1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904
|
---------------------------------------------------------------------------
-- PURPOSE : Computation of quotient, saturation, and annihilator
--
-- UPDATE HISTORY : created 14 April 2018 at M2@UW;
-- updated November 2020
--
-- ISSUE TRACKER : https://github.com/orgs/Macaulay2/projects/3
--
-- TODO : 1. why are there shadowed symbols?
-- 2. any strategies to incorporate from Shimoyama-Yokoyama.m2
-- or greedySat in GTZ.m2 or getSaturation in newGTZ.m2
-- 3. which algorithms for Ideals can be adapted to submodules?
-- 4. move radical here, perhaps intersect as well
-- 5. employ storefun! Maybe call it declare
---------------------------------------------------------------------------
newPackage(
"Saturation",
Version => "0.3",
Date => "November 29, 2021",
Headline => "quotient, saturation, and annihilator routines for ideals and modules",
Authors => {
{Name => "Justin Chen", Email => "justin.chen@math.gatech.edu"},
{Name => "Mahrud Sayrafi", Email => "mahrud@umn.edu", HomePage => "https://math.umn.edu/~mahrud"},
{Name => "Mike Stillman", Email => "mike@math.cornell.edu", HomePage => "http://www.math.cornell.edu/~mike"}},
Keywords => {"Commutative Algebra"},
PackageExports => { "Elimination" },
AuxiliaryFiles => true,
DebuggingMode => false
)
export { "isSupportedInZeroLocus" }
exportFrom_Core { "saturate", "annihilator" }
importFrom_Core { "nonnull", "raw", "rawColon", "rawSaturate", "newMonomialIdeal", "eliminationInfo", "resolutionDegreeLimit" }
importFrom_Core { "isComputationDone", "cacheComputation", "fetchComputation", "updateComputation", "cacheHit", "Context", "Computation" }
-- TODO: where should these be placed?
trim MonomialIdeal := MonomialIdeal => opts -> (cacheValue (symbol trim => opts)) ((I) -> monomialIdeal trim(module I, opts))
-- TODO: pick a better name and move to interpreter for speed?
-- this is similar to override, except:
-- keys in opts with value null are ignored (TODO: is this an okay way to remove options?)
-- keys in opts that don't exist in def don't produce an error
override' := (def, opts) -> nonnull apply(keys def, key -> if opts#?key and opts#key =!= null then key => opts#key)
-- TODO: is this the right name for this function?
ambient' = method()
ambient' Module := Module => ambient
ambient' Ideal := Ideal => I -> (if instance(I, MonomialIdeal) then monomialIdeal else ideal) 1_(ring I)
-- TODO: remove this once the Ideal vs. MonomialIdeal dichotomy is resolved
uniform' := L -> all(L, l -> instance(l, Ideal)) or uniform L
-- this is a light version of isSubset for modules and ideals, which doesn't compute a gb
-- TODO: move these improvements to isSubset, for instance isSubset(0, A) should not compute gb of A
-- TODO: add heuristics to decide when is it okay to compute a gb of B, e.g. 2 vars?
isSubset' := (A, B) -> A == 0 or isSubset(entries transpose gens A, entries transpose gens B)
--Ideal % Matrix :=
--remainder(Ideal, Matrix) := Matrix => (I, m) -> remainder(gens I, m)
--Module % Matrix :=
--remainder(Module, Matrix) := Matrix => (M, m) -> remainder(gens M, m)
-- This is a map from method keys to strategy hash tables
algorithms := new MutableHashTable from {}
--------------------------------------------------------------------
-- Helpers
--------------------------------------------------------------------
-- given a ring R, determines if R is a poly ring over ZZ or a field
isFlatPolynomialRing = R -> isPolynomialRing R and (isField(kk := coefficientRing R) or kk === ZZ)
-- TODO: can this work with multigraded ideals?
isGRevLexRing = (R) -> (
-- returns true if the monomial order in the polynomial ring R
-- is graded reverse lexicographic order, w.r.t. the first degree
-- vector in the ring.
mo := (options monoid R).MonomialOrder;
if #mo === 0 then return false;
mo = select(mo, x -> x#0 =!= MonomialSize and x#0 =!= Position);
isgrevlex := mo#0#0 === GRevLex and mo#0#1 === apply(degrees R, first);
#mo === 1 and isgrevlex and all(mo, x -> x#0 =!= Weights and x#0 =!= Lex))
-- Helper for Linear strategies
-- currently this is false for x+1, but in all use cases homogeneity is required anyway
isLinearForm := f -> degreeLength ring f > 0 and sum degree f === 1 and same(degree \ terms f)
-- Return (R1, R1<-R, R<-R1), where generators i and n are switched
-- TODO: can this be simplified using newRing?
grevLexRing = method()
grevLexRing(ZZ, Ring) := (i, R) -> (
X := local X;
n := numgens R;
degs := degrees R;
if i === n - 1 then return (R, identity, identity);
perm := toList splice(0..i-1, n-1, i+1..n-2, i);
R1 := (coefficientRing R)[X_1..X_n, Degrees => degs_perm, MonomialSize => 16];
fto := map(R1, R, (generators R1)_perm);
fback := map(R, R1, (generators R)_perm);
(R1, fto, fback))
--------------------------------------------------------------------
-- Quotients
--------------------------------------------------------------------
-- quotient methods:
-- 1. syzygies
-- 2. use elimination methods? I forget how?
