A heuristic measure to find the easiest unit to prune first
-- TODO this could be made more efficient
complexity := (elt, row, col) -> (
    if instance(ring elt, LocalRing) then
      (size numerator elt) * (row/numerator/size//sum) * (col/numerator/size//sum)
    else
      (#(for i in row list if i != 0 then 1 else continue)-1) *
      (#(for j in col list if j != 0 then 1 else continue)-1)
    )

-- TODO this could be made more efficient.
addHook((findSparseUnit, MutableMatrix), (opts, M) -> (
        units := for unit in findAllUnits (M, UnitTest => opts.UnitTest) list (
            (r, c) := unit;
            elt := M_unit;
            row := flatten entries submatrix(M, {r},    );
            col := flatten entries submatrix(M,    , {c});
            cmp := complexity(elt, row, col);
            unit, cmp
            );
        if #units == 0 then (
            if debugLevel >= 3 then << "No unit found." << endl;
            return ((-1,-1),infinity);
            );
        argMin := minPosition (units/last);
        unit := first units#argMin;
        cmp := last units#argMin;
        if debugLevel >= 3 then
          << "Found sparse unit of complexity " << cmp << " at " << unit << ": " << M_unit << endl;
        break (unit, cmp)))

--============================ Pruning Operations ===================================--

deleteRows =    (M, rfirst, rlast) -> ( rawDeleteRows(raw M, rfirst, rlast); M )
deleteColumns = (M, cfirst, clast) -> ( rawDeleteColumns(raw M, cfirst, clast); M )

-- Moves a given row and column to the end while keeping the neighbouring differentials compatible
-- Then reduces mComplex#n using the unit in the last row and column
-- Input: a list of mutable matrices mComplex followed by an iterator n
-- Output: a list of mutable matrices mComplex of smaller size
pruneUnit = method(Options => {PruningMap => true, UnitTest => isUnit})
pruneUnit(List, ZZ, Sequence, List) := opts -> (mComplex, n, unit, pruningMorph) -> (
    if debugLevel >= 3 then
      <<"   Removing a unit from differential #"<<n<<endl;
    if n < 0 or n >= #mComplex then error "out of range";
    (r,c) := unit;
    R := ring mComplex#n;
    -- Initialize pruning maps if needed
    if opts.PruningMap =!= false then (
        if pruningMorph#n     === null then pruningMorph#n     = mutableIdentity(R, numRows mComplex#n);
        if pruningMorph#(n+1) === null then pruningMorph#(n+1) = mutableIdentity(R, numColumns mComplex#n);
        );
    -- Move to last row
    r2 := numRows mComplex#n - 1;
    rowSwap(mComplex#n, r, r2);
    if 0 < n then
      columnSwap(mComplex#(n-1), r, r2);
    if opts.PruningMap =!= false then
      columnSwap(pruningMorph#n, r, r2);
    -- Move to last column
    c2 := numColumns mComplex#n - 1;
    columnSwap(mComplex#n, c, c2);
    if n < #mComplex - 1 then
      rowSwap(mComplex#(n+1), c, c2);
    if opts.PruningMap =!= false then
      columnSwap(pruningMorph#(n+1), c, c2);
    -- Get the pivot
    inversePivot := if instance(R, LocalRing) then (mComplex#n_(r2, c2))^-1 else (leadCoefficient mComplex#n_(r2, c2))^-1;
    -- Clear the column
    for r from 0 to r2 do (
        f := (mComplex#n)_(r, c2);
        rowAdd(mComplex#n, r, -f * inversePivot, r2);
        if 0 < n then
            columnAdd(mComplex#(n-1), r2, f * inversePivot, r);
        if opts.PruningMap =!= false then
            columnAdd(pruningMorph#n, r2, f * inversePivot, r);
        );
    -- Clear the row
    for c from 0 to c2 do (
        f := (mComplex#n)_(r2, c);
        columnAdd(mComplex#n, c, -f * inversePivot, c2);
        if n < #mComplex - 1 then
            rowAdd(mComplex#(n+1), c2, f * inversePivot, c);
        if opts.PruningMap =!= false then
            columnAdd(pruningMorph#(n+1), c, -f * inversePivot, c2);
        );
    -- delete rows/columns
    deleteColumns(mComplex#n, c2, c2);
    if n < #mComplex-1 then
       deleteRows(mComplex#(n+1), c2, c2);
    if opts.PruningMap =!= false then
        deleteColumns(pruningMorph#(n+1), c2, c2);

    deleteRows(mComplex#n, r2, r2);
    if 0 < n then
        deleteColumns(mComplex#(n-1), r2, r2);
    if opts.PruningMap =!= false then
        deleteColumns(pruningMorph#n, r2, r2);

    mComplex
    )

