File: minProblemRankChecks.m2

package info (click to toggle)
macaulay2 1.21%2Bds-3
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 133,096 kB
  • sloc: cpp: 110,377; ansic: 16,306; javascript: 4,193; makefile: 3,821; sh: 3,580; lisp: 764; yacc: 590; xml: 177; python: 140; perl: 114; lex: 65; awk: 3
file content (183 lines) | stat: -rw-r--r-- 5,799 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
FF=ZZ/nextPrime 2019

debug needsPackage "SLPexpressions"

size GateMatrix := M -> (numrows M, numcols M)

-- evaluate a gateMatrix G at a matrix x (use sparingly)
evaluate (GateMatrix, Matrix) := (G, x) -> (
    M := mutableMatrix(FF,numrows G,numcols G);
    E' := makeEvaluator(G,matrix{varGates|paramGates});
    evaluate(E',mutableMatrix(x),M);
    matrix M
    )

-- 2x2 determinant
det2 = M -> M_(0,0)*M_(1,1)-M_(1,0)*M_(0,1)

-- Plücker vector for a 3*2 matrix
pl3 = M -> matrix{{det2 M^{1,2},det2 M^{2,0},det2 M^{0,1}}}

installedGates = {}

resetGates = () -> (
    undeclareVariable \ installedGates;
    installedGates = declareVariable \ {x_2,y_2,z_2,x_3,y_3,z_3,t_(2,1),t_(2,2),t_(3,1),t_(3,2),t_(3,3)};
    )
	
installGates = G -> (
    newG := declareVariable \ G;
    installedGates = installedGates | newG;
    newG
    )

cay2R = method(Options=>{Normalized=>true})
cay2R (Thing,Thing,Thing) := o -> (x,y,z) -> (
    M := matrix{
    {1+x*x-(y*y+z*z), 2*(x*y-z), 2*(x*z+y)},
    {2*(x*y+z), 1+y^2-(x*x+z*z), 2*(y*z-x)},
    {2*(x*z-y), 2*(y*z+x), 1 +z*z -(x*x+y*y)}
	};
    if o.Normalized then (oneGate/(1+x^2+y^2+z^2)) * M else M
    )
cay2R List := o -> L -> cay2R(L#0, L#1, L#2, o)


P2chart0 = M -> (oneGate/M_(0,0))*M^{1,2}
P2chart1 = M -> (oneGate/M_(1,0))*M^{0,2}
P2chart2 = M -> (oneGate/M_(2,0))*M^{0,1}

getLines = pl1p -> first pl1p
getViews = pl1p -> last pl1p
getVisLines = view -> first view
getVisPoints = view -> last view

getNumPoints = pl1p -> # getVisPoints first getViews pl1p
getNumLines = pl1p -> # getVisLines first getViews pl1p
checkPL1P = pl1p -> (
    ls := getLines pl1p;
    vs := getViews pl1p;
    n := getNumPoints pl1p;
    assert all(vs, v-># getVisPoints v == n);
    assert all(ls, l->instance(l,ZZ) and l>=-1 and l<n);
    -* UNCHECKED AT THE MOMENT:  
    the lines are SORTED (free come before pins)
    BALANCEDness
    ADMISSIBILITY of visibility pattern  
    *-
    )

resetGates()

cameras = {
    gateMatrix(id_(FF^3)|matrix{{0},{0},{0}}),
    cay2R(x_2,y_2,z_2)|matrix{{t_(2,1)},{t_(2,2)},{1}},
    cay2R(x_3,y_3,z_3)|matrix{{t_(3,1)},{t_(3,2)},{t_(3,3)}}
    }
    

parametrizeWorld = pl1p -> (
    resetGates();
    n := getNumPoints pl1p;
    worldPoints := apply(n, i->transpose matrix{installGates{X_{i,0},X_{i,1},X_{i,2}} | {oneGate}});         
    ls := getLines pl1p;
    worldLines := apply(#ls, i->
	(if (ls#i<0) then -- point A on the line 
	transpose matrix{installGates{A_{i,0},A_{i,1}} | {zeroGate, oneGate}}
	else worldPoints#(ls#i)) | transpose matrix{installGates{B_{i,0},B_{i,1}} | {oneGate, zeroGate}} 
	);      	  
    (worldPoints,worldLines)
    )


