1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077
|
-- In this file, we include Macaulay2 code which verifies the examples
-- of the paper. The main emphasis is on codim 4, Arithmetically Gorenstein
-- ideals, of regularity 4.
newPackage(
"QuaternaryQuartics",
Version => "0.99",
Date => "11 Nov 2021",
Headline => "code to support the paper 'Quaternary Quartic Forms and Gorenstein Rings'",
Authors => {
{Name => "Gregorz Kapustka"},
{Name => "Michal Kapustka"},
{Name => "Kristian Ranestad"},
{Name => "Hal Schenck"},
{Name => "Mike Stillman",
Email => "mike@math.cornell.edu",
HomePage => "http://www.math.cornell.edu/~mike"},
{Name => "Beihui Yuan"}
},
PackageExports => {
"InverseSystems", -- used in 'quartic'
"StronglyStableIdeals", -- used in 'nondegenerateBorels'
"GroebnerStrata"
},
AuxiliaryFiles => true,
DebuggingMode => false
)
export {
"quarticType",
"randomBlockMatrix",
"randomHomomorphism",
"pointsIdeal", -- pointsIdeal Matrix -- uses the ring of the matrix.
"randomPoints", -- matrix whose columns are random points
"Count",
"Normalize",
"nondegenerateBorels",
"doubling",
"quartic",
"smallerBettiTables",
"bettiStrataExamples"
}
randomBlockMatrix = method()
randomBlockMatrix(List, List, List) := (tar, src, mats) -> (
if #tar == 0 or #src == 0 then error "expected lists of free modules";
if not all(tar, x -> instance(x, Module))
or
not all(src, x -> instance(x, Module))
then error "expected lists of free modules";
R := ring tar_0;
if not all(tar, x -> ring x === R)
or
not all(src, x -> ring x === R)
then error "expected lists of free modules over a common ring";
nrowblocks := #tar;
ncolblocks := #src;
if #mats != nrowblocks or not all(mats, r -> #r == ncolblocks)
then error "wrong number of matrices given";
matrix for i from 0 to nrowblocks-1 list
for j from 0 to ncolblocks-1 list (
if mats#i#j === random then random(tar#i, src#j)
else map(tar#i, src#j, mats#i#j)
-- else if mats#i#j === 0 then map(tar#i, src#j, 0)
-- else if mats#i#j === 1 then map(tar#i, src#j, 1)
)
)
random(List, Ideal) :=
random(ZZ, Ideal) := RingElement => opts -> (d, I) -> (
R := ring I;
b := super basis(d, I);
(b * random(R^(numcols b), R^1))_(0,0)
)
pointIdeal = method()
pointIdeal Matrix := Ideal => (m) -> (
v := transpose vars ring m;
trim minors(2, v|m)
)
pointsIdeal = method()
pointsIdeal Matrix := Ideal => (m) -> (
intersect for i from 0 to numcols m - 1 list pointIdeal(m_{i})
)
pointsIdeal(Ring, Matrix) := Ideal => (S, mkk) -> (
m := mkk ** S;
intersect for i from 0 to numcols m - 1 list pointIdeal(m_{i})
)
pointsIdeal(Matrix, Ring) := Ideal => (mkk, S) -> pointsIdeal(S, mkk)
randomPoints = method(Options => {Normalize => false})
randomPoints(Ring, ZZ, ZZ) := Matrix => opts -> (kk, n, d) -> (
-- n is the number of variables
-- d is the number of points
-- returns a d by n matrix over kk.
