1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443
|
---------------------------------------------------------------------------
-- PURPOSE : Pruning chain complexes over polynomial and local rings.
--
-- PROGRAMMERS : Mahrud Sayrafi and Mike Stillman.
--
-- UPDATE HISTORY : created 4 January 2017; last update 25 October 2017.
--
-- NOTE : Everything here works in the local, graded, and inhomogeneous case.
-- Algorithms are implemented in both the Macaulay2 language and C++ for speed.
-- pruneComplex may not treat degrees of free modules correctly when working
-- on a free chain complex rather than a free resolution.
---------------------------------------------------------------------------
newPackage(
"PruneComplex",
Version => "1.0",
Date => "January 14th, 2017",
Authors => {
{Name => "Mahrud Sayrafi", Email => "mahrud@berkeley.edu", HomePage => "http://ocf.berkeley.edu/~mahrud/"},
{Name => "Mike Stillman", Email => "mike@math.cornell.edu", HomePage => "http://www.math.cornell.edu/~mike/"}
},
Headline => "pruning chain complexes over polynomial and local rings",
Keywords => {"Commutative Algebra", "Homological Algebra"},
AuxiliaryFiles => true
)
importFrom_Core {
"LocalRing",
"raw",
"rawDeleteColumns",
"rawDeleteRows",
"rawMutableComplex",
"rawPruneBetti",
"rawPruneComplex",
"rawPruningMorphism",
}
export {
"toMutableComplex",
"toChainComplex",
"pruneComplex",
"pruneUnit",
"pruneDiff",
"isScalar",
-- "findUnit",
-- "findAllUnits",
-- "findSparseUnit",
-- "isQuasiIsomorphism", -- see ChainComplexExtras.m2
-- "isCommutative",
-- "isAcyclic",
-- "isMinimal",
-- "freeRes",
-- "testM2",
-- "testEngine",
-- Options:
"Direction", "PruningMap", "UnitTest"
}
-- << "--------------------------------------------------------------------------------------" << endl;
-- << "-- The PruneComplex package is experimental. --" << endl;
-- << "-- See the documentation and comments in the package to learn more. --" << endl;
-- << "--------------------------------------------------------------------------------------" << endl;
--=================================== Chain Complex Operations ===================================--
-- TODO see if the new Chain Complexes package can be incorporated
-- converts a ChainComplex into a list of mutable matrices
-- TODO: take an option to make sparse mutable matrices here
toMutableComplex = method()
toMutableComplex ChainComplex := C -> for i from min C to max C list mutableMatrix C.dd_(i+1)
-- Converts a list of mutable matrices into a ChainComplex.
-- TODO: make sure the information about source and target modules for general complexes are kept
toChainComplex = method()
toChainComplex List := mComplex -> (
if #mComplex == 0 then error "toChainComplex: expected at least one differential map.";
toChainComplex(mComplex, target matrix (mComplex#0))
)
toChainComplex(List, Module) := (mComplex, F) -> (
if #mComplex == 0 then error "toChainComplex: expected at least one differential map.";
places := select(0..(length mComplex)-1, i -> mComplex_i != 0);
len := if #places === 0 then 0 else max places - min places;
chainComplex for i from 0 to len list (
m := map(F, , matrix mComplex_i);
F = source m; m)
)
--=================================== Unit Finding Operations ===================================--
isScalar = method()
isScalar RingElement := f -> f != 0 and liftable(f, coefficientRing ring f)
-- Returns the first unit in M after pos
-- A mutable matrix and a pair of coordinates -> a pair of coordinates for a unit or null
-- start scanning at this location, row by row, return the coordinates of the first unit or scalar
-- start from the beginning if no coordinate is given
-- caveat: how to find bigger than 1x1 units?