-- 3. case: x is a variable, I is homogeneous
-- case: x is a polynomial
-- case: x is an ideal
-- 4. DegreeLimit: stop at a certain degree
-- 5. BasisElementLimit: stop after one element
-- 6. PairLimit: stop after 100 S-pairs
-- keys: the second object in the quotient
QuotientContext = new SelfInitializingType of Context
QuotientContext.synonym = "quotient context"
QuotientComputation = new Type of Computation
QuotientComputation.synonym = "quotient computation"
-- TODO: try to find a compatible context that can be used in the computation
new QuotientContext from Sequence := (C, S) -> ( (A, B) := S; QuotientContext{ mingens B } )
new QuotientComputation from Sequence := (C, S) -> new QuotientComputation from {
BasisElementLimit => (S#2).BasisElementLimit,
DegreeLimit => (S#2).DegreeLimit,
PairLimit => (S#2).PairLimit,
Result => null}
isComputationDone QuotientComputation := Boolean => options quotient >> opts -> container -> (
-- this function determines whether we can use the cached result, or further computation is necessary
not instance(container.Result, Nothing)
and opts.BasisElementLimit <= container.BasisElementLimit
and(opts.DegreeLimit <= container.DegreeLimit and opts.DegreeLimit =!= {} or container.DegreeLimit === {})
and opts.PairLimit <= container.PairLimit)
updateComputation(QuotientComputation, Thing) := Thing => options quotient >> opts -> (container, result) -> (
container.BasisElementLimit = opts.BasisElementLimit;
container.DegreeLimit = opts.DegreeLimit;
container.PairLimit = opts.PairLimit;
container.Result = result)
--quotient = method(...) -- defined in m2/quotient.m2
quotient(Ideal, Ideal) := Ideal => opts -> (I, J) -> quotientHelper(I, J, (quotient, Ideal, Ideal), opts)
quotient(Ideal, Number) :=
quotient(Ideal, RingElement) := Ideal => opts -> (I, f) -> quotient(I, ideal f, opts)
Ideal : Ideal := Ideal => (I, J) -> quotient(I, J)
Ideal : Number :=
Ideal : RingElement := Ideal => (I, f) -> quotient(I, f)
-- TODO: why is this the right thing to do?
quotient(MonomialIdeal, RingElement) := MonomialIdeal => opts -> (I, f) -> (
quotient(I, if size f === 1 and leadCoefficient f == 1 then monomialIdeal f else ideal f, opts))
MonomialIdeal : RingElement := MonomialIdeal => (I, f) -> quotient(I, f)
quotient(Module, Ideal) := Module => opts -> (M, I) -> quotientHelper(M, I, (quotient, Module, Ideal), opts)
quotient(Module, Number) :=
quotient(Module, RingElement) := Module => opts -> (M, f) -> quotient(M, ideal f, opts)
Module : Ideal := Module => (M, I) -> quotient(M, I)
Module : Number :=
Module : RingElement := Module => (M, f) -> quotient(M, f)
-- annihilator of (B+A)/A, where A and B have a common ambient module
-- note: if A is an ideal and B=f, then this is isomorphic to R/(A:f)
quotient(Module, Module) := Ideal => opts -> (M, N) -> quotientHelper(M, N, (quotient, Module, Module), opts)
Module : Module := Ideal => (M, N) -> quotient(M, N)
-- TODO: the methods with "Number" should be made unnecessary via https://github.com/Macaulay2/M2/issues/1519
-- Helper for quotient methods
quotientHelper = (A, B, key, opts) -> (
R := ring A;
if ring B === ZZ then B = sub(B, R);
strategy := opts.Strategy;
doTrim := if opts.MinimalGenerators then trim else identity;
cast := if instance(A, MonomialIdeal) then monomialIdeal else ideal;
opts = opts ++ { DegreeLimit => resolutionDegreeLimit(R, opts.DegreeLimit) };
-- this logic runs the strategies in order, or the specified strategy
computation := (opts, container) -> (
if R =!= ring B then error "expected objects in the same ring";
if instance(B, RingElement) then B = ideal B;
if uniform' {A, B} and ambient' A != ambient' B
then error "expected objects to be contained in the same ambient object";
-- note: if B \subset A then A:B should be "everything", but computing
-- a gb for A can be slow, so isSubset' doesn't compute a gb
if isSubset'(B, A) then return if uniform' {A, B} then cast 1_R else ambient' A;
-- note: ideal(..A..) : f = A <==> f is nzd / A
-- note: ideal(..A..) : ideal(..B..) = A <==>
-- note: module(.A.) : ideal(..B..) = A <==> B is not contained in any associated primes of A
-- TODO: can either of the above be efficiently checked?
