File: Saturation.m2

package info (click to toggle)
macaulay2 1.21%2Bds-3
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 133,096 kB
  • sloc: cpp: 110,377; ansic: 16,306; javascript: 4,193; makefile: 3,821; sh: 3,580; lisp: 764; yacc: 590; xml: 177; python: 140; perl: 114; lex: 65; awk: 3
file content (904 lines) | stat: -rw-r--r-- 38,027 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
---------------------------------------------------------------------------
-- PURPOSE : Computation of quotient, saturation, and annihilator
--
-- UPDATE HISTORY : created 14 April 2018 at M2@UW;
--                  updated November 2020
--
-- ISSUE TRACKER : https://github.com/orgs/Macaulay2/projects/3
--
-- TODO : 1. why are there shadowed symbols?
--        2. any strategies to incorporate from Shimoyama-Yokoyama.m2
--           or greedySat in GTZ.m2 or getSaturation in newGTZ.m2
--        3. which algorithms for Ideals can be adapted to submodules?
--        4. move radical here, perhaps intersect as well
--        5. employ storefun! Maybe call it declare
---------------------------------------------------------------------------
newPackage(
    "Saturation",
    Version => "0.3",
    Date => "November 29, 2021",
    Headline => "quotient, saturation, and annihilator routines for ideals and modules",
    Authors => {
	{Name => "Justin Chen",    Email => "justin.chen@math.gatech.edu"},
	{Name => "Mahrud Sayrafi", Email => "mahrud@umn.edu",        HomePage => "https://math.umn.edu/~mahrud"},
	{Name => "Mike Stillman",  Email => "mike@math.cornell.edu", HomePage => "http://www.math.cornell.edu/~mike"}},
    Keywords => {"Commutative Algebra"},
    PackageExports => { "Elimination" },
    AuxiliaryFiles => true,
    DebuggingMode => false
    )

export { "isSupportedInZeroLocus" }

exportFrom_Core { "saturate", "annihilator" }

importFrom_Core { "nonnull", "raw", "rawColon", "rawSaturate", "newMonomialIdeal", "eliminationInfo", "resolutionDegreeLimit" }
importFrom_Core { "isComputationDone", "cacheComputation", "fetchComputation", "updateComputation", "cacheHit", "Context", "Computation" }

-- TODO: where should these be placed?
trim MonomialIdeal := MonomialIdeal => opts -> (cacheValue (symbol trim => opts)) ((I) -> monomialIdeal trim(module I, opts))

-- TODO: pick a better name and move to interpreter for speed?
-- this is similar to override, except:
--   keys in opts with value null are ignored (TODO: is this an okay way to remove options?)
--   keys in opts that don't exist in def don't produce an error
override' := (def, opts) -> nonnull apply(keys def, key -> if opts#?key and opts#key =!= null then key => opts#key)

-- TODO: is this the right name for this function?
ambient' = method()
ambient' Module := Module => ambient
ambient' Ideal  := Ideal  => I -> (if instance(I, MonomialIdeal) then monomialIdeal else ideal) 1_(ring I)

-- TODO: remove this once the Ideal vs. MonomialIdeal dichotomy is resolved
uniform' := L -> all(L, l -> instance(l, Ideal)) or uniform L

-- this is a light version of isSubset for modules and ideals, which doesn't compute a gb
-- TODO: move these improvements to isSubset, for instance isSubset(0, A) should not compute gb of A
-- TODO: add heuristics to decide when is it okay to compute a gb of B, e.g. 2 vars?
isSubset' := (A, B) -> A == 0 or isSubset(entries transpose gens A, entries transpose gens B)

--Ideal % Matrix            :=
--remainder(Ideal,  Matrix) := Matrix => (I, m) -> remainder(gens I, m)
--Module % Matrix           :=
--remainder(Module, Matrix) := Matrix => (M, m) -> remainder(gens M, m)

-- This is a map from method keys to strategy hash tables
algorithms := new MutableHashTable from {}

--------------------------------------------------------------------
-- Helpers
--------------------------------------------------------------------

-- given a ring R, determines if R is a poly ring over ZZ or a field
isFlatPolynomialRing = R -> isPolynomialRing R and (isField(kk := coefficientRing R) or kk === ZZ)