findUnit = method(Options => {UnitTest => isUnit})
findUnit Matrix :=
findUnit MutableMatrix := opts -> M -> findUnit(M, (0, 0), opts)
findUnit(Matrix, Sequence) :=
findUnit(MutableMatrix, Sequence) := opts -> (M, pos) -> (
-- start scanning at this location, row by row
-- return the coordinates of the first unit or scalar
(r, c) := pos;
numrow := numRows M;
numcol := numColumns M;
if numcol == 0 or numrow == 0 then return null;
func := opts.UnitTest;
dl := debugLevel >= 3;
for i from c to numcol - 1 do
if func M_(r, i) then (if dl then <<"Unit "<<M_(r, i)<<" at "<<(r, i)<<endl; return (r, i));
for j from r+1 to numrow - 1 do
for i from 0 to numcol - 1 do
if func M_(j, i) then (if dl then <<"Unit "<<M_(j, i)<<" at "<<(j, i)<<endl; return (j, i));
)
-- Returns a list of all units
-- A mutable matrix -> List (of coordinates for all units or scalars in a matrix)
findAllUnits = method(Options => options findUnit)
findAllUnits Matrix :=
findAllUnits MutableMatrix := opts -> M -> (
-- return all units or scalars in a matrix
lastpos := (0, -1);
if numcols M == 0 or numrows M == 0 then return {};
while (pos := findUnit(M, (lastpos_0, lastpos_1 + 1), opts)) =!= null list (lastpos = pos; pos)
)
-- If matrix is over a local ring, return a matrix of number of terms in the numerator of each element;
-- if matrix is over a poly ring, return a matrix of number of terms of each element
sizeMatrix = method()
sizeMatrix Matrix :=
sizeMatrix MutableMatrix := M -> (
if instance(ring M, LocalRing)
then matrix (entries M / (e->e/numerator/size))
else matrix (entries M / (e->e/size))
)
-- Returns the coordinates of the unit or scalar with the sparsest row and column in a matrix
-- A mutable matrix -> a coordinate pair and a complexity integer
-- lists all units, uses heuristics to calculate a complexity for each unit, then returns the simplest
-- uses different measures for poly ring and local ring; for poly ring returns the coordinates of the
-- unit with the sparsest row and column in a matrix; for local ring takes into account the sum of
-- number of terms in the numerators for all elements in row and column as well.
-- caveat: super time intensive
-- Note: if no unit found, returns ((-1,-1), infinity)
findSparseUnit = method(Options => {UnitTest => isUnit, Strategy => "NoSort"})
findSparseUnit Matrix :=
findSparseUnit MutableMatrix := opts -> M -> (
if opts.Strategy =!= "NoSort" then (
c := runHooks((findSparseUnit, MutableMatrix), (opts, M));
if c =!= null then return c;
);
unit := findUnit (M, UnitTest => opts.UnitTest);
if unit === null then (
if debugLevel >= 3 then << "No units found." << endl;
return ((-1, -1), infinity);
);
(unit, 0)
)
-- A heuristic measure to find the easiest unit to prune first
-- TODO this could be made more efficient
complexity := (elt, row, col) -> (
if instance(ring elt, LocalRing) then
(size numerator elt) * (row/numerator/size//sum) * (col/numerator/size//sum)
else
(#(for i in row list if i != 0 then 1 else continue)-1) *
(#(for j in col list if j != 0 then 1 else continue)-1)
)
-- TODO this could be made more efficient.