if not opts.Normalize then return random(kk^n, kk^d);
I := id_(kk^n) | matrix apply(n, i -> {1});
if d <= n+1 then return I_{0..d-1};
rand := random(kk^n, kk^(d-n-1));
I | rand
)
randomPoints(Ring, ZZ) := Matrix => opts -> (S, d) -> randomPoints(S, numgens S, d, opts)
randomHomomorphism = method()
randomHomomorphism(List, Module, Module) :=
randomHomomorphism(ZZ, Module, Module) := Matrix => (deg, tar, src) -> (
H := Hom(src, tar);
B := basis(deg, H); -- map HomModule <--- graded free
rand := random(source B, (ring B)^{-deg});
homomorphism(B * rand)
)
nondegenerateBorels = method(Options => {Sort => false})
nondegenerateBorels(ZZ, Ring) := List => opts -> (d, S) -> (
Bs := stronglyStableIdeals(d, S);
Bs = select(Bs, i -> all(i_*, f -> degree f =!= {1}));
if opts.Sort then
Bs = Bs/(i -> ideal sort(gens i, MonomialOrder => Descending, DegreeOrder => Ascending));
Bs
)
doubling = method(Options => {Count => 10})
doubling(ZZ, Ideal) := Ideal => opts -> (deg, I) -> (
c := codim I;
wR := Ext^c(comodule I, ring I);
H := Hom(wR, comodule I);
count := 0;
while count < opts.Count do (
f := randomHomomorphism(deg, comodule I, wR);
if ker f == 0 then (
if debugLevel > 0 then (
if count == 1 then << "took 1 try" << endl;
if count > 1 then << "took " << count << " tries" << endl;
);
return trim ideal presentation coker f;
);
count = count+1;
);
null
);
quartic = method()
quartic(Matrix, Ring) := RingElement => (pts, S) -> (
if numgens S =!= numrows pts then error ("expected a matrix with "|toString numgens S|" rows");
linforms := flatten entries((vars S) * pts);
sum for ell in linforms list ell^4
)
quartic Matrix := RingElement => (pts) -> quartic(pts, ring pts)
bettiType = method()
bettiType Ideal := (I) -> (
B := betti res(I, DegreeLimit => 2);
B
)
topRow = method()
topRow BettiTally := List => B -> (
for i from 1 to 3 list if B#?(i, {i+1}, i+1) then B#(i, {i+1}, i+1) else 0
)
quarticType = method()
quarticType RingElement := String => F -> (
-- returns either "[has linear form]", or one of the 19 strata that this quartic sits on
R := ring F;
if numgens R =!= 4 then error "expected a polynomial ring in 4 variables";
if degree F =!= {4} then error "expected a quartic polynomial";
I := trim inverseSystem F;
if any(I_*, f -> degree f === {1}) then return "[has linear form]";
Q := ideal select(I_*, f -> degree f === {2}); -- quadratic part
CQ := res Q;
twolinear := topRow betti CQ;
if twolinear === {3,0,0} then (
-- 3 possible types: abc.
if codim Q === 2 then
"[300c]"
else if codim Q === 3 then
"[300ab]" -- how to detect the difference?
else
error "internal error: should not reach this line"
)
else if twolinear === {4,4,1} then (
syz2 := ideal CQ.dd_3_{0};
if codim syz2 === 3 then
"[441a]"
else if codim syz2 === 4 then
"[441b]"
)
else -- the easy case: the quadric strand determines the type
"["|twolinear#0|twolinear#1|twolinear#2|"]"
)
-- Keep this??
kustinMiller = () -> (
kk := ZZ/32003;
a := getSymbol "a";
v := getSymbol "v";
x := getSymbol "x";
S := kk[a_(1,1)..a_(3,4), v, x_1..x_4, Degrees => {12:1, 2, 4:1}] ;
M := transpose genericMatrix(S, S_0, 4, 3);
xvec := genericMatrix(S, S_13, 4, 1);
xvec2 := transpose matrix{{S_16, -S_15, S_14, -S_13}};
M3 := exteriorPower(3, transpose M);
ideal(M*xvec) + ideal(S_12*xvec2 + M3)
)
bettiStrataExamples = method()
bettiStrataExamples Ring := HashTable => (kk) -> new HashTable from {
"[683]" => {randomPoints(kk, 4, 4, Normalize => true), "4 general points"},