-- TODO: module(.A.) : module(.B.) = ? <==> A \subset B
if instance(B, Ideal) then -- see the above TODO item
if isSubset'(ambient' A, B) then return A;
-- TODO: add speedup for when isSubset'(A, B), being cautious of (a3):(a3,bc) in kk[abc]/ac
-- TODO: what would adding {SyzygyLimit => opts.BasisElementLimit, BasisElementLimit => null} do?
opts = new OptionTable from override'(options gb, opts ++ {Strategy => null});
runHooks(key, (opts, A, B), Strategy => strategy));
-- this is the logic for caching partial quotient computations. A.cache contains an option:
-- QuotientContext{ mingens B } => QuotientComputation{ Result }
container := fetchComputation(QuotientComputation, A, (A, B, opts), new QuotientContext from (A, B));
-- the actual computation of quotient occurs here
C := (cacheComputation(opts, container)) computation;
if C =!= null then doTrim C else if strategy === null
then error("no applicable strategy for ", toString key)
else error("assumptions for quotient strategy ", toString strategy, " are not met"))
--------------------------------------------------------------------
-- Algorithms for Ideal : Ideal
algorithms#(quotient, Ideal, Ideal) = new MutableHashTable from {
Iterate => (opts, I, J) -> (
R := ring I;
-- TODO: extend this into a strategy for any PID
if R === ZZ then return ideal sub(gcd I_* / gcd flatten(I_*, J_*), ZZ);
fold(first entries mingens J, ideal 1_R, (f, M1) ->
if generators(f * M1) % generators I == 0 then M1
else intersect(M1, quotient(I, ideal f, opts, Strategy => Quotient)))),
-- FIXME: potential bug with nonstandard fields, see the last test in quotient-test.m2
Quotient => (opts, I, J) -> (
R := ring I;
-- FIXME: this line computes a gb for I!!!
mR := transpose generators J ** (R / I);
-- if J is a single element, this is the same as
-- computing syz gb(matrix{{f}} | generators I, ...)
g := syz gb(mR, opts,
Strategy => LongPolynomial,
Syzygies => true,
SyzygyRows => 1);
-- The degrees of g are not correct, so we fix that here:
-- g = map(R^1, null, g);
lift(ideal g, R)),
-- TODO
Linear => (opts, I, J) -> (
-- assumptions: J is a single linear element, and everything is homogeneous
if not isHomogeneous I
or not isHomogeneous J or not isLinearForm J_0
then return null;
stderr << "warning: quotient strategy Linear is not yet implemented" << endl; null),
Monomial => (opts, I, J) -> (
R := ring I;
if not isMonomialIdeal I
or not isMonomialIdeal J
or not isPolynomialRing R
or not isCommutative R
then return null;
cast := if instance(I, MonomialIdeal) then identity else ideal;
-- TODO: make sure (monomialIdeal, MonomialIdeal) isn't forgetful
cast newMonomialIdeal(R, rawColon(raw monomialIdeal I, raw monomialIdeal J))),
}
-- Installing hooks for Ideal : Ideal
scan({Quotient, Iterate-*, Linear*-, Monomial}, strategy ->
addHook(key := (quotient, Ideal, Ideal), algorithms#key#strategy, Strategy => strategy))
--------------------------------------------------------------------
-- Algorithms for Module : Ideal
algorithms#(quotient, Module, Ideal) = new MutableHashTable from {
Iterate => (opts, M, J) -> (
-- This is the iterative version, where M is a
-- submodule of F/K, or ideal, and J is an ideal.
M1 := super M;
m := generators M | relations M;
scan(numgens J, i -> (
f := J_i;
if generators(f*M1) % m != 0 then (
M2 := quotient(M, f, opts, Strategy => Quotient);
M1 = intersect(M1, M2);
)));
M1),
Quotient => (opts, M, J) -> (
m := generators M;
F := target m;
if M.?relations then m = m | M.relations;
j := transpose generators J;
g := (j ** F) | (target j ** m);
-- We would like to be able to inform the engine that
-- it is not necessary to compute various of the pairs
-- of the columns of the matrix g.
h := syz gb(g, opts,
Strategy => LongPolynomial,
Syzygies => true,
SyzygyRows => numgens F);
if M.?relations then subquotient(h % M.relations, M.relations) else image h
),
-- TODO:
Linear => (opts, M, J) -> (
-- assumptions: J is a single linear element, and everything is homogeneous
if not isHomogeneous M
or not isHomogeneous J or not isLinearForm J_0
then return null;
stderr << "warning: quotient strategy Linear is not yet implemented" << endl; null),
}
-- Installing hooks for Module : Ideal
scan({Quotient, Iterate-*, Linear*-}, strategy ->
addHook(key := (quotient, Module, Ideal), algorithms#key#strategy, Strategy => strategy))
--------------------------------------------------------------------
-- Algorithms for Module : Module
algorithms#(quotient, Module, Module) = new MutableHashTable from {
Iterate => (opts, I, J) -> (
R := ring I;
M1 := ideal 1_R;
m := generators I | relations I;
scan(numgens J, i -> (
f := image (J_{i});
-- it used to say f ** M1, but that can't have been right.
-- I'm just guessing that M1 * f is better. (drg)
if generators(M1 * f) % m != 0
then (
M2 := quotient(I, f, opts, Strategy => Quotient);
M1 = intersect(M1, M2);
)));
M1),
Quotient => (opts, M, J) -> (
m := generators M;
if M.?relations then m = m | M.relations;
j := adjoint(generators J, (ring J)^1, source generators J);
F := target m;
g := j | (dual source generators J ** m);
-- << g << endl;
-- We would like to be able to inform the engine that
-- it is not necessary to compute various of the pairs
-- of the columns of the matrix g.
h := syz gb(g, opts,
Strategy => LongPolynomial,
Syzygies => true,
SyzygyRows => 1);
ideal h),
}
-- Installing hooks for Module : Module
scan({Quotient, Iterate}, strategy ->
addHook(key := (quotient, Module, Module), algorithms#key#strategy, Strategy => strategy))
--------------------------------------------------------------------
-- Saturations
--------------------------------------------------------------------
-- TODO:
-- - should saturate(I) use the irrelevant ideal when multigraded?