-- Prunes a single differential by reducing the units in a while loop, starting with the ones in
-- sparcest row/column. Uses pruneUnit.
-- TODO: handle the case of twisted complexes and free modules with degrees (both are OK in the engine)
pruneDiff = method(Options => {PruningMap => true, UnitTest => isUnit})
pruneDiff(ChainComplex, ZZ) := opts -> (C, n) -> (
    if opts.PruningMap === true then (
        (D, pruningMorph) := pruneDiff(toMutableComplex C, n, opts);
        return (toChainComplex D, pruningMorph);
        );
    toChainComplex pruneDiff(toMutableComplex C, n, opts)
    )
pruneDiff(ChainComplex, ZZ, List) := opts -> (C, n, M) -> (
    if opts.PruningMap === true then (
        (D, pruningMorph) := pruneDiff(toMutableComplex C, n, M, opts);
        return (toChainComplex D, pruningMorph);
        );
    toChainComplex pruneDiff(toMutableComplex C, n, M, opts)
    )
pruneDiff(List, ZZ)         := opts -> (mComplex, n) -> (
    pruningMorph := new MutableList;
    if opts.PruningMap === true then (
        for i from 0 to #mComplex - 1 do pruningMorph#i = mutableIdentity(ring mComplex#0, numRows mComplex#i);
        pruningMorph#(#mComplex) = mutableIdentity(ring mComplex#0, numColumns mComplex#(#mComplex - 1));
        );
    pruningMorph = new List from pruningMorph;
    pruneDiff(mComplex, n, pruningMorph, opts)
    )
pruneDiff(List, ZZ, List)         := opts -> (mComplex, n, pruningMorph) -> (
    M := mComplex#n;
    if debugLevel >= 2 then
      << "Pruning differential #" << n << " of size " << (numRows M, numColumns M) << endl;
    while (
        unit := findSparseUnit(M, UnitTest => opts.UnitTest);
        last unit =!= infinity
        ) do pruneUnit(mComplex, n, first unit, pruningMorph, opts);
    if debugLevel >= 2 then
      << "\tDifferential reduced to => " << (numRows M, numColumns M) << endl;
    if opts.PruningMap === true then return (mComplex, pruningMorph);
    mComplex
    )

-- Prune a chain complex C into a free resolution by removing unit elements from the differentials
-- TODO: keep track of degrees of the free modules in M2 and in the Engine
-- TODO: give error if not given a free chain complex
pruneComplex = method(
    Options => {
        Strategy => Engine, -- set to null to use the methods above
        Direction => "left",
        PruningMap => true, -- TODO: grading may be incorrect if this is set to false
        UnitTest => isUnit -- TODO: detect when all units are scalars and choose that
        })
pruneComplex ChainComplex      := opts ->  C          -> pruneComplex(C, -1, opts)
pruneComplex(ChainComplex, ZZ) := opts -> (C, nsteps) -> (
    m := min C;
    mComplex := toMutableComplex C;
    (D, M) := pruneComplex(mComplex, nsteps, opts);
    F := if opts.PruningMap == true
    then source map(target C.dd_(m+1), , matrix M#0)
    else target matrix D#0;
    D = (toChainComplex(D, F))[-m];
    R := ring D;
    if opts.PruningMap == true then
      D.cache.pruningMap = map(C, D, i -> M#(i-m)//matrix);
    D
    )
pruneComplex List      := opts ->  mComplex          -> pruneComplex(mComplex, -1, opts)
pruneComplex(List, ZZ) := opts -> (mComplex, nsteps) -> (
    len := length mComplex;
    mComplex = mComplex/mutableMatrix;
    if nsteps == -1 then nsteps = len;
    pruningMorph := new MutableList;
    if opts.PruningMap === true then (
        for i from 0 to #mComplex - 1 do pruningMorph#i = mutableIdentity(ring mComplex#0, numRows mComplex#i);
        pruningMorph#(#mComplex) = mutableIdentity(ring mComplex#0, numColumns mComplex#(#mComplex - 1));
        );
    pruningMorph = new List from pruningMorph;
    if      opts.Strategy === Engine  then                              -- call rawPruneComplex
      return enginePruneComplex(mComplex, nsteps, opts)
    else if opts.Direction == "left"  then                              -- pruning the left one first
      for i from 0 to nsteps-1 do
        pruneDiff(mComplex,       i, pruningMorph, PruningMap => opts.PruningMap, UnitTest => opts.UnitTest)
    else if opts.Direction == "right" then                              -- pruning the right one first
      for i from 0 to nsteps-1 do
        pruneDiff(mComplex, len-i-1, pruningMorph, PruningMap => opts.PruningMap, UnitTest => opts.UnitTest)
    else if opts.Direction == "both"  then                              -- pruning outside-in
      (unique splice for i from 1 to lift((nsteps - nsteps % 2)/2, ZZ) list (i, len-i)) /
      (n -> pruneDiff(mComplex,   n, pruningMorph, PruningMap => opts.PruningMap, UnitTest => opts.UnitTest))
    else if opts.Direction == "best"  then                              -- pruning the sparsest unit
      while (
        units := for i from 0 to nsteps - 1 list (
          M := mComplex#i;
          if debugLevel >= 3 then << "Looking for sparsest unit in differential #" << i << endl;
          findSparseUnit(M, UnitTest => opts.UnitTest)               --TODO only recheck the neighbours
          );
        n := minPosition(units/last);
        unit := units#n;
        last unit != infinity
        ) do pruneUnit(mComplex, n, first unit, pruningMorph, PruningMap => opts.PruningMap, UnitTest => opts.UnitTest);
    (mComplex, pruningMorph)
    )