"[550]" => {randomPoints(kk, 4, 5, Normalize => true), "5 general points"},
"[420]" => {randomPoints(kk, 4, 6, Normalize => true), "6 general points"},
"[300a]" => {transpose matrix{{1,2,3,1},{1,2,3,-1},{1,2,-3,1},{1,2,-3,-1},{1,-2,3,1},{1,-2,3,-1},{1,-2,-3,1},{1,-2,-3,-1}}**kk, "8 points which forms a CI"},
"[300b]" => {randomPoints(kk, 4, 7, Normalize => true), "7 general points"},
"[300c]" => {transpose matrix{{1,0,0,0},{0,1,0,0},{1,1,0,0}}|randomPoints(kk,4, 4, Normalize => false), "7 points, 3 on a line"},
"[200]" => {randomPoints(kk, 4, 8, Normalize => true), "8 general points"},
"[100]" => {randomPoints(kk, 4, 9, Normalize => true), "9 general points"},
"[000]" => {randomPoints(kk, 4, 10, Normalize => true), "10 general points"},
"[562]" => {id_(kk^4) | transpose matrix{{1,1,0,0}}, "5 points, 3 on a line"},
"[551]" => {id_(kk^4) | transpose matrix{{1,1,1,0}}, "5 points, 4 on a plane"},
"[430]" => {id_(kk^4) | transpose matrix{{1,1,0,0}, {1,0,1,1}}, "6 points, 3 on a line"},
"[441a]" => {id_(kk^4) | transpose matrix{{1,1,0,0}, {1,0,1,0}}, "6 points, 5 on a plane"},
"[441b]" => {id_(kk^4) | transpose matrix{{1,1,0,0}, {0,0,1,1}}, "6 points, 3 each on 2 skew lines"},
"[320]" => {id_(kk^4) | transpose matrix{{1,1,0,0}, {1,0,1,0}, {1,0,0,1}}, "7 points on a twisted cubic curve"},
"[310]" => {id_(kk^4) | transpose matrix{{1,1,1,0}, {1,1,1,1}, {1,0,0,1}}, "7 points with 5 on a plane"},
"[331]" => {id_(kk^4) | (randomPoints(kk, 3, 3)||matrix{{0,0,0}}), "7 points with 6 on a plane"},
"[210]" => {id_(kk^4) | transpose matrix{
{1,1,0,0}, {1,0,1,0}, {0,1,1,0}, {1,1,1,1}}, "8 points with 6 in a plane, or five in a plane and three in a line"}
}
smallerTables1 = (B, k) -> (
-- B: BettiTally
-- k: (i,{d},d), an entry in B, such that (i+1,{d},d) occurs
ell := (k#0+1, k#1, k#2);
a := B#k;
b := B#ell; -- this is assumed to exist
r := min(a,b);
others := select(pairs B, x -> x#0 =!= k and x#0 =!= ell);
for n from 0 to r list (
these := others;
if a - n > 0 then these = these | {(k, a - n)};
if b - n > 0 then these = these | {(ell, b - n)};
new BettiTally from these
)
)
smallerBettiTables = method()
smallerBettiTables BettiTally := (B) -> (
-- first find the spots where there could be cancellation
nonminimals := for k in keys B list (
(i,d,j) := k;
if B#?(i+1,d,j) then k else continue
);
Bs := {B};
for k in nonminimals do (
Bs = flatten for B in Bs list smallerTables1(B, k);
);
Bs
)
-* Documentation section *-
beginDocumentation()
load "./QuaternaryQuartics/Section1Doc.m2"
load "./QuaternaryQuartics/Section2Doc.m2"
load "./QuaternaryQuartics/Section3Doc.m2"
load "./QuaternaryQuartics/Section4Doc.m2"
load "./QuaternaryQuartics/Section5Doc.m2"
load "./QuaternaryQuartics/Section6Doc.m2"
load "./QuaternaryQuartics/Section7Doc.m2"
load "./QuaternaryQuartics/Section8Doc.m2"
load "./QuaternaryQuartics/Section9Doc.m2"
load "./QuaternaryQuartics/Appendix2.m2"
doc ///
Key
QuaternaryQuartics
Headline
code to support the paper 'Quaternary Quartic Forms and Gorenstein Rings'
Description
Text
This package contains code and examples for the paper @TO "[QQ]"@
{\it Quaternary Quartic Forms and Gorenstein Rings},
by Grzegorz Kapustka,
Michal Kapustka, Kristian Ranestad, Hal Schenck, Mike
Stillman and Beihui Yuan, referenced below.
We study the space of quartic forms in four variables,
interleaving the notions of: rank, border rank,
annihilator of the quartic form, Betti tables, and Calabi-Yau varieties
of codimension 4.