-- keys: the second ideal of saturation
SaturateContext = new SelfInitializingType of QuotientContext
SaturateContext.synonym = "saturate context"
SaturateComputation = new Type of QuotientComputation
SaturateComputation.synonym = "saturate computation"
-- TODO: try to find other compatible cacheKeys, perhaps of type QuotientContext, that can be used in the computation
new SaturateContext from Sequence := (C, S) -> ( (A, B) := S; SaturateContext{ mingens B } )
new SaturateComputation from Sequence := (C, S) -> new SaturateComputation from {
BasisElementLimit => (S#2).BasisElementLimit,
DegreeLimit => (S#2).DegreeLimit,
PairLimit => (S#2).PairLimit,
Result => null}
-- Note: isComputationDone and updateComputation inherit from QuotientComputation
-- TODO: is there something smarter that can be done for saturation in particular?
-- saturate = method(Options => options saturate) -- defined in m2/quotient.m2
saturate(Ideal, Ideal) := Ideal => opts -> (I, J) -> saturateHelper(I, J, (saturate, Ideal, Ideal), opts)
saturate(Ideal, Number) :=
saturate(Ideal, RingElement) := Ideal => opts -> (I, f) -> saturateHelper(I, f, (saturate, Ideal, RingElement), opts)
saturate Ideal := Ideal => opts -> I -> saturate(I, ideal vars ring I, opts)
saturate(MonomialIdeal, RingElement) := MonomialIdeal => opts -> (I, f) -> (
saturate(I, if size f === 1 and leadCoefficient f == 1 then monomialIdeal f else ideal f, opts))
saturate(Module, Ideal) := Module => opts -> (M, J) -> saturateHelper(M, J, (saturate, Module, Ideal), opts)
saturate(Module, Number) :=
saturate(Module, RingElement) := Module => opts -> (M, f) -> saturateHelper(M, f, (saturate, Module, RingElement), opts)
saturate Module := Module => opts -> M -> saturate(M, ideal vars ring M, opts)
-- TODO: is M / saturate 0_M a correct computation of saturation of M?
saturate(Vector, Ideal) := Module => opts -> (v, J) -> saturate(image matrix {v}, J, opts)
saturate(Vector, Number) :=
saturate(Vector, RingElement) := Module => opts -> (v, f) -> saturate(image matrix {v}, f, opts)
saturate Vector := Module => opts -> v -> saturate(image matrix {v}, opts)
-- used when P = decompose irr
-- TODO: do a one-step caching here
saturate(Ideal, List) := Ideal => opts -> (I, L) -> fold(L, I, (J, I) -> saturate(I, J, opts))
saturate(Module, List) := Module => opts -> (M, L) -> fold(L, M, (J, M) -> saturate(M, J, opts))
saturate(Vector, List) := Module => opts -> (v, L) -> saturate(image matrix {v}, L, opts)
-- TODO: the methods with "Number" should be unnecessary via https://github.com/Macaulay2/M2/issues/1519
-- Helper for saturation methods
saturateHelper = (A, B, key, opts) -> (
R := ring A;
if ring B === ZZ then B = sub(B, R);
-- this is only here because some methods are not implemented for RingElement
B' := if instance(B, RingElement) or instance(B, Number) then ideal B else B;
strategy := opts.Strategy;
doTrim := if opts.MinimalGenerators then trim else identity;
opts = opts ++ { DegreeLimit => resolutionDegreeLimit(R, opts.DegreeLimit) };
-- this logic runs the strategies in order, or the specified strategy
computation := (opts, container) -> (
if R =!= ring B then error "expected objects in the same ring";
-- note: if B \subset A then A:B^infty should be "everything", but computing
-- a gb for A can be slow, so isSubset' doesn't compute a gb
-- TODO: if radical A is cached and B \subset radical A then A : B^infty = ambient A
-- alternatively, can radical containment be efficiently checked?
if isSubset'(B', A) then return ambient' A;
-- note: ideal(..A..) : f^infty = A <==> f is nzd /A
-- note: ideal(..A..) : ideal(..B..)^infty = A <==> B is not contained in any associated primes of A
-- TODO: can either of the above be efficiently checked?