-- TODO: can this work with multigraded ideals?
isGRevLexRing = (R) -> (
     -- returns true if the monomial order in the polynomial ring R
     -- is graded reverse lexicographic order, w.r.t. the first degree
     -- vector in the ring.
     mo := (options monoid R).MonomialOrder;
     if #mo === 0 then return false;
     mo = select(mo, x -> x#0 =!= MonomialSize and x#0 =!= Position);
     isgrevlex := mo#0#0 === GRevLex and mo#0#1 === apply(degrees R, first);
     #mo === 1 and isgrevlex and all(mo, x -> x#0 =!= Weights and x#0 =!= Lex))

-- Helper for Linear strategies
-- currently this is false for x+1, but in all use cases homogeneity is required anyway
isLinearForm := f -> degreeLength ring f > 0 and sum degree f === 1 and same(degree \ terms f)

-- Return (R1, R1<-R, R<-R1), where generators i and n are switched
-- TODO: can this be simplified using newRing?
grevLexRing = method()
grevLexRing(ZZ, Ring) := (i, R) -> (
    X := local X;
    n := numgens R;
    degs := degrees R;
    if i === n - 1 then return (R, identity, identity);
    perm := toList splice(0..i-1, n-1, i+1..n-2, i);
    R1 := (coefficientRing R)[X_1..X_n, Degrees => degs_perm, MonomialSize => 16];
    fto := map(R1, R, (generators R1)_perm);
    fback := map(R, R1, (generators R)_perm);
    (R1, fto, fback))

--------------------------------------------------------------------
-- Quotients
--------------------------------------------------------------------
-- quotient methods:
-- 1. syzygies
-- 2. use elimination methods? I forget how?
-- 3. case: x is a variable, I is homogeneous
--    case: x is a polynomial
--    case: x is an ideal
-- 4. DegreeLimit: stop at a certain degree
-- 5. BasisElementLimit: stop after one element
-- 6. PairLimit: stop after 100 S-pairs

-- keys: the second object in the quotient
QuotientContext = new SelfInitializingType of Context
QuotientContext.synonym = "quotient context"

QuotientComputation = new Type of Computation
QuotientComputation.synonym = "quotient computation"

-- TODO: try to find a compatible context that can be used in the computation
new QuotientContext from Sequence := (C, S) -> ( (A, B) := S; QuotientContext{ mingens B } )
new QuotientComputation from Sequence := (C, S) -> new QuotientComputation from {
    BasisElementLimit => (S#2).BasisElementLimit,
    DegreeLimit       => (S#2).DegreeLimit,
    PairLimit         => (S#2).PairLimit,
    Result            => null}

isComputationDone QuotientComputation := Boolean => options quotient >> opts -> container -> (
    -- this function determines whether we can use the cached result, or further computation is necessary
    not instance(container.Result, Nothing)
    and opts.BasisElementLimit <= container.BasisElementLimit
    and(opts.DegreeLimit       <= container.DegreeLimit and opts.DegreeLimit =!= {} or container.DegreeLimit === {})
    and opts.PairLimit         <= container.PairLimit)

updateComputation(QuotientComputation, Thing) := Thing => options quotient >> opts -> (container, result) -> (
    container.BasisElementLimit = opts.BasisElementLimit;
    container.DegreeLimit       = opts.DegreeLimit;
    container.PairLimit         = opts.PairLimit;
    container.Result            = result)

--quotient = method(...) -- defined in m2/quotient.m2
quotient(Ideal,  Ideal)       := Ideal  => opts -> (I, J) -> quotientHelper(I, J, (quotient, Ideal, Ideal), opts)
quotient(Ideal,  Number)      :=
quotient(Ideal,  RingElement) := Ideal  => opts -> (I, f) -> quotient(I, ideal f, opts)
Ideal  : Ideal                := Ideal  =>         (I, J) -> quotient(I, J)
Ideal  : Number               :=
Ideal  : RingElement          := Ideal  =>         (I, f) -> quotient(I, f)