Text
@SUBSECTION "Section 1: Generating the Betti tables"@
Text
@UL {
TO "Finding the 16 betti tables possible for quartic forms in 4 variables, and examples"
}@
Text
@SUBSECTION "Section 2: Basic constructions"@
Text
@UL {
TO "Doubling Examples",
TO "Doubling Examples for ideals of 6 points",
TO "Example Type [300a]",
TO "Example Type [300b]",
TO "Example Type [300c]"
}@
Text
@SUBSECTION "Section 3: betti tables for points in P^3 with given geometry"@
Text
@UL {
TO "Finding the possible betti tables for points in P^3 with given geometry"
}@
Text
@SUBSECTION "Section 4: the quadratic part of the apolar ideal"@
Text
@UL {
TO "Finding all possible betti tables for quadratic component of inverse system for quartics in 4 variables"
}@
Text
@SUBSECTION "Section 5: VSP(F,9) for a general quadric form of rank 9"@
Text
@UL {
TO "VSP(F_Q,9)"
}@
Text
@SUBSECTION "Section 6: Stratification of the space of quaternary quartics"@
Text
@UL {
TO "Finding the Betti stratum of a given quartic",
TO "Noether-Lefschetz examples"
}@
Text
@SUBSECTION "Section 7: Codimension three varieties in quadrics"@
Text
@UL {
TO "Pfaffians on quadrics"
}@
Text
@SUBSECTION "Section 8: Irreducible liftings"@
Text
@UL {
TO "Type [000], CY of degree 20",
TO "Singularities of lifting of type [300b]",
TO "Half canonical degree 20"
}@
Text
@SUBSECTION "Section 9: Construction and lifting of AG varieties"@
Text
@UL {
TO "Type [210], CY of degree 18 via linkage",
TO "Type [310], CY of degree 17 via linkage",
TO "Type [331], CY of degree 17 via linkage",
TO "Type [420], CY of degree 16 via linkage",
TO "Type [430], CY of degree 16 via linkage",
TO "Type [441a], CY of degree 16",
TO "Type [441b], CY of degree 16",
TO "Type [551], CY of degree 15 via linkage",
TO "Type [562] with lifting of type I, a CY of degree 15 via linkage",
TO "Type [562] with a lifting of type II, a CY of degree 15 via linkage"
}@
Text
@SUBSECTION "Appendix 2: Components of the Betti table loci in Hilbert schemes of points"@
Text
@UL {
TO "Hilbert scheme of 6 points in projective 3-space"
}@
References
@TO "[QQ]"@ {\it Quaternary Quartic Forms and Gorenstein Rings},
by Grzegorz Kapustka,
Michal Kapustka, Kristian Ranestad, Hal Schenck, Mike
Stillman and Beihui Yuan. (arxiv:2111.05817) 2021.
SeeAlso
///
doc ///
Key
"[QQ]"
Headline
Quaternary Quartic Forms and Gorenstein rings (Kapustka, Kapustka, Ranestad, Schenck, Stillman, Yuan, 2021)
Description
Text
[QQ] @arXiv("2111.05817", "Quaternary Quartic Forms and Gorenstein Rings")@
by Grzegorz Kapustka,
Michal Kapustka, Kristian Ranestad, Hal Schenck, Mike
Stillman and Beihui Yuan, 2021.
///
doc ///
Key
bettiStrataExamples
(bettiStrataExamples, Ring)
Headline
a hash table consisting of examples for each of the 19 Betti strata
Usage
bettiStrataExamples S
Inputs
S:Ring
a polynomial ring with 4 variables
Outputs
:HashTable
Whose keys are strings representing each Betti table strata, and
whose values are matrices of scalars over the ring $S$
Description
Text
The result is a hash table whose keys are the names of the
19 Betti table strata for quaternary quartics. For each, the
value is a matrix whose columns represent points. The quartic
corresponding to this matrix is the sum of the 4th powers of the
corresponding linear forms.
Example
S = ZZ/101[a..d]
bettiStrataExamples S
Caveat
SeeAlso
///
doc ///
Key
randomBlockMatrix
(randomBlockMatrix, List, List, List)
Headline
create a block matrix with zero, identity and random blocks
Usage
randomBlockMatrix(tarList, srcList, mats)
Inputs
tarList:List
a non-empty list of modules over a ring $R$
srcList:List
a non-empty list of modules over the same ring $R$
mats:List
of lists, of length = number of elements in the tarList, and
each list has {\tt #srcList} entries
Outputs
:Matrix
Description
Text
This function creates a block matrix with the block sizes (and degrees) determined by
the modules in {\tt tarList} and {\tt srcList}.
Each entry in the {\tt mats} matrix indicates what should be placed at that block of the matrix:
mats#r#c corresponds to a matrix with target tarList#r, and source srcList#c.
Each entry can be: {\tt random} (giving a block
which is random), the number 0 (a zero block), the number
1 (an identity block), or an actual matrix.
Example
S = ZZ/101[a..d]
randomBlockMatrix({S^3, S^1}, {S^3, S^1}, {{random, random}, {0, 1}})
Example
S = ZZ/101[a..d]
randomBlockMatrix({S^3, S^2}, {S^3, S^2, S^{2:-1}}, {{random, random, 0}, {0, 1, random}})
SeeAlso
(random, Module, Module)
///
undocumented {
(pointsIdeal, Matrix, Ring)
}
doc ///
Key
pointsIdeal
(pointsIdeal, Matrix)
(pointsIdeal, Ring, Matrix)
Headline
create an ideal of points
Usage
pointsIdeal M
pointsIdeal(R, M)
Inputs
M:Matrix
of size $m \times n$, either over the coefficient ring of $R$, or a polynomial ring $R$
with $m$ variables
R:Ring
either the ring of $M$, or a polynomial ring with $m$ variables with coefficient ring the ring
of $M$
Outputs
:Ideal
the homogeneous ideal in $R$ of the points which are the columns of $M$
Description
Text
In this example, we find the ideal of 6 general points in $\PP^3$. Since they are general, we
can set the first 5 points to be in standard position (the coordinate points,
and the point with all coordinates being 1).
