1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
|
newPackage(
"RandomPlaneCurves",
Version => "0.6",
Date => "June 20, 2011",
Authors => {
{Name => "Hans-Christian Graf v. Bothmer",
Email => "bothmer@uni-math.gwdg.de",
HomePage => "http://www.crcg.de/wiki/User:Bothmer"},
{Name=> "Florian Geiss",
Email=> "fg@math.uni-sb.de",
HomePage=> "http://www.math.uni-sb.de/ag/schreyer/"},
{Name => "Frank-Olaf Schreyer",
Email => "schreyer@math.uni-sb.de",
HomePage => "http://www.math.uni-sb.de/ag/schreyer/"}
},
Headline => "random plane curves",
Keywords => {"Examples and Random Objects"},
PackageExports => {"RandomObjects"},
PackageImports => {"Truncations"},
DebuggingMode => false
)
if not version#"VERSION" >= "1.8" then
error "this package requires Macaulay2 version 1.8 or newer"
export{"distinctPlanePoints",
"constructDistinctPlanePoints",
"certifyDistinctPlanePoints",
"nodalPlaneCurve",
"constructNodalPlaneCurve",
"certifyNodalPlaneCurve",
"completeLinearSystemOnNodalPlaneCurve",
"imageUnderRationalMap"
}
undocumented {
constructNodalPlaneCurve,
certifyNodalPlaneCurve,
constructDistinctPlanePoints,
certifyDistinctPlanePoints}
-- returns the next prime number of
-- a given number of ANY type
-- (for complex numbers c this is next
-- prime number of ceiling(Re(c))
-- construction of general points in the plane
-- via their Hilbert-Burch matrix that occurs
-- in the free resolution of their vanishing ideal
-- 0 <-- R[Points] <-- R <-- F <--B-- G <-- 0
-- with free modules F and G
constructDistinctPlanePoints=method(TypicalValue=>Ideal,Options=>{Certify=>false})
-- Certify is only dummy option here
constructDistinctPlanePoints(ZZ,PolynomialRing):=opt->(k,R)->(
-- catch wrong inputs:
if dim R != 3 then error "expected a polynomial ring in three variables";
if degrees R !={{1}, {1}, {1}} then error "polynomial ring is not standard graded";
if k<0 then error "expected a non negative degree";
n := ceiling((-3+sqrt(9.0+8*k))/2);
eps := k-binomial(n+1,2);
-- choose a random Hilbert-Burch matrix
B := random(R^{n+1-eps:0,2*eps-n:-1},R^{n-2*eps:-1,eps:-2});
minors(rank source B,B))
-- the certification tests that the
-- scheme of the points is smooth, i.e. that
-- there are no infinitesimally close points
certifyDistinctPlanePoints=method(TypicalValue=>Boolean)
certifyDistinctPlanePoints(Ideal,ZZ,PolynomialRing):= (I,k,R)->
dim I==1 and dim (I+minors(2,jacobian I))<=0
distinctPlanePoints=new RandomObject from {
Construction => constructDistinctPlanePoints,
Certification => certifyDistinctPlanePoints
}
-- construction of a general point in the linearsystem
-- L(d;2p_1,..,2p_delta) of plane curves of degree d
-- having double points in p_1, ... , p_delta
constructNodalPlaneCurve=method(TypicalValue=>Ideal,Options=>{Certify=>false})
constructNodalPlaneCurve(ZZ,ZZ,PolynomialRing):=opt->(d,delta,R)->(
-- catch wrong inputs:
if dim R != 3 then error "expected a polynomial ring in three variables";
if degrees R !={{1}, {1}, {1}} then error "polynomial ring is not standard graded";
if d<0 then error "expected a non negative degree";
-- choose delta distinct random plane points.