addHook((findSparseUnit, MutableMatrix), (opts, M) -> (
units := for unit in findAllUnits (M, UnitTest => opts.UnitTest) list (
(r, c) := unit;
elt := M_unit;
row := flatten entries submatrix(M, {r}, );
col := flatten entries submatrix(M, , {c});
cmp := complexity(elt, row, col);
unit, cmp
);
if #units == 0 then (
if debugLevel >= 3 then << "No unit found." << endl;
return ((-1,-1),infinity);
);
argMin := minPosition (units/last);
unit := first units#argMin;
cmp := last units#argMin;
if debugLevel >= 3 then
<< "Found sparse unit of complexity " << cmp << " at " << unit << ": " << M_unit << endl;
break (unit, cmp)))
--============================ Pruning Operations ===================================--
deleteRows = (M, rfirst, rlast) -> ( rawDeleteRows(raw M, rfirst, rlast); M )
deleteColumns = (M, cfirst, clast) -> ( rawDeleteColumns(raw M, cfirst, clast); M )
-- Moves a given row and column to the end while keeping the neighbouring differentials compatible
-- Then reduces mComplex#n using the unit in the last row and column
-- Input: a list of mutable matrices mComplex followed by an iterator n
-- Output: a list of mutable matrices mComplex of smaller size
pruneUnit = method(Options => {PruningMap => true, UnitTest => isUnit})
pruneUnit(List, ZZ, Sequence, List) := opts -> (mComplex, n, unit, pruningMorph) -> (
if debugLevel >= 3 then
<<" Removing a unit from differential #"<<n<<endl;
if n < 0 or n >= #mComplex then error "out of range";
(r,c) := unit;
R := ring mComplex#n;
-- Initialize pruning maps if needed
if opts.PruningMap =!= false then (
if pruningMorph#n === null then pruningMorph#n = mutableIdentity(R, numRows mComplex#n);
if pruningMorph#(n+1) === null then pruningMorph#(n+1) = mutableIdentity(R, numColumns mComplex#n);
);
-- Move to last row
r2 := numRows mComplex#n - 1;
rowSwap(mComplex#n, r, r2);
if 0 < n then
columnSwap(mComplex#(n-1), r, r2);
if opts.PruningMap =!= false then
columnSwap(pruningMorph#n, r, r2);
-- Move to last column
c2 := numColumns mComplex#n - 1;
columnSwap(mComplex#n, c, c2);
if n < #mComplex - 1 then
rowSwap(mComplex#(n+1), c, c2);
if opts.PruningMap =!= false then
columnSwap(pruningMorph#(n+1), c, c2);
-- Get the pivot
inversePivot := if instance(R, LocalRing) then (mComplex#n_(r2, c2))^-1 else (leadCoefficient mComplex#n_(r2, c2))^-1;
-- Clear the column
for r from 0 to r2 do (
f := (mComplex#n)_(r, c2);
rowAdd(mComplex#n, r, -f * inversePivot, r2);
if 0 < n then
columnAdd(mComplex#(n-1), r2, f * inversePivot, r);
if opts.PruningMap =!= false then
columnAdd(pruningMorph#n, r2, f * inversePivot, r);
);
-- Clear the row
for c from 0 to c2 do (
f := (mComplex#n)_(r2, c);
columnAdd(mComplex#n, c, -f * inversePivot, c2);
if n < #mComplex - 1 then
rowAdd(mComplex#(n+1), c2, f * inversePivot, c);
if opts.PruningMap =!= false then
columnAdd(pruningMorph#(n+1), c, -f * inversePivot, c2);
);
-- delete rows/columns
deleteColumns(mComplex#n, c2, c2);
if n < #mComplex-1 then
deleteRows(mComplex#(n+1), c2, c2);
if opts.PruningMap =!= false then
deleteColumns(pruningMorph#(n+1), c2, c2);
deleteRows(mComplex#n, r2, r2);
if 0 < n then
deleteColumns(mComplex#(n-1), r2, r2);
if opts.PruningMap =!= false then
deleteColumns(pruningMorph#n, r2, r2);
mComplex
)
-- Prunes a single differential by reducing the units in a while loop, starting with the ones in
-- sparcest row/column. Uses pruneUnit.