Example
S = ZZ/32003[a..d]
M = randomPoints(S, 6, Normalize => true)
I = pointsIdeal M
betti res I
SeeAlso
randomPoints
///
doc ///
Key
randomPoints
(randomPoints, Ring, ZZ, ZZ)
(randomPoints, Ring, ZZ)
[randomPoints, Normalize]
Headline
create a matrix whose columns are random points
Usage
randomPoints(kk, m, n)
randomPoints(S, n)
Inputs
S:Ring
with $m$ variables
kk:Ring
a field
m:ZZ
number of variables (rows)
n:ZZ
the number of points (columns)
Normalize => Boolean
whether to set the first $m+1$ to be the coordinate points
and the point whose coordinates are all one
Outputs
M:Matrix
of size $(m \times n)$ over the ring $S$ or $kk$ consisting of (random scalars)
Description
Text
There are two usages of this function. The first creates a matrix over a base field.
This is not much different from using {\tt random(kk^m, kk^n)}, unless the Normalize
option is given, in which case the first set of points are normalized to be the
coordinate points and the point each of whose coordinates are 1.
Example
kk = ZZ/101;
randomPoints(kk, 5, 10)
randomPoints(kk, 5, 10, Normalize => true)
Text
The second version is perhaps used the most in this package.
One can leave out the number of variables/rows if the ring given is a polynomial ring.
Example
S = kk[a..d];
M1 = randomPoints(S, 10)
M2 = randomPoints(S, 6, Normalize=>true)
pointsIdeal M1
pointsIdeal M2
Text
Another useful way to generate a matrix of points is to use
@TO randomBlockMatrix@.
For example, the following creates the ideal of 6 points, 3 on one line
and 3 on a skew line.
Example
M3 = randomBlockMatrix({S^2, S^2}, {S^3, S^3}, {{random, 0}, {0, random}})
pointsIdeal M3
SeeAlso
pointsIdeal
random
(random, List, Ideal)
randomBlockMatrix
randomHomomorphism
///
doc ///
Key
randomHomomorphism
(randomHomomorphism, ZZ, Module, Module)
(randomHomomorphism, List, Module, Module)
Headline
create a random homomorphism between graded modules
Usage
randomHomomorphism(d, N, M)
Inputs
d:List
or an integer, if the common ring $R$ of $M$ and $N$ is singly graded
N:Module
the target module
M:Module
the source module
Outputs
:Matrix
a random $R$-module homomorphism from $M$ to $N$ of degree $d$
Description
Text
This function can be useful to find isomorphisms between modules
(since if there is an isomorphism, a random map between them will be
such an isomorphism), as well as writing the canonical module as an ideal
(up to degree shift) in the ring.
We start with a simpler application: duplicating the work of the simpler function
@TO (random, ZZ, Ideal)@. Here are two ways to get a random element of degree 4
in the ideal $I$.
Example
S = ZZ/101[a..d]
I = monomialCurveIdeal(S, {2,5,9})
g = randomHomomorphism({4}, module I, S^1)
isWellDefined g
super g
J = ideal image g
random(4, I)
Text
One important application of this function is to find
an isomorphism of the canonical module of $R = S/I$
with an ideal $J \subset R$, up to a degree twist.
See @TO doubling@ for a function which uses this
method.
Example
R = S/I
E = Ext^2(comodule I, S^{{-4}})
ER = E ** R
isHomogeneous ER
f = randomHomomorphism(3, R^1, ER)
isWellDefined f
source f == ER
target f == R^1
degree f == {3}
ker f == 0
J = ideal image f
SeeAlso
random
(random, ZZ, Ideal)
randomBlockMatrix
randomPoints
///
doc ///
Key
(random, List, Ideal)
(random, ZZ, Ideal)
Headline
a random ring element of a given degree
Usage
random(d, I)
Inputs
d:List
or @ofClass ZZ@, if the ring of $I$ is singly graded
I:Ideal
homogeneous
Outputs
:RingElement
a random element in the ideal of the given degree
Description
Text
This function should probably be in the Core of Macaulay2.