-- The Certify option is passed from top level
Ipts:=(random distinctPlanePoints)(delta,R,Certify=>opt.Certify,Attempts=>1);
-- return null if the construction of points did not work
if Ipts===null then return null;
-- choose (if possible) a curve of deg d with double points in the given points
I2:=gens saturate(Ipts^2);
-- if there is no form of desired degree then return null
if all(degrees source I2,c->c_0 > d) then return null;
-- if not, find a nonzero form
ideal(I2*random(source I2,R^{-d})))
-- the certification checks that the curve is
-- nodal of degree d with delta singular points
certifyNodalPlaneCurve=method(TypicalValue=>Boolean)
certifyNodalPlaneCurve(Ideal,ZZ,ZZ,PolynomialRing):=(F,d,delta,R)->(
-- compute the singular locus of F
singF:=F+ideal jacobian F;
degree F == d and degree singF == delta and dim singF <= 1)
nodalPlaneCurve = new RandomObject from {
Construction => constructNodalPlaneCurve,
Certification => certifyNodalPlaneCurve
}
completeLinearSystemOnNodalPlaneCurve=method()
completeLinearSystemOnNodalPlaneCurve(Ideal,List):=(J,D)->(
singJ:=saturate(ideal jacobian J+J);
-- adjoint ideal
H:=ideal (mingens ideal(gens intersect(singJ,D_0)%J))_(0,0);
-- a curve passing through singJ and D_0
E0:=((J+H):D_0):(singJ^2); -- residual divisor
if not(degree J *degree H - degree D_0 -2*degree singJ==degree E0)
then error"residual divisor of has wrong degree";
L1:=mingens ideal (gens truncate(degree H, intersect(E0,D_1,singJ)))%J;
h0D:=(tally degrees source L1)_{degree H}; -- h^0 O(D)
L:=L1_{0..h0D-1}; -- matrix of homogeneous forms, L/H =L(D) subset K(C)
(L,(gens H)_(0,0)))
imageUnderRationalMap=method()
imageUnderRationalMap(Ideal,Matrix):=(J,L)->(
if not same degrees source L then error "expected homogeneous forms of a single degree";
kk:=coefficientRing ring J;
x := getSymbol "x";
S:=kk(monoid [x_0..x_(rank source L-1)]);
RJ:=ring J/J;
ideal mingens ker map(RJ,S,sub(L,RJ))
)
beginDocumentation()
-- authors: add some text to this documentation node:
doc ///
Key
RandomPlaneCurves
///
doc ///
Key
distinctPlanePoints
Headline
Generates the ideal of k random points in the coordinate ring $R$ of $\\P^{ 2}$
Usage
(random distinctPlanePoints)(k,R)
Inputs
k : ZZ
the number of points
R : PolynomialRing
the homogeneous coordinate ring of $\mathbb{P}^2$
Outputs
: Ideal
the vanishing ideal of the points
Description
Text
Creates the ideal of the points via a random choice of their
Hilbert-Burch matrix, which is taken to be of generic shape.
Example
setRandomSeed("alpha");
R=ZZ/32003[x_0..x_2];
Ipts=(random distinctPlanePoints)(10,R);
betti res Ipts
///
doc ///
Key
nodalPlaneCurve
Headline
get a random nodal plane curve
Usage
(random nodalPlaneCurve)(d,delta,R)
Inputs
d : ZZ
the degree of the curve
delta : ZZ
the number of nodes
R : PolynomialRing
homogeneous coordinate ring of $\mathbb{P}^2$.
Outputs
: Ideal
the vanishing ideal of the curve
Description
Text
The procedure starts by choosing
\ \ \ 1) an ideal I of delta random points in $\PP^2$, and then returns
\ \ \ 2) the principal ideal generated by an random element in the saturated
square J=saturate(I^2) of degree d.
If the procedure fails, for example if J_d=0, then the {\tt null} is returned.
Under the option {\tt Certified=>true}, the result is certified by establishing
that
\ \ \ 1) the points are distinct nodes, and that
\ \ \ 2) the curve has ordinary nodes at these points
by using the Jacobian criterion applied to the singular locus of the curve.
