1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
|
newPackage(
"RandomGenus14Curves",
Version => "0.6",
Date => "March 4, 2011",
Authors => {{Name => "Frank-Olaf Schreyer",
Email => "schreyer@math.uni-sb.de",
HomePage => "http://www.math.uni-sb.de/ag/schreyer/"},
{Name => "Hans-Christian Graf v. Bothmer",
Email => "bothmer@uni-math.gwdg.de",
HomePage => "http://www.crcg.de/wiki/User:Bothmer"}
},
Headline => "random smooth curves of genus 14",
Keywords => {"Examples and Random Objects"},
PackageExports => {"RandomObjects"},
PackageImports => {"Truncations"},
DebuggingMode => false
)
if not version#"VERSION" >= "1.4" then error "this package requires Macaulay2 version 1.4 or newer"
export{
"randomCurveGenus14Degree18inP6",
"randomCurveGenus8Degree14inP6",
"randomCanonicalCurveGenus8with8Points",
"curveGenus14Degree18inP6",
"canonicalCurveGenus14"
}
randomCanonicalCurveGenus8with8Points = method()
randomCanonicalCurveGenus8with8Points PolynomialRing := R ->(
--Input: R a polynomial ring in 8 variables,
--Output: a pair of an ideal of a canonical curve C
-- together with a list of ideals of 8 points
--Method: Mukai's structure theorem on genus 8 curves.
-- Note that the curves are have general Clifford index.
FF:=coefficientRing R;
p:=symbol p;
-- coordinate ring of the Plücker space:
P:=FF[flatten apply(6,j->apply(j,i->p_(i,j)))];
skewMatrix:=matrix table(6,6,
(i,j) -> (
if i<j then p_(i,j)
else if i>j then -p_(j,i)
else 0_P));
-- ideal of the Grassmannian G(2,6):
IGrass:=pfaffians(4,skewMatrix);
points:=apply(8,k->exteriorPower(2,random(P^2,P^6)));
ideals:=apply(points,pt->ideal( vars P*(syz pt**P^{-1})));
-- linear span of the points:
L1 := intersect ideals;
if degree L1 != 8 then return (null,null);
L:= super basis(1,L1);
if dim ideal L != 8 then return (null,null);
phi:=vars P%L; -- coordinates as function on the span
-- actually the last 8 coordinates represent a basis
phi2:= matrix{toList(7:0_R)}|vars R;
-- matrix for map from R to P/IC
IC:=ideal (gens IGrass%L); --the ideal of C on the span
-- obtained as the reduction of the Grassmann equation mod L
IC2:=ideal mingens substitute(IC,phi2);
idealsOfPts:=apply(ideals,Ipt->
ideal mingens ideal sub(gens Ipt%L,phi2));
(IC2,idealsOfPts))
randomCurveGenus8Degree14inP6=method(TypicalValue=>Ideal)
randomCurveGenus8Degree14inP6 PolynomialRing := S -> (
-- Input: S coordinate ring of P^6
-- Output: ideal of a curve in P^6
x:=symbol x;
FF:=coefficientRing S;
R:=FF[x_0..x_7];
(I,points):=randomCanonicalCurveGenus8with8Points(R);
if I === null then return null;
D1:=intersect apply(4,i->points_i); -- divisors of degree 4
D2:=intersect apply(4,i->points_(4+i));
-- compute the complete linear system |K+D1-D2|, note K=H1
H1:=gens D1*random(source gens D1,R^{-1});
E1:=(I+ideal H1):D1; -- the residual divisor
L:=mingens ideal(gens intersect(E1,D2)%I);
if source L != R^{7:-2} then return null;
-- the complete linear system
-- note: all generatore of the intersection have degree 2.