Example
S = ZZ/101[a..d]
I = ideal(a^2, a*b^3, c*d)
f = random(3, I)
f % I == 0 -- so f is in the ideal I
degree f == {3}
SeeAlso
random
randomBlockMatrix
randomHomomorphism
randomPoints
///
doc ///
Key
nondegenerateBorels
(nondegenerateBorels, ZZ, Ring)
[nondegenerateBorels, Sort]
Headline
construct all nondegenerate strongly stable ideals of given length
Usage
nondegenerateBorels(d, S)
Inputs
d:ZZ
the length of the desired ideals in S$
S:Ring
a polynomial ring
Sort => Boolean
whether to sort the generators of each ideal in a slightly more natural way
Outputs
:List
of all strongly stable ideals in $S$ which are saturated, are (affine) dimension one,
have degree $d$, and have no linear forms in their ideal
Description
Text
This is a simplified interface to the @TO StronglyStableIdeals$stronglyStableIdeals@ function.
For example, the following are all of the strongly stable ideals with degree 7, and their Betti
tables.
Example
S = ZZ/101[a..d];
Bs = nondegenerateBorels(7, S);
netList Bs
netList pack(4, Bs/minimalBetti)
Text
Using the {\tt Sort} option as follows gives a somewhat more natural ordering. Sometimes
computations involving the groebnerSratum ideal will be either much faster or
slower with this option. But it is often worth trying it both ways, if your computations
are slow.
Example
Bs2 = nondegenerateBorels(7, S, Sort => true);
netList Bs2
Text
This is a convenience function. Here is the simple code:
Example
code methods nondegenerateBorels
SeeAlso
random
randomBlockMatrix
randomHomomorphism
randomPoints
///
doc ///
Key
smallerBettiTables
(smallerBettiTables, BettiTally)
Headline
Find all (potentially) smaller Betti tables that could degenerate to given table
Usage
smallerBettiTables B
Inputs
B:BettiTally
a possible table of some (singly) graded module
Outputs
:List
a list of all Betti tables where cancellation could possibly occur
Description
Text
Given a complex over a graded ring, with Betti table $B$, whenever there is an
entry of degree zero, if that entry is nonzero, then one can use that as a pivot,
and cancel that row and column
creating a smaller complex. This function returns the Betti tables of all possible
such cancellations that may be able to occur. Some of these might not be valid for
actual complexes, as one might obtain a complex with no non-zero scalar entries.
But, the list of every smaller Betti table that could possibly be the minimal Betti diagram
of such a module is returned.
Example
S = ZZ/101[a..d]
I = ideal(a*c, a*b, a^2, c^3, b*c^2, b^2*c, b^3)
B = betti res I
smallerBettiTables B
netList pack(4, oo)
Text
Note that from the Betti table there are 2 maps of degree 0. The first is a $4 \times 3$
matrix, and the second is a $7 \times 1$ matrix. There are 4 possible ranks for the first matrix,
and 2 for the second, giving 8 Betti tables in the result. No further
knowledge is used to remove possible tables from the output list.
Text
All actual Betti diagrams of ideals with $I$ as its initial ideal will be among this list.
Clearly, some of these cannot occur. The ones indexed 2, 4 and 6 cannot occur.
One can use the package @TO "GroebnerStrata"@ to help determine which can possibly occur.
SeeAlso
nondegenerateBorels
"GroebnerStrata::GroebnerStrata"
///
doc ///
Key
doubling
(doubling, ZZ, Ideal)
[doubling, Count]
Headline
implement the doubling construction
Usage
doubling(d, I)
Inputs
d:ZZ
the degree of the map
I:Ideal
homogeneous, in a singly graded polynomial ring $S$
Count => ZZ
number of random maps to generate before giving up
and returning null
Outputs
:Ideal
an ideal $J$ containing $I$ such that the canonical module of $S/I$ is $J/I \otimes S(-d)$,
or null, if either one doesn't exist or one cannot be found
Description
Text
Let $R = S/I$, and $w_R = \operatorname{Ext}^c(R, S^{-n-1})$, where $c$ is the codimension
of $I$ and $n+1$ is the number of variables of the polynomial ring $S$.
If there exists an injective homomorphism $f \colon w_R \to R$ of degree $d$, this
function returns the ideal defining the cokernel of a random such map. If none exist, null is returned. If after
trying the number of trials given by the optional argument {\tt Count}, none that
are injective can be found (this is very unlikely), null is also returned.