Under the option {\tt Attempts=>n}, the program makes {\tt n} attempts in both
steps to achieve the desired goal.
Here {\tt n} can be infinity. The default value is {\tt n=1}.
Example
setRandomSeed("alpha");
R=ZZ/32003[x_0..x_2];
F=(random nodalPlaneCurve)(8,5,R);
(dim F, degree F)
singF = F + ideal jacobian F;
(dim singF,degree singF)
Text
Over very small fields the curves are often singular:
Example
R=ZZ/3[x_0..x_2];
tally apply(3^4,i-> null===((random nodalPlaneCurve)(8,5,R,Certify=>true, Attempts=>1)))
///
doc ///
Key
completeLinearSystemOnNodalPlaneCurve
(completeLinearSystemOnNodalPlaneCurve,Ideal,List)
Headline
Compute the complete linear system of a divisor on a nodal plane curve
Usage
(L,h)=completeLinearSystemOnNodalPlaneCurve(I,D)
Inputs
I:Ideal
of a nodal plane curve C,
D: List
\{D_0,D_1\}\ of ideals representing effective divisors on C
Outputs
L:Matrix
of homogeneous forms with 1 row and with number of columns equal to $h^0(D_0-D_1)$
h:RingElement
such that L_{(0,i)}/h represents a basis of $H^0 O(D_0-D_1)$
Description
Text
Compute the complete linear series of D_0-D_1 on the normalization of C
via adjoint curves and double linkage.
Example
setRandomSeed("alpha");
R=ZZ/32003[x_0..x_2];
J=(random nodalPlaneCurve)(6,3,R);
D={J+ideal random(R^1,R^{1:-3}),J+ideal 1_R};
l=completeLinearSystemOnNodalPlaneCurve(J,D)
C=imageUnderRationalMap(J,l_0);
(dim C, degree C, genus C)
SeeAlso
nodalPlaneCurve
imageUnderRationalMap
///
doc ///
Key
imageUnderRationalMap
(imageUnderRationalMap,Ideal,Matrix)
Headline
Compute the image of the scheme under a rational map
Usage
I = imageUnderRationalMap(J,L)
Inputs
J: Ideal
in a polynomial ring
L: Matrix
of homogeneous polynomials of equal degrees
Outputs
I: Ideal
of the image of the scheme defined by J under the rational map defined by L
Description
Example
setRandomSeed("alpha");
p=nextPrime 10000
kk=ZZ/p
R=kk[t_0,t_1]
I=ideal 0_R
L=matrix{{t_0^4,t_0^3*t_1,t_0*t_1^3,t_1^4}}
J=imageUnderRationalMap(I,L)
betti J
///
------------- TESTS --------------
-- tests for distinct plane curves
TEST ///
setRandomSeed("alpha");
R=ZZ/32003[x_0..x_2];
Ipts=(random distinctPlanePoints)(10,R,Certify=>true);
assert(Ipts=!=null)
assert(betti res Ipts==new BettiTally from {(0,{0},0) => 1, (1,{4},4) => 5, (2,{5},5) => 4})
///
-- tests for nodalPlaneCurve
TEST ///
setRandomSeed("alpha");
R=ZZ/32003[x_0..x_2];
F=(random nodalPlaneCurve)(8,5,R);
assert(F=!=null)
assert(dim F==2)
assert(degree F==8)
singF=F+ideal jacobian F;
assert(dim singF==1)
assert(degree singF==5)
///
-- tests for image under rational map
TEST ///
R=QQ[y_0,y_1];
I=ideal 0_R;
L=basis(5,R)
C=imageUnderRationalMap(I,L);
assert(dim C == 2 and genus C==0 and degree C == 5)
///
end
restart
uninstallPackage("RandomPlaneCurves")
installPackage("RandomPlaneCurves",RerunExamples=>true,RemakeAllDocumentation=>true);
check"RandomPlaneCurves"
viewHelp"RandomPlaneCurves"
end
|