RI:=R/I; -- coordinate ring of C' in P^7
phi:=map(RI,S,substitute(L,RI));
ideal mingens ker phi)
randomCurveGenus14Degree18inP6=method(TypicalValue=>Ideal,Options => {Certify => false})
randomCurveGenus14Degree18inP6 PolynomialRing := opt -> S-> (
-- Input: S PolynomialRing in 7 variables
-- Output: ideal of a curve of genus 14
-- Method: Verra's proof of the unirationality of M_14
IC':=randomCurveGenus8Degree14inP6(S);
if IC'===null then return null;
-- Choose a complete intersection:
CI:=ideal (gens IC'*random(source gens IC',S^{5:-2}));
IC:=CI:IC'; -- the desired residual curve
return IC
)
certifyCurveGenus14Degree18inP6 = method(TypicalValue => Boolean)
certifyCurveGenus14Degree18inP6 (Ideal,PolynomialRing) := (IC,S) -> (
-- check degree, genus and codimension first
if not (degree IC ==18 and codim IC == 5 and genus IC ==14)
then return false;
-- look at the quadrics first
-- (they define a complete intersection by construction)
CI := ideal select(flatten entries mingens IC,i->degree i == {2});
someMinors :=minors(5, jacobian CI);
singCI:=CI+someMinors;
if not (degree singCI==28 and codim singCI==6)
then return false;
someMoreMinors:=minors(5, jacobian (gens IC)_{0..3,5});
singC:=singCI+someMoreMinors;
return (codim singC == 7)
)
--- interface for (random curveGenus14Degree18inP6)
curveGenus14Degree18inP6 = new RandomObject from {
Construction => randomCurveGenus14Degree18inP6,
Certification => certifyCurveGenus14Degree18inP6
}
---------------------------
--- canonical embedding ---
---------------------------
randomCanonicalCurveGenus14 = method(TypicalValue => Ideal,Options => {Certify => false})
-- S : a polynomial Ring with 14 variables
randomCanonicalCurveGenus14 (PolynomialRing) := opt -> (R) -> (
y := local y;
S := coefficientRing(R)[y_0..y_6];
RS := R**S;
I := (random curveGenus14Degree18inP6)(S,Certify=>opt.Certify,Attempts=>1);
fI:=res I;
omegaC:=presentation truncate(0,((coker transpose fI.dd_5)**S^{-7}));
graph:=substitute(vars R,RS)*substitute(omegaC,RS);
J:=saturate(ideal graph,substitute(y_0,RS));
-- does this saturation always work???
I=ideal mingens substitute(J,R);
--genus I==g and degree I == 2*g-2
return I)
certifyCanonicalCurveGenus14 = method(TypicalValue => Boolean)
-- the canonical curve does not need to be certified,
-- since in the construction the smoothness gets already
-- certified by (random curveGenus14Degree18inP6).
certifyCanonicalCurveGenus14 (Ideal,PolynomialRing) := (I,R) -> true
--- interface for (random canonicalCurveGenus14)
canonicalCurveGenus14 = new RandomObject from {
Construction => randomCanonicalCurveGenus14,
Certification => certifyCanonicalCurveGenus14
}
beginDocumentation()
doc ///
Key
RandomGenus14Curves
Headline
Construction of random curves of genus 14
Description
Text
In this package the unirationality construction of the moduli space $M_{14}$ of curves of genus 14 due to Verra is implemented.
The main references are
\ \ \ \ \ [Mu] S. Mukai, Curves, $K3$ surfaces and Fano $3$-folds of genus $\leq 10$. Algebraic geometry and commutative algebra, Vol. I, 357-377, Kinokuniya, Tokyo, 1988.
\ \ \ \ \ [Ve] A. Verra, The unirationality of the moduli spaces of curves of genus 14 or lower. Compos. Math. 141 (2005), no. 6, 1425-1444.
///
doc ///
Key
canonicalCurveGenus14
Headline
compute a random curve of genus 14 in its canonical embedding
Usage
(random canonicalCurveGenus14)(R)
Inputs
R:PolynomialRing
coordinate ring of $\mathbb{P}^13$
Outputs
:Ideal
in R, ideal of the canonical curve
Description
Example
setRandomSeed("alpha");
R=ZZ/101[x_0..x_13];
C=(random canonicalCurveGenus14)(R);
(dim C, degree C, genus C)
///
doc ///
Key
curveGenus14Degree18inP6
Headline
compute a random curve of genus 14 and degree 18 in $\mathbb{P}^6$
Usage
(random curveGenus14Degree18inP6)(R)
Inputs
R:PolynomialRing
coordinate ring of $\PP^6$
Outputs
:Ideal
in R, ideal of the curve
Description
Example
setRandomSeed("alpha");
R=ZZ/101[x_0..x_6];
C=(random curveGenus14Degree18inP6)(R);
(dim C, degree C, genus C)
///
doc ///
Key
randomCanonicalCurveGenus8with8Points
(randomCanonicalCurveGenus8with8Points,PolynomialRing)
Headline
Compute a random canonical curve of genus 8 with 8 marked point
Usage
(I,idealsOfPts)=randomCanonicalCurveGenus8with8Points S
Inputs
S: PolynomialRing
homogeneous coordinate ring of $\PP^7$
Outputs
I: Ideal
a canonical curve C of genus 8
idealsOfPts: List
8 ideals of K-rational points on C
Description
Text
According to Mukai [Mu] any smooth curve of genus 8 and Clifford index 3
is the transversal intersection $C=\PP^7 \cap\ G(2,6) \subset \ \PP^{15}$.