-- TODO: handle the case of twisted complexes and free modules with degrees (both are OK in the engine)
pruneDiff = method(Options => {PruningMap => true, UnitTest => isUnit})
pruneDiff(ChainComplex, ZZ) := opts -> (C, n) -> (
if opts.PruningMap === true then (
(D, pruningMorph) := pruneDiff(toMutableComplex C, n, opts);
return (toChainComplex D, pruningMorph);
);
toChainComplex pruneDiff(toMutableComplex C, n, opts)
)
pruneDiff(ChainComplex, ZZ, List) := opts -> (C, n, M) -> (
if opts.PruningMap === true then (
(D, pruningMorph) := pruneDiff(toMutableComplex C, n, M, opts);
return (toChainComplex D, pruningMorph);
);
toChainComplex pruneDiff(toMutableComplex C, n, M, opts)
)
pruneDiff(List, ZZ) := opts -> (mComplex, n) -> (
pruningMorph := new MutableList;
if opts.PruningMap === true then (
for i from 0 to #mComplex - 1 do pruningMorph#i = mutableIdentity(ring mComplex#0, numRows mComplex#i);
pruningMorph#(#mComplex) = mutableIdentity(ring mComplex#0, numColumns mComplex#(#mComplex - 1));
);
pruningMorph = new List from pruningMorph;
pruneDiff(mComplex, n, pruningMorph, opts)
)
pruneDiff(List, ZZ, List) := opts -> (mComplex, n, pruningMorph) -> (
M := mComplex#n;
if debugLevel >= 2 then
<< "Pruning differential #" << n << " of size " << (numRows M, numColumns M) << endl;
while (
unit := findSparseUnit(M, UnitTest => opts.UnitTest);
last unit =!= infinity
) do pruneUnit(mComplex, n, first unit, pruningMorph, opts);
if debugLevel >= 2 then
<< "\tDifferential reduced to => " << (numRows M, numColumns M) << endl;
if opts.PruningMap === true then return (mComplex, pruningMorph);
mComplex
)
-- Prune a chain complex C into a free resolution by removing unit elements from the differentials
-- TODO: keep track of degrees of the free modules in M2 and in the Engine
-- TODO: give error if not given a free chain complex
pruneComplex = method(
Options => {
Strategy => Engine, -- set to null to use the methods above
Direction => "left",
PruningMap => true, -- TODO: grading may be incorrect if this is set to false
UnitTest => isUnit -- TODO: detect when all units are scalars and choose that
})
pruneComplex ChainComplex := opts -> C -> pruneComplex(C, -1, opts)
pruneComplex(ChainComplex, ZZ) := opts -> (C, nsteps) -> (
m := min C;
mComplex := toMutableComplex C;
(D, M) := pruneComplex(mComplex, nsteps, opts);
F := if opts.PruningMap == true
then source map(target C.dd_(m+1), , matrix M#0)
else target matrix D#0;
D = (toChainComplex(D, F))[-m];
R := ring D;
if opts.PruningMap == true then
D.cache.pruningMap = map(C, D, i -> M#(i-m)//matrix);
D
)
pruneComplex List := opts -> mComplex -> pruneComplex(mComplex, -1, opts)
pruneComplex(List, ZZ) := opts -> (mComplex, nsteps) -> (
len := length mComplex;
mComplex = mComplex/mutableMatrix;
if nsteps == -1 then nsteps = len;
pruningMorph := new MutableList;
if opts.PruningMap === true then (
for i from 0 to #mComplex - 1 do pruningMorph#i = mutableIdentity(ring mComplex#0, numRows mComplex#i);
pruningMorph#(#mComplex) = mutableIdentity(ring mComplex#0, numColumns mComplex#(#mComplex - 1));
);
pruningMorph = new List from pruningMorph;
if opts.Strategy === Engine then -- call rawPruneComplex
return enginePruneComplex(mComplex, nsteps, opts)
else if opts.Direction == "left" then -- pruning the left one first
for i from 0 to nsteps-1 do
pruneDiff(mComplex, i, pruningMorph, PruningMap => opts.PruningMap, UnitTest => opts.UnitTest)
else if opts.Direction == "right" then -- pruning the right one first
for i from 0 to nsteps-1 do
pruneDiff(mComplex, len-i-1, pruningMorph, PruningMap => opts.PruningMap, UnitTest => opts.UnitTest)
else if opts.Direction == "both" then -- pruning outside-in
(unique splice for i from 1 to lift((nsteps - nsteps % 2)/2, ZZ) list (i, len-i)) /
(n -> pruneDiff(mComplex, n, pruningMorph, PruningMap => opts.PruningMap, UnitTest => opts.UnitTest))