if isSubset'(ambient' A, B') then return A;
-- TODO: add speedup for when isSubset'(A, B'), being cautious of (a3):(a3,bc) in kk[abc]/ac
opts = new OptionTable from override'(options gb, opts ++ {Strategy => null});
runHooks(key, (opts, A, B), Strategy => strategy));
-- this is the logic for caching partial saturation computations. A.cache contains an option:
-- SaturateContext{ mingens B } => SaturateComputation{ Result }
container := fetchComputation(SaturateComputation, A, (A, B, opts), new SaturateContext from (A, B'));
-- the actual computation of saturation occurs here
C := (cacheComputation(opts, container)) computation;
if C =!= null then doTrim C else if strategy === null
then error("no applicable strategy for ", toString key)
else error("assumptions for saturation strategy ", toString strategy, " are not met"))
-- Helper for GRevLex strategy
saturationByGRevLexHelper := (I, v, opts) -> (
R := ring I;
(R1, fto, fback) := grevLexRing(index v, R);
g1 := groebnerBasis(fto I, Strategy => "F4");
(g1', maxpower) := divideByVariable(g1, R1_(numgens R1 - 1));
if maxpower == 0 then (I, 0) else (ideal fback g1', maxpower))
--------------------------------------------------------------------
-- Algorithms for Module : Ideal^infinity
algorithms#(saturate, Module, Ideal) = new MutableHashTable from {
Iterate => (opts, M, I) -> (
M' := quotient(M, I, opts); while M' != M do ( M = M'; M' = quotient(M, I, opts) ); M ),
-- TODO: if decompose is already cached, do this strategy instead
Decompose => (opts, M, I) -> saturate(M, decompose I, Strategy => Iterate),
}
-- Installing hooks for Module : Ideal^infinity
scan({Decompose, Iterate}, strategy ->
addHook(key := (saturate, Module, Ideal), algorithms#key#strategy, Strategy => strategy))
--------------------------------------------------------------------
-- Algorithms for Module : RingElement^infinity
algorithms#(saturate, Module, RingElement) = new MutableHashTable from {
Iterate => (opts, M, f) -> (
M' := quotient(M, f, opts); while M' != M do ( M = M'; M' = quotient(M, f, opts) ); M ),
}
-- Installing hooks for Module : RingElement^infinity
scan({Iterate}, strategy ->
addHook(key := (saturate, Module, RingElement), algorithms#key#strategy, Strategy => strategy))
--------------------------------------------------------------------
-- Algorithms for Ideal : Ideal^infinity
algorithms#(saturate, Ideal, Ideal) = new MutableHashTable from {
-- TODO: this is sometimes faster than Eliminate
Iterate => (opts, I, J) -> (
R := ring I;
m := transpose generators J;
while (
S := (ring I)/I;
m = m ** S;
I = ideal syz gb(m, Syzygies => true);
I != 0) do ();
ideal (presentation ring I ** R)),
Eliminate => (opts, I, J) -> intersect apply(J_*, g -> saturate(I, g, opts)),
GRevLex => (opts, I, J) -> (
-- FIXME: this might not be necessary, but the code isn't designed for this case.
if not isFlatPolynomialRing ring I
or not isHomogeneous I
or not isHomogeneous J
or not isGRevLexRing ring I
then return null;
-- First check that all generators are variables of the ring
-- TODO: can this strategy work with generators of the irrelevant ideal?
if any(index \ J_*, v -> v === null) then return null;
-- Saturate with respect to each variable separately
L := for g in J_* list saturationByGRevLexHelper(I, g, opts);
-- Intersect them all
-- TODO: when exactly is I returned?
if any(last \ L, x -> x == 0) then I
else intersect(first \ L)),
Monomial => (opts, I, J) -> (
R := ring I;
if not isMonomialIdeal I
or not isMonomialIdeal J
or not isPolynomialRing R
or not isCommutative R
then return null;
cast := if instance(I, MonomialIdeal) then identity else ideal;
-- TODO: make sure (monomialIdeal, MonomialIdeal) isn't forgetful
cast newMonomialIdeal(R, rawSaturate(raw monomialIdeal I, raw monomialIdeal J))),
}
-- Installing hooks for Ideal : Ideal^infinity
scan({Iterate, Eliminate, GRevLex, Monomial}, strategy ->
addHook(key := (saturate, Ideal, Ideal), algorithms#key#strategy, Strategy => strategy))
--------------------------------------------------------------------
-- Algorithms for Ideal : RingElement^infinity
algorithms#(saturate, Ideal, RingElement) = new MutableHashTable from {
Iterate => (opts, I, f) -> saturate(I, ideal f, opts ++ {Strategy => Iterate}), -- backwards compatibility
Linear => (opts, I, f) -> (
-- assumptions for this case:
-- (1) the ring is of the form k[x1..xn]. No quotients, k a field or ZZ, grevlex order
-- (2) all variables have degree 1.
-- (3) I is homogeneous
-- (4) f = homog linear form
R := ring I;
if not isFlatPolynomialRing R
or not isGRevLexRing R
or not all(gens R, g -> sum degree g == 1)
or not isHomogeneous I
or not isHomogeneous f or not isLinearForm f
then return null;
-- TODO: what does this do?
res := newCoordinateSystem(R, matrix{{f}});
fto := res#1;
fback := res#0;
v := R_(numgens R - 1);
g := gens gb(fto I, opts);
ideal fback first divideByVariable(g, v)),
Bayer => (opts, I, f) -> (
-- Bayer method. This may be used if I, f are homogeneous.
-- Basic idea: in a ring R[z]/(f - z), with the RevLex order, compute GB of I.