Setting the global variable @TO "debugLevel"@ to a positive value will let you know
how many times it took to find one (if it didn't find it right away).
If $S/I$ is arithmetically Cohen-Macaulay of codimension $c$, then the cokernel of $f$
will be arithmetically Gorenstein of codimension $c+1$.
See section 2.5 of @TO "[QQ]"@ for more details and references.
Example
S = ZZ/101[a..d];
I = pointsIdeal randomPoints(S, 6)
betti res I
doubling(5, I)
J = doubling(8, I)
betti res J
Text
Here are some doublings of the Veronese surface
Example
S = ZZ/101[x_0..x_5];
M = genericSymmetricMatrix(S, 3)
I = trim minors(2, M)
doubling(4, I) -- no such map exists
betti res doubling(6,I)
betti res doubling(7,I)
betti res doubling(8,I)
J = doubling(8, I);
(dim J, degree J)
(dim I, degree I)
Example
S = ZZ/101[x_0..x_8];
M = genericMatrix(S, 3, 3)
I = trim minors(2, M)
betti res doubling(8,I)
J = doubling(8, I);
(dim J, degree J)
(dim I, degree I)
SeeAlso
randomHomomorphism
///
doc ///
Key
(quarticType, RingElement)
quarticType
Headline
the Betti stratum a specific quartic lies on
Usage
quarticType F
Inputs
F:RingElement
A homogeneous quartic polynomial in a polynomial ring $S$ in 4 variables
(over a field)
Outputs
:String
one of the strings: [has linear form],
[000], [100], [200], [210], [300ab], [300c],
[310], [320], [331], [420], [430], [441a], [441b],
[550], [551], [562], [683].
Description
Text
If the inverse system $F^\perp$ of $F$ contains a
linear form, then [has linear forms] is returned.
There are 19 strata for $F$ which do not
have a linear form in their inverse system. This function
determines which one of these 19 strata the quartic lives
on. However, it cannot distinguish easily between [300a]
and [300b], so instead it returns [300ab] in this case.
Note that the function can detect [300c], as this is the situation
when the 3 quadrics are not a complete intersection (instead, they
form the ideal of a length 7 subscheme of $\PP^3$).
All other cases can be determined by the free resolution
of the ideal of quadrics in the inverse system $F^\perp$,
although in cases [300abc] and [441ab], a slightly finer
analysis must be made, which depends on the syzygies of
the quadratic ideal.
See section 6 of [QQ] for the inclusion relations on the closures of these
strata, and their dimensions.
The 2 cases that cannot be determined easily are [300a] and [300b].
The inverse system $F^\perp$ has 3 quadric generators in each case.
However, in one case the quartic has rank 7 (this is the case [300b], and the other case [300a], the quadric
generally has rank 8). This is subtle information, which we do not try to compute here.
Example
S = ZZ/101[a..d]
H = bettiStrataExamples S
keys H
netList for k in sort keys H list (
F := quartic first H#k;
{k, minimalBetti inverseSystem F, quarticType F}
)
quarticType(a^4 + b^4 + c^4 + d^4 - 3*a*b*c*d)
quarticType(a*b*c*d)
SeeAlso
bettiStrataExamples
quartic
///
doc ///
Key
quartic
(quartic, Matrix)
(quartic, Matrix, Ring)
Headline
a quartic given by power sums of linear forms
Usage
quartic M
quartic(M, S)
Inputs
M:Matrix
A matrix of scalars, over a ring $S$, or a field
S:Ring
A polynomial ring with the same number of variables as the number of rows of $M$.
If not given, $S$ is taken to be the ring of $M$.
Outputs
:RingElement
A homogeneous quartic polynomial in $S$
Description
Text
One useful way to generate quartic polynomials is as a sum
of 4th powers of linear forms. This function creates an
linear form from each column of the matrix $M$, and then sums their 4th powers.
Example
S = ZZ/101[a..d]
M = transpose matrix(S, {{1,0,0,0}, {0,1,0,0}})
quartic M
Example
H = bettiStrataExamples S
keys H
M = first H#"[420]"
F = quartic M
Text
This is a convenience function. This is basically
short hand for the following (which computes the
linear forms corresponding to each column of $M$,
and then sums their 4th powers.
Example
lins := flatten entries((vars S) * M)
F1 = sum for g in lins list g^4
F1 == F
Example
I = inverseSystem F
(degree I, codim I, regularity(S^1/I))
minimalBetti I
SeeAlso
(inverseSystem, RingElement)
bettiStrataExamples
///
doc ///
Key
Normalize
Headline
an option name
Description
Text
Used in @TO randomPoints@.