else if opts.Direction == "best" then -- pruning the sparsest unit
while (
units := for i from 0 to nsteps - 1 list (
M := mComplex#i;
if debugLevel >= 3 then << "Looking for sparsest unit in differential #" << i << endl;
findSparseUnit(M, UnitTest => opts.UnitTest) --TODO only recheck the neighbours
);
n := minPosition(units/last);
unit := units#n;
last unit != infinity
) do pruneUnit(mComplex, n, first unit, pruningMorph, PruningMap => opts.PruningMap, UnitTest => opts.UnitTest);
(mComplex, pruningMorph)
)
enginePruneComplex = method(Options => options pruneComplex) -- ++ {...}
enginePruneComplex List := opts -> C -> enginePruneComplex(C, -1, opts)
enginePruneComplex(List, ZZ) := opts -> (C, nsteps) -> (
R := ring C#0;
flag := 0;
-- See e/mutablecomplex.cpp for reference
flag = flag | (if opts.PruningMap then 1 else 0); -- See `help pruningMap` in M2
flag = flag | (if false then 2 else 0); -- Delete pruned rows and columns
flag = flag | (if false then 4 else 0); -- Only prune -1,+1
flag = flag | (if opts.UnitTest === isScalar then 8 else 0); -- Only prune constants
flag = flag | (if false then 16 else 0); -- Only prune functions with constants
flag = flag | (if false then 32 else 0); -- Pruning for maximal ideal
flag = flag | (if false then 64 else 0); -- Pruning for prime ideal
flag = flag | (if true then 1024 else 0); -- Prune sparsest unit first
flag = flag | (if false then 2048 else 0); -- Prune best matrix first
flag = flag | (if opts.Direction === "right" then 65536 else 0); -- Prune the matrices in reverse order
-- create the raw chain complex
if debugLevel >= 2 then << "Using enginePruneComplex." << endl;
A := rawMutableComplex(C/raw//toSequence);
if debugLevel >= 2 then << A << endl;
L := rawPruneBetti(A, nsteps, flag) // sum;
-- prune the raw chain complex
rawPruneComplex(A, nsteps, flag);
if debugLevel >= 2 then << A << endl;
B := rawPruneBetti(A, nsteps, flag);
-- trim the complex
D := apply(length C, i -> submatrix(C#i, 0..B#i-1, 0..B#(i+1)-1));
if debugLevel >= 2 then << L - B//sum << endl;
-- retrieve the pruning maps
M := null;
if flag & 1 == 1 then M = rawPruningMorphism(A, nsteps, flag)/map_R;
(D, M)
)
--================================= Testing and Checking Operations =================================--
-- Checks that source phi is quasi-isomorphic to target phi
-- Source: ChainComplexExtras.m2
isQuasiIsomorphism = method(Options => {LengthLimit => infinity})
isQuasiIsomorphism ChainComplexMap := Boolean => opts -> phi -> (
C := cone phi;
if all((min C,min(max C, opts.LengthLimit)), i -> (prune HH_i(C) == 0)) then true else false
)
-- Checks that C is a resolution of N
isQuasiIsomorphism(ChainComplex, Ideal) := Boolean => opts -> (C, I) -> isQuasiIsomorphism(C, coker gens I)
isQuasiIsomorphism(ChainComplex, Module) := Boolean => opts -> (C, N) -> (
R := ring N;
D := chainComplex map(N, R^0, 0);
if C == 0 then return D == 0;
M := {map(D_0, C_0, 1)} | for i from 1 to max(length C, length D) list map(D_i, C_i, 0);
isQuasiIsomorphism map(D, C, i -> M#i)
)
-- Checks that C is an acyclic chain complex
isAcyclic = C -> isQuasiIsomorphism(C, 0)
-- Checks whether there are any more units are left in the complex
-- Note: this only implies that the resolution is minimal in the local and graded case
isMinimal = method(Options => options findUnit)
isMinimal Matrix :=
isMinimal MutableMatrix := Boolean => opts -> M -> 0 == #findAllUnits(M, opts)
isMinimal ChainComplex := Boolean => opts -> C -> (
if any(length C + 1, i -> not isMinimal(matrix (C.dd_i), opts)) then false else true
)
-- Checks commutativity of chain complexes C and D with chain complex map M
isCommutative ChainComplexMap := Boolean => f -> (
D := source f;
C := target f;
for i from 1 to max(length C, length D) do
if C.dd_i * f_i - f_(i-1) * D.dd_i != 0 then
return false;
true
)
load ("./PruneComplex/tests.m2")
beginDocumentation()
load ("./PruneComplex/doc.m2")
end--
|