-- TODO: why is this the right thing to do?
quotient(MonomialIdeal, RingElement) := MonomialIdeal => opts -> (I, f) -> (
    quotient(I, if size f === 1 and leadCoefficient f == 1 then monomialIdeal f else ideal f, opts))
MonomialIdeal : RingElement          := MonomialIdeal =>         (I, f) -> quotient(I, f)

quotient(Module, Ideal)       := Module => opts -> (M, I) -> quotientHelper(M, I, (quotient, Module, Ideal), opts)
quotient(Module, Number)      :=
quotient(Module, RingElement) := Module => opts -> (M, f) -> quotient(M, ideal f, opts)
Module : Ideal                := Module =>         (M, I) -> quotient(M, I)
Module : Number               :=
Module : RingElement          := Module =>         (M, f) -> quotient(M, f)

-- annihilator of (B+A)/A, where A and B have a common ambient module
-- note: if A is an ideal and B=f, then this is isomorphic to R/(A:f)
quotient(Module, Module)      := Ideal  => opts -> (M, N) -> quotientHelper(M, N, (quotient, Module, Module), opts)
Module : Module               := Ideal  =>         (M, N) -> quotient(M, N)

-- TODO: the methods with "Number" should be made unnecessary via https://github.com/Macaulay2/M2/issues/1519

-- Helper for quotient methods
quotientHelper = (A, B, key, opts) -> (
    R := ring A;
    if ring B === ZZ then B = sub(B, R);

    strategy := opts.Strategy;
    doTrim := if opts.MinimalGenerators then trim else identity;
    cast := if instance(A, MonomialIdeal) then monomialIdeal else ideal;
    opts = opts ++ { DegreeLimit => resolutionDegreeLimit(R, opts.DegreeLimit) };

    -- this logic runs the strategies in order, or the specified strategy
    computation := (opts, container) -> (
	if R =!= ring B then error "expected objects in the same ring";
	if instance(B, RingElement) then B = ideal B;
	if uniform' {A, B} and ambient' A != ambient' B
	then error "expected objects to be contained in the same ambient object";
	-- note: if B \subset A then A:B should be "everything", but computing
	-- a gb for A can be slow, so isSubset' doesn't compute a gb
	if isSubset'(B, A) then return if uniform' {A, B} then cast 1_R else ambient' A;
	-- note: ideal(..A..) :         f    = A <==> f is nzd / A
	-- note: ideal(..A..) : ideal(..B..) = A <==>
	-- note: module(.A.)  : ideal(..B..) = A <==> B is not contained in any associated primes of A
	-- TODO: can either of the above be efficiently checked?
	-- TODO: module(.A.)  : module(.B.)  = ? <==> A \subset B
	if instance(B, Ideal) then -- see the above TODO item
	if isSubset'(ambient' A, B) then return A;
	-- TODO: add speedup for when isSubset'(A, B), being cautious of (a3):(a3,bc) in kk[abc]/ac

	-- TODO: what would adding {SyzygyLimit => opts.BasisElementLimit, BasisElementLimit => null} do?
	opts = new OptionTable from override'(options gb, opts ++ {Strategy => null});
	runHooks(key, (opts, A, B), Strategy => strategy));

    -- this is the logic for caching partial quotient computations. A.cache contains an option:
    --   QuotientContext{ mingens B } => QuotientComputation{ Result }
    container := fetchComputation(QuotientComputation, A, (A, B, opts), new QuotientContext from (A, B));

    -- the actual computation of quotient occurs here
    C := (cacheComputation(opts, container)) computation;

    if C =!= null then doTrim C else if strategy === null
    then error("no applicable strategy for ", toString key)
    else error("assumptions for quotient strategy ", toString strategy, " are not met"))

--------------------------------------------------------------------
-- Algorithms for Ideal : Ideal
algorithms#(quotient, Ideal, Ideal) = new MutableHashTable from {
    Iterate => (opts, I, J) -> (
	R := ring I;
	-- TODO: extend this into a strategy for any PID
	if R === ZZ then return ideal sub(gcd I_* / gcd flatten(I_*, J_*), ZZ);
	fold(first entries mingens J, ideal 1_R, (f, M1) ->
	    if generators(f * M1) % generators I == 0 then M1
	    else intersect(M1, quotient(I, ideal f, opts, Strategy => Quotient)))),