-- assumptions for this case:
-- (1) the ring is of the form k[x1..xn]. No quotients, k a field or ZZ
-- (2) I is homogeneous
-- (3) f = homog, generated by one element
R := ring I;
if not isFlatPolynomialRing R
or not isHomogeneous I
or not isHomogeneous f or sum degree f === 0
then return null;
n := numgens R;
degs := append(degrees R, degree f);
X := local X;
R1 := (coefficientRing R)[X_0 .. X_n, Degrees => degs, MonomialSize => 16];
i := map(R1, R, (vars R1)_{0..n-1});
f1 := i f;
I1 := ideal (i generators I);
A := R1/(f1 - R1_n); -- TODO: add to ideal instead of quotient?
iback := map(R, A, vars R | f);
IA := generators I1 ** A;
g := groebnerBasis(IA, Strategy => "F4"); -- TODO: compare with MGB
(g1, notused) := divideByVariable(g, A_n);
ideal iback g1),
Eliminate => (opts, I, f) -> (
-- Eliminate(t, (I, t * f - 1))
-- assumptions for this case:
-- I is an ideal in a flat polynomial ring (ring of the form k[x1..xn], no quotients, k a field or ZZ)
-- f is an ideal, generated by one elem
R := ring I;
if not isFlatPolynomialRing R then return null;
(R1, fto, fback) := eliminationInfo R;
J := ideal(R1_0 * fto f - 1) + fto I;
g := groebnerBasis(J, Strategy => "F4"); -- TODO: compare with MGB
p1 := selectInSubring(1, g);
ideal fback p1),
GRevLex => (opts, I, v) -> (
-- FIXME: this might not be necessary, but the code isn't designed for this case.
if not isHomogeneous I
or not isFlatPolynomialRing ring I
or not isGRevLexRing ring I
then return null;
-- First check that v is a variable of the ring
-- TODO: can this strategy work with generators of the irrelevant ideal?
if index v === null then return null;
-- Saturate with respect to each variable separately
first saturationByGRevLexHelper(I, v, opts)),
"Unused" => (opts, I, f) -> (
-- NOT USED; TODO: assumptions?
R := ring I;
I1 := ideal 1_R;
while I1 != I do (
I1 = I;
I = ideal syz gb(matrix{{f}} | generators I,
Syzygies => true,
SyzygyRows => 1)
);
I)
}
-- Installing hooks for Ideal : RingElement^infinity
scan({"Unused", Iterate, Eliminate, GRevLex, Bayer, Linear}, strategy ->
addHook(key := (saturate, Ideal, RingElement), algorithms#key#strategy, Strategy => strategy))
--------------------------------------------------------------------
-- isSupportedInZeroLocus
--------------------------------------------------------------------
-- Note: this function isn't cached because the usecase in VirtualResolutions doesn't
-- require it but it does take advantage of precomputed saturation of the annihilator
isSupportedInZeroLocus = method()
isSupportedInZeroLocus(Ideal, Ideal) := (B, I) -> isSupportedInZeroLocus(B, comodule I)
isSupportedInZeroLocus(Ideal, Module) := (B, M) -> (
-- Returns true if M is supported only on the zero locus of B
S := ring B;
-- There are two ways to check this:
-- 1. saturate the annihilator of M with respect to B and compare it to ideal(1)
-- In general, computing the saturation is unnecessary, but when the saturation of the
-- annihilator is known, it's faster to check whether saturate(annihilator M, B) == ideal 1
if M.cache.?annihilator then (
N := annihilator M;
container := fetchComputation(SaturateComputation, N, (N, B, options saturate), new SaturateContext from (N, B));
if isComputationDone container then ( cacheHit container; return saturate(N, B) == ideal 1_S ) else true);
-- 2. check that a high enough power of elements of B annihilates M
n := numgens S;
all(first entries mingens B, g -> (
supp := index \ support g;
perm := toList(set(0..n-1) - set supp) | supp;
R := (coefficientRing S)[(S_*)_perm,
MonomialSize => 16,
MonomialOrder => {Position => Up, n - #supp, #supp}];
-- TODO: can we compute gb once at the top instead?
G := groebnerBasis(sub(presentation M, R), Strategy => "F4"); -- TODO: try "MGB"
-- TODO: is "ann coker" necessary?
0 != ann coker selectInSubring(1, leadTerm G))))
-- check if a graded module sheafifies to zero
isSupportedInZeroLocus(Ideal, GradedModule) := (B, G) -> (
all(min G .. max G, deg -> isSupportedInZeroLocus(B, G_deg)))
--------------------------------------------------------------------
-- Annihilators
--------------------------------------------------------------------
-- annihilator = method(Options => {Strategy => null}) -- defined in m2/quotient.m2
annihilator RingElement := Ideal => opts -> f -> annihilator(ideal f, opts)
annihilator Ideal := Ideal => opts -> I -> annihilator(module I, opts)
annihilator Module := Ideal => opts -> (cacheValue symbol annihilator) (
M -> annihilatorHelper(M, (annihilator, Module), opts))
-- Helper for annihilator methods
annihilatorHelper = (A, key, opts) -> (
R := ring A;
if isWeylAlgebra R then error "annihilator has no meaning for objects over a Weyl algebra";
-- TODO: add more instant checks
f := presentation A;
-- TODO: is this any different from A == 0?
F := target f;
if numgens F === 0 then return ideal 1_R;
strategy := opts.Strategy;
C := runHooks(key, (opts, A), Strategy => strategy);
if C =!= null then C else if strategy === null
then error("no applicable strategy for ", toString key)
else error("assumptions for annihilator strategy ", toString strategy, " are not met"))
-- Algorithms for annihilator Module
algorithms#(annihilator, Module) = new MutableHashTable from {
-- TODO: annihilator routines for MonomialIdeals?