makePhi = method()
-* IN : description of PL1P, a list of GateMatrices for cameras
   OUT: GateMatrix for the forward map Phi

parameters of the domain (transpose each matrix below):    
  [*,*,*,1] for each world point
  [[*,*,1,0],
   [*,*,0,1]] for each free line (perceived as two points on the line)
  [*,*,1,0] for each pin (perceived as a point on the pin)
*-      
makePhi (List, List) := (pl1p,cameras) -> (
    -- we can make the next few lines marginally more efficient
    (worldPoints,worldLines) := parametrizeWorld pl1p;
    allLines := getLines pl1p;
    v := getViews pl1p;
    (n, l) := (getNumPoints pl1p, getNumLines pl1p);
    firstPin := position(getLines pl1p|{0}, i -> i > -1);
    phi := new MutableList from {}; -- list of (lists of) Gates (coordinates in some chart on the codomain) 
    lastPhi := 0;
    scan(#cameras, j->(
	c := cameras#j;
	(ls, ps) := (v#j#0, v#j#1); -- visibility pattern for camera j
	for i from 0 to firstPin-1 do if (ls#i==1) then (	    
	    projLine := c*worldLines#i;
	    --<< "size of free line is " << size projLine << endl;
	    phi#lastPhi = flatten entries P2chart0 transpose pl3 projLine;
	    lastPhi = lastPhi + 1;
	    );
	for i from firstPin to l-1 do if (ls#i==1) then (	    
	    projLine := c*worldLines#i;
	    --<< "size of pinned line is " << size projLine << endl;
	    phi#lastPhi = if ps#(allLines#i)==1 
	    then (P2chart0 transpose pl3 projLine)_(0,0)-- grab one of the coordinates
	    else flatten entries P2chart0 transpose pl3 projLine; -- grab two: this pin is a free line
	    lastPhi = lastPhi + 1;
	    );
	for i from 0 to n-1 do if (ps#i==1) then (
	    projPoint := c*worldPoints#i;
	    --<< "size of image point is " << size projPoint << endl;
	    phi#lastPhi = flatten entries P2chart2 projPoint;
	    lastPhi = lastPhi + 1;
	    );
	));
    matrix{flatten toList phi}
    )
rankCheck = method()    
rankCheck List := pl1p -> (
    Phi := makePhi(pl1p,cameras);
    inGates := matrix {toList installedGates};
    J := diff(transpose inGates, Phi);
    -*
    E := makeSLProgram(inGates,J); -- this is potential trouble
    Mout := mutableMatrix(FF,numrows J,numcols J);
    evaluate(E,mutableMatrix random(FF^(#installedGates),FF^1),Mout);
    r := rank matrix Mout;
    << "minimal is " << (#installedGates == r) << endl;
    << "inputs, outputs, rank of Jacobian" << endl;
    append(size J,r)
    *-
    )    
end--

restart
load "minProblemRankChecks.m2"
load "99problems.m2"

--i = 98
--pl1p := PROBLEMS#i#"pl1p"; --prob#"pl1p";
elapsedTime scan(
    #PROBLEMS, 
    --100,
    i->(
    pl1p := PROBLEMS#i#"pl1p"; --prob#"pl1p";
    -- resetGates(); -- does not leak anymore (after declareVariable introduction)  
    if i % 10 == 0 then << "on problem number " << i << endl;
    Phi := makePhi(pl1p,cameras);
    inGates := transpose matrix {installedGates};
    J := diff(inGates, Phi); -- leaks (RES=171m, memoized diff helps to reduce memory consumption) 
    J = compress J; -- leaks more (RES=183m, also slow)  
    E := makeSLProgram(inGates,J); --leaks more (RES=171m with no compress; RES=199m with)
    --print E;
    collectGarbage()
    ))