enginePruneComplex = method(Options => options pruneComplex) -- ++ {...}
enginePruneComplex List      := opts ->  C          -> enginePruneComplex(C, -1, opts)
enginePruneComplex(List, ZZ) := opts -> (C, nsteps) -> (
    R := ring C#0;
    flag := 0;
    -- See e/mutablecomplex.cpp for reference
    flag = flag | (if opts.PruningMap            then     1 else 0); -- See `help pruningMap` in M2
    flag = flag | (if false                      then     2 else 0); -- Delete pruned rows and columns
    flag = flag | (if false                      then     4 else 0); -- Only prune -1,+1
    flag = flag | (if opts.UnitTest === isScalar then     8 else 0); -- Only prune constants
    flag = flag | (if false                      then    16 else 0); -- Only prune functions with constants
    flag = flag | (if false                      then    32 else 0); -- Pruning for maximal ideal
    flag = flag | (if false                      then    64 else 0); -- Pruning for prime ideal
    flag = flag | (if true                       then  1024 else 0); -- Prune sparsest unit first
    flag = flag | (if false                      then  2048 else 0); -- Prune best matrix first
    flag = flag | (if opts.Direction === "right" then 65536 else 0); -- Prune the matrices in reverse order
    -- create the raw chain complex
    if debugLevel >= 2 then << "Using enginePruneComplex." << endl;
    A := rawMutableComplex(C/raw//toSequence);
    if debugLevel >= 2 then << A << endl;
    L := rawPruneBetti(A, nsteps, flag) // sum;
    -- prune the raw chain complex
    rawPruneComplex(A, nsteps, flag);
    if debugLevel >= 2 then << A << endl;
    B := rawPruneBetti(A, nsteps, flag);
    -- trim the complex
    D := apply(length C, i -> submatrix(C#i, 0..B#i-1, 0..B#(i+1)-1));
    if debugLevel >= 2 then << L - B//sum << endl;
    -- retrieve the pruning maps
    M := null;
    if flag & 1 == 1 then M = rawPruningMorphism(A, nsteps, flag)/map_R;
    (D, M)
    )

--================================= Testing and Checking Operations =================================--

-- Checks that source phi is quasi-isomorphic to target phi
-- Source: ChainComplexExtras.m2
isQuasiIsomorphism = method(Options => {LengthLimit => infinity})
isQuasiIsomorphism ChainComplexMap := Boolean => opts -> phi -> (
    C := cone phi;
    if all((min C,min(max C, opts.LengthLimit)), i -> (prune HH_i(C) == 0)) then true else false
    )
-- Checks that C is a resolution of N
isQuasiIsomorphism(ChainComplex, Ideal)  := Boolean => opts -> (C, I) -> isQuasiIsomorphism(C, coker gens I)
isQuasiIsomorphism(ChainComplex, Module) := Boolean => opts -> (C, N) -> (
    R := ring N;
    D := chainComplex map(N, R^0, 0);
    if C == 0 then return D == 0;
    M := {map(D_0, C_0, 1)} | for i from 1 to max(length C, length D) list map(D_i, C_i, 0);
    isQuasiIsomorphism map(D, C, i -> M#i)
    )

-- Checks that C is an acyclic chain complex
isAcyclic = C -> isQuasiIsomorphism(C, 0)

-- Checks whether there are any more units are left in the complex
-- Note: this only implies that the resolution is minimal in the local and graded case
isMinimal = method(Options => options findUnit)
isMinimal Matrix        :=
isMinimal MutableMatrix := Boolean => opts -> M -> 0 == #findAllUnits(M, opts)
isMinimal ChainComplex  := Boolean => opts -> C -> (
    if any(length C + 1, i -> not isMinimal(matrix (C.dd_i), opts)) then false else true
    )

-- Checks commutativity of chain complexes C and D with chain complex map M
isCommutative ChainComplexMap := Boolean => f -> (
    D := source f;
    C := target f;
    for i from 1 to max(length C, length D) do
      if C.dd_i * f_i - f_(i-1) * D.dd_i != 0 then
        return false;
    true
    )

load ("./PruneComplex/tests.m2")
beginDocumentation()
load ("./PruneComplex/doc.m2")

end--