Quotient => (opts, M) -> (
f := presentation M;
image f : target f),
Intersection => (opts, M) -> (
f := presentation M;
F := target f;
intersect apply(numgens F, i -> ideal modulo(F_{i}, f))),
}
-- Installing hooks for annihilator Module
scan({Quotient, Intersection}, strategy ->
addHook(key := (annihilator, Module), algorithms#key#strategy, Strategy => strategy))
--------------------------------------------------------------------
----- Development section
--------------------------------------------------------------------
saturationByGRevLex = (I,J) -> saturate(I, J, Strategy => GRevLex)
saturationByElimination = (I,J) -> saturate(I, J, Strategy => Eliminate)
intersectionByElimination = L -> intersect(L, Strategy => Eliminate)
--------------------------------------------------------------------
----- Tests section
--------------------------------------------------------------------
load "./Saturation/quotient-test.m2"
load "./Saturation/saturate-test.m2"
load "./Saturation/annihilator-test.m2"
--------------------------------------------------------------------
----- Documentation section
--------------------------------------------------------------------
beginDocumentation()
-- TODO: review
load "./Saturation/doc.m2"
load "./Saturation/quotient-doc.m2"
load "./Saturation/saturate-doc.m2"
load "./Saturation/annihilator-doc.m2"
end--
restart
debugLevel = 1
debug needsPackage "Saturation"
kk = ZZ/32003
R = kk(monoid[x_0, x_1, x_2, x_3, x_4, Degrees => {2:{1, 0}, 3:{0, 1}}, Heft => {1,1}])
B0 = ideal(x_0,x_1)
B1 = ideal(x_2,x_3,x_4)
I = ideal(x_0^2*x_2^2*x_3^2+44*x_0*x_1*x_2^2*x_3^2+2005*x_1^2*x_2^2*x_3^2+12870
*x_0^2*x_2*x_3^3-725*x_0*x_1*x_2*x_3^3-15972*x_1^2*x_2*x_3^3-7768*x_0^2*x_2
^2*x_3*x_4-13037*x_0*x_1*x_2^2*x_3*x_4-14864*x_1^2*x_2^2*x_3*x_4+194*x_0^2*
x_2*x_3^2*x_4-2631*x_0*x_1*x_2*x_3^2*x_4-2013*x_1^2*x_2*x_3^2*x_4-15080*x_0
^2*x_3^3*x_4-9498*x_0*x_1*x_3^3*x_4+5151*x_1^2*x_3^3*x_4-12401*x_0^2*x_2^2*
x_4^2+4297*x_0*x_1*x_2^2*x_4^2-13818*x_1^2*x_2^2*x_4^2+7330*x_0^2*x_2*x_3*x
_4^2-13947*x_0*x_1*x_2*x_3*x_4^2-12602*x_1^2*x_2*x_3*x_4^2-14401*x_0^2*x_3^
2*x_4^2+8101*x_0*x_1*x_3^2*x_4^2-1534*x_1^2*x_3^2*x_4^2+8981*x_0^2*x_2*x_4^
3-11590*x_0*x_1*x_2*x_4^3+1584*x_1^2*x_2*x_4^3-13638*x_0^2*x_3*x_4^3-5075*x
_0*x_1*x_3*x_4^3-14991*x_1^2*x_3*x_4^3,x_0^7*x_2-6571*x_0^6*x_1*x_2+13908*x
_0^5*x_1^2*x_2+11851*x_0^4*x_1^3*x_2+14671*x_0^3*x_1^4*x_2-14158*x_0^2*x_1^
5*x_2-15190*x_0*x_1^6*x_2+6020*x_1^7*x_2+5432*x_0^7*x_3-8660*x_0^6*x_1*x_3-
3681*x_0^5*x_1^2*x_3+11630*x_0^4*x_1^3*x_3-4218*x_0^3*x_1^4*x_3+6881*x_0^2*
x_1^5*x_3-6685*x_0*x_1^6*x_3+12813*x_1^7*x_3-11966*x_0^7*x_4+7648*x_0^6*x_1
*x_4-10513*x_0^5*x_1^2*x_4+3537*x_0^4*x_1^3*x_4+2286*x_0^3*x_1^4*x_4+733*x_
0^2*x_1^5*x_4+11541*x_0*x_1^6*x_4+660*x_1^7*x_4);
-- B0 B1
-- GRevLex 25.95s 0.18s
-- Eliminate 28.35s 0.29s
-- Iterate 60.02s 0.05s
for B in {B0, B1} do (
for strategy in {GRevLex, Eliminate, Iterate} do
print(strategy, (try elapsedTime saturate(I, B, Strategy => strategy);)))
ans1 = elapsedTime saturationByGRevLex(saturationByGRevLex(I, B0), B1); -- 25.53s
ans2 = elapsedTime saturationByGRevLex(saturationByGRevLex(I, B1), B0); -- 22.93s
elapsedTime saturationByGRevLex(I, x_0); -- 9.01s
elapsedTime saturationByGRevLex(I, x_1); -- 8.77s
-- TODO: what a discrepancy
ans3 = elapsedTime saturationByElimination(saturationByElimination(I, B0), B1); -- 49.22s
ans4 = elapsedTime saturationByElimination(saturationByElimination(I, B1), B0); -- 28.63
elapsedTime J1 = saturationByElimination(I, x_0);
elapsedTime J2 = saturationByElimination(I, x_1);
elapsedTime J = intersectionByElimination(J1,J2);
elapsedTime J' = intersectionByElimination(J2,J1);
elapsedTime J'' = intersect(J1,J2);
elapsedTime J''' = intersect(J2,J1);
J == J'
J == J''
time gens gb I;
J2 = elapsedTime saturationByElimination(I, x_0);
assert isHomogeneous J2
J2' = elapsedTime saturationByElimination(I, x_1);
J2 = elapsedTime saturationByElimination(I, ideal(x_0,x_1));
J2' = elapsedTime saturationByElimination(J2, ideal(x_2,x_3,x_4));
J1 = elapsedTime saturate(I, x_0);
J1' = elapsedTime saturate(I, x_1);
J1 == J2
J1' == J2'
betti J2
betti J1
restart
load "./Saturation/badsaturations.m2"
-- TODO: how was this so fast before??