///
doc ///
Key
Count
Headline
an option name
Description
Text
Used in @TO doubling@.
///
TEST ///
-*
restart
needsPackage "QuaternaryQuartics"
*-
S = ZZ/101[a..d]
M = randomPoints(S, 7)
assert(numrows M === 4 and numcols M === 7 and ring M === S)
assert(source M == S^7 and target M == S^4)
assert(isHomogeneous M)
S = QQ[a..d]
M = randomPoints(S, 7)
assert(numrows M === 4 and numcols M === 7 and ring M === S)
assert(source M == S^7 and target M == S^4)
assert(isHomogeneous M)
S = (ZZ/101[t])[a..d, Join => false]
M = randomPoints(S, 7) -- notice no t's though
assert(numrows M === 4 and numcols M === 7 and ring M === S)
assert(source M == S^7 and target M == S^4)
assert(isHomogeneous M)
kk = ZZ/101
S = kk[a..d]
M = transpose matrix(S, {
{1,1,1,1}, {1,2,4,8}, {1,3,9,27}, {1,4,16,64}, {1,5,25,125}})
I = pointsIdeal M
assert(degree I == 5)
assert(regularity I == 3)
assert(dim I == 1)
M = transpose matrix(kk, {
{1,1,1,1}, {1,2,4,8}, {1,3,9,27}, {1,4,16,64}, {1,5,25,125}})
I = pointsIdeal(M, S)
I1 = pointsIdeal(S, M)
I2 = pointsIdeal(M ** S)
assert(I == I1)
assert(I1 == I2)
assert(degree I == 5)
assert(regularity I == 3)
assert(dim I == 1)
///
TEST ///
S = ZZ/101[a..e]
M = randomBlockMatrix({S^2, S^3}, {S^4, S^5}, {{random, 0}, {random, random}})
I = pointsIdeal M
assert(degree I == 9 and dim I == 1)
assert(numcols syz gens I == 15)
J = doubling(10, I)
assert(degree J == 30 and dim J == 0)
assert(regularity comodule J == 5)
assert(pdim comodule J == 5)
///
TEST ///
S = ZZ/101[a..d]
Bs = nondegenerateBorels(10, S)
assert(#Bs == 14)
for i in Bs do assert(degree i == 10 and isBorel monomialIdeal i)
S = ZZ/101[a..f]
Bs = nondegenerateBorels(10, S);
assert(#Bs == 7)
for i in Bs do assert(degree i == 10 and isBorel monomialIdeal i)
S = QQ[a..f]
Bs = nondegenerateBorels(10, S);
assert(#Bs == 7)
for i in Bs do assert(degree i == 10 and isBorel monomialIdeal i)
///
TEST ///
S = ZZ/101[a..d]
H = bettiStrataExamples S
for k in keys H do (
M = first H#k;
F = quartic M;
assert(degree F === {4});
assert(quarticType F === k or k === "[300a]" or k === "[300b]");
if k === "[300a]" then assert(quarticType F === "[300ab]");
if k === "[300b]" then assert(quarticType F === "[300ab]");
)
///
TEST ///
S = ZZ/101[a..d]
H = bettiStrataExamples S
I = inverseSystem quartic first H#"[551]"
B = betti res I
assert(# smallerBettiTables B == 16)
///
TEST ///
kk = ZZ/101
S = kk[a..d]
H = bettiStrataExamples S
K = sort keys H
F4 = hashTable for k in sort keys H list k => quartic(H#k#0, S)
pts4 = hashTable for k in keys F4 list k => pointsIdeal(S, first H#k)
I4 = hashTable for k in keys F4 list k => inverseSystem F4#k
B4 = hashTable for k in keys F4 list k => betti res inverseSystem F4#k
netList pack(4, sort pairs oo)
I4 = (pairs pts4)//sort/last
I4_0
assert(doubling(-2, I4_1) === null)
L = for i from 6 to 8 list (a := doubling(i, I4_0); if a === null then continue else i => a)
assert(#L == 2)
assert(L/first == {7,8})
for k in sort keys H list k => minimalBetti doubling(8, pts4#k)
///
end--
-* Development section *-
restart
debug needsPackage "QuaternaryQuartics"
check "QuaternaryQuartics"
restart
installPackage "GroebnerStrata"
uninstallPackage "QuaternaryQuartics"
restart
installPackage "QuaternaryQuartics"
viewHelp "QuaternaryQuartics"
check QuaternaryQuartics
|