In particular this is true for the general curve of genus 8.
Picking 8 points in the Grassmannian $G(2,6)$ at random and \PP^7 as their span
gives the result.
Example
setRandomSeed("alpha");
FF=ZZ/10007;
S=FF[x_0..x_7];
(I,points)=randomCanonicalCurveGenus8with8Points S;
betti res I
points
///
doc ///
Key
randomCurveGenus8Degree14inP6
(randomCurveGenus8Degree14inP6,PolynomialRing)
Headline
Compute a random normal curve of genus g=8 and degree 14 in \PP^6
Usage
I=randomCurveGenus8Degree14inP6 S
Inputs
S: PolynomialRing
in 7 variables
Outputs
I: Ideal
of a curve of geometric genus 8 and degree 14 in \PP^6
Description
Text
The construction is based on Mukai's unirational description of $M_{8,8}$
of the moduli space of genus 8 with 8 marked points (see [Mu]).
Example
setRandomSeed("alpha");
FF=ZZ/10007;
S=FF[x_0..x_6];
I=randomCurveGenus8Degree14inP6 S;
betti res I
///
doc ///
Key
randomCurveGenus14Degree18inP6
(randomCurveGenus14Degree18inP6,PolynomialRing)
Headline
Compute a random curve of genus 14 of Degree 18 in \PP^6
Usage
randomCurveGenus14Degree18inP6 S
Inputs
S: PolynomialRing
homogeneous coordinate ring of \PP^6
Outputs
: Ideal
the ideal of a curve C of genus 14 and degree 18 in \PP^6
Description
Text
According to Verra [Ve], a general genus 14 curve $C$ arizes as the residual
intersection of the 5 quadrics in the homogeneous ideal of a general
normal curve $E$ of genus 8 and degree 14 in \PP^6. These in turn can be
constructed using Mukai's Theorem on genus 8 curves: Every smooth
genus 8 curve with general Clifford index arizes as the intersection
of the Grassmannian $G(2,6) \subset \PP^{14}$ with a transversal $\PP^7$.
Taking $\PP^7$ as the span of general or random $8$ points
$$p_1,\ldots, p_8 \in{} G(2,6)$$ gives $E$ together with a general divisor
$ H=K_E+D_1-D_2$ of degree 14 where $D_1=p_1+\ldots+p_4$ and $D_2=p_5+\ldots+p_8$.
The fact that the example below works can be seen as computer aided proof of the
unirationality of $M_{14}$. It proves the unirationality of $M_{14}$ for
fields of the chosen finite characteristic 10007, for fields of characteristic 0
by semi-continuity, and, hence, for all but finitely many primes $p$.
Example
setRandomSeed("alpha");
FF=ZZ/10007;
S=FF[x_0..x_6];
time I=randomCurveGenus14Degree18inP6(S);
betti res I
///
TEST ///
-- no-check-architecture: arm (#2651)
-- check that there are not to many non-detected problems in the construction.
-- This code finds errors in codimension 4 with high probability
-- since 3^4 \approx 100
setRandomSeed("alpha")
Fq= ZZ/3
T = Fq[t_0..t_6]
time L=apply(100,i->(print i;(random curveGenus14Degree18inP6)(T,Attempts=>1)));#L
print tally(apply(L,l->l=!=null))
-- uses ca. 150 seconds
///
TEST ///
-- no-check-architecture: arm (#2651)
-- check that the certification sometimes works
-- (only errors in codim 1 are detected)
setRandomSeed("alpha")
Fq= ZZ/11
T = Fq[t_0..t_6]
time L=apply(10,i->(print i;(random curveGenus14Degree18inP6)(T,Attempts=>1,Certify=>true)));#L
print tally(apply(L,l->l=!=null))
-- uses ca. 130 seconds
-- usually about half the checks fail and half the checks work
-- a more thorough check is not possible, since there is
-- a 160 second time limit for test.
///
end
restart
uninstallPackage("RandomGenus14Curves")
time installPackage("RandomGenus14Curves",RerunExamples=>true,RemakeAllDocumentation=>true);
viewHelp"RandomGenus14Curves"
check("RandomGenus14Curves")
-- takes about 6 minutes
restart
needsPackage("RandomGenus14Curves")
-- a more thorough check of certification (almost codim 3)
Fq= ZZ/5
T = Fq[t_0..t_6]
time L=apply(100,i->(print i;(random curveGenus14Degree18inP6)(T,Attempts=>1,Certify=>true)));#L
-- used 460.28 seconds
print tally(apply(L,l->l=!=null))
-- Tally{false => 97}
-- true => 3
|