J = paramRatCurve({2,2},{3,3},{4,2});
elapsedTime genSat(J,2) -- 200 sec
elapsedTime genSat2(J,2) -- 50 sec
elapsedTime genSat3(J,2) -- 35 sec
J = paramRatCurve({2,2},{3,3},{5,2});
elapsedTime genSat(J,2) -- 691 sec
elapsedTime genSat2(J,2) -- 104 sec
elapsedTime genSat3(J,2) -- 71 sec
J = paramRatCurve({2,2},{3,4},{4,3});
elapsedTime genSat(J,2) -- sec
elapsedTime genSat2(J,2) -- sec
elapsedTime genSat3(J,2) -- 75 sec
I = ideal J_*_{5,13}
use ring I
elapsedTime I1 = saturate(I, x_0);
elapsedTime (I2,pow) = saturationByGRevLex(I,x_0);
I1 == I2
elapsedTime I1 = saturate(I, x_1);
elapsedTime (I2,pow) = saturationByGRevLex(I,x_1);
I1 == I2
elapsedTime J1 = intersectionByElimination(I1,I2);
elapsedTime I1 = saturationByGRevLex(I, B0);
elapsedTime I2 = saturationByGRevLex(I1, B1);
elapsedTime saturationByGRevLex(saturationByGRevLex(I, B0), B1);
elapsedTime saturationByGRevLex(saturationByGRevLex(I, B1), B0);
elapsedTime saturationByElimination(saturationByElimination(I, B0), B1);
elapsedTime saturationByElimination(saturationByElimination(I, B1), B0);
elapsedTime J0a = saturationByGRevLex(I,x_0);
elapsedTime J0b = saturationByGRevLex(I,x_1);
--J1 = elapsedTime intersectionByElimination(first J0a,first J0b);
La = elapsedTime trim first J0a;
Lb = elapsedTime trim first J0b;
J1 = elapsedTime intersectionByElimination(La, Lb);
J1a = elapsedTime saturationByGRevLex(J1,x_2);
J1b = elapsedTime saturationByGRevLex(J1,x_3);
J1c = elapsedTime saturationByGRevLex(J1,x_4);
J1a#1, J1b#1, J1c#1
J1ab = elapsedTime intersectionByElimination(J1a,J1b);
elapsedTime J2 = intersectionByElimination{first J1a, first J1b, first J1c};
elapsedTime saturationByGRevLex(I,B0);
saturationByElimination(I,x_0);
(R1,fto,fback) = grevLexRing(0,S)
L = fto I;
satL = ideal first divideByVariable(gens gb L, R1_4);
fback satL
oo == I1
leadTerm oo
ideal oo
(R1,fto,fpack) = grevLexRing(1,S)
use S
R = ZZ/101[a..d]
I = ideal"ab-ac,b2-cd"
I1 = saturate(I,a)
elapsedTime (I2,pow) = saturationByGRevLex(I,a);
I1 == I2
pow
(R1,fto,fback) = grevLexRing(0,R)
fto I
fto
----------------------------
-- Benchmarking example:
restart
needsPackage "Saturation"
R = ZZ/101[vars(0..14)]
M = genericMatrix(R, a, 3, 5)
I = minors(3, M);
codim I
d = 4
J = ideal((gens I) * random(R^10, R^d));
-- algorithm; d = 2 3 4 5
-- null 0.45 40
-- Linear N/A N/A N/A N/A
-- Iterate 0.41 40
-- Quotient 22 271
elapsedTime J' = quotient(J, I);
for strategy in {Linear, Iterate, Quotient} do
print(strategy, (try (elapsedTime J' === quotient(J, I, Strategy => strategy)) else "not applicable"))
-- algorithm; d = 2 3 4 5
-- null 0.45 430
-- GRevLex N/A N/A N/A N/A
-- Eliminate 2.87 378
-- Iterate 20 575
elapsedTime J'' = saturate(J, I);
for strategy in {GRevLex, Eliminate, Iterate} do
print(strategy, (try (elapsedTime J'' === saturate(J, I, Strategy => strategy)) else "not applicable"))
elapsedTime quotient(J, I, Strategy => Iterate);
elapsedTime saturate(J, I, Strategy => Eliminate);
degree I
elapsedTime(J : I_0);
|