    -- FIXME: potential bug with nonstandard fields, see the last test in quotient-test.m2
    Quotient => (opts, I, J) -> (
	R := ring I;
	-- FIXME: this line computes a gb for I!!!
	mR := transpose generators J ** (R / I);
	-- if J is a single element, this is the same as
	-- computing syz gb(matrix{{f}} | generators I, ...)
	g := syz gb(mR, opts,
	    Strategy   => LongPolynomial,
	    Syzygies   => true,
	    SyzygyRows => 1);
	-- The degrees of g are not correct, so we fix that here:
	-- g = map(R^1, null, g);
	lift(ideal g, R)),

    -- TODO
    Linear => (opts, I, J) -> (
	-- assumptions: J is a single linear element, and everything is homogeneous
	if not isHomogeneous I
	or not isHomogeneous J or not isLinearForm J_0
	then return null;
	stderr << "warning: quotient strategy Linear is not yet implemented" << endl; null),

    Monomial => (opts, I, J) -> (
	R := ring I;
	if not isMonomialIdeal I
	or not isMonomialIdeal J
	or not isPolynomialRing R
	or not isCommutative R
	then return null;
	cast := if instance(I, MonomialIdeal) then identity else ideal;
	-- TODO: make sure (monomialIdeal, MonomialIdeal) isn't forgetful
	cast newMonomialIdeal(R, rawColon(raw monomialIdeal I, raw monomialIdeal J))),
    }

-- Installing hooks for Ideal : Ideal
scan({Quotient, Iterate-*, Linear*-, Monomial}, strategy ->
    addHook(key := (quotient, Ideal, Ideal), algorithms#key#strategy, Strategy => strategy))

--------------------------------------------------------------------
-- Algorithms for Module : Ideal
algorithms#(quotient, Module, Ideal) = new MutableHashTable from {
    Iterate => (opts, M, J) -> (
	-- This is the iterative version, where M is a
	-- submodule of F/K, or ideal, and J is an ideal.
	M1 := super M;
	m := generators M | relations M;
	scan(numgens J, i -> (
		f := J_i;
		if generators(f*M1) % m != 0 then (
		    M2 := quotient(M, f, opts, Strategy => Quotient);
		    M1 = intersect(M1, M2);
		    )));
	M1),

    Quotient => (opts, M, J) -> (
	m := generators M;
	F := target m;
	if M.?relations then m = m | M.relations;
	j := transpose generators J;
	g := (j ** F) | (target j ** m);
	-- We would like to be able to inform the engine that
	-- it is not necessary to compute various of the pairs
	-- of the columns of the matrix g.
	h := syz gb(g, opts,
	    Strategy   => LongPolynomial,
	    Syzygies   => true,
	    SyzygyRows => numgens F);
	if M.?relations then subquotient(h % M.relations, M.relations) else image h
	),

    -- TODO:
    Linear => (opts, M, J) -> (
	-- assumptions: J is a single linear element, and everything is homogeneous
	if not isHomogeneous M
	or not isHomogeneous J or not isLinearForm J_0
	then return null;
	stderr << "warning: quotient strategy Linear is not yet implemented" << endl; null),
    }

-- Installing hooks for Module : Ideal
scan({Quotient, Iterate-*, Linear*-}, strategy ->
    addHook(key := (quotient, Module, Ideal), algorithms#key#strategy, Strategy => strategy))

--------------------------------------------------------------------
-- Algorithms for Module : Module
algorithms#(quotient, Module, Module) = new MutableHashTable from {
    Iterate => (opts, I, J) -> (
	R := ring I;
	M1 := ideal 1_R;
	m := generators I | relations I;
	scan(numgens J, i -> (
		f := image (J_{i});
		-- it used to say f ** M1, but that can't have been right.
		-- I'm just guessing that M1 * f is better.  (drg)
		if generators(M1 * f) % m != 0
		then (
		    M2 := quotient(I, f, opts, Strategy => Quotient);
		    M1 = intersect(M1, M2);
		    )));
	M1),

    Quotient => (opts, M, J) -> (
	m := generators M;
	if M.?relations then m = m | M.relations;
	j := adjoint(generators J, (ring J)^1, source generators J);
	F := target m;
	g := j | (dual source generators J ** m);
	-- << g << endl;
	-- We would like to be able to inform the engine that
	-- it is not necessary to compute various of the pairs
	-- of the columns of the matrix g.
	h := syz gb(g, opts,
	    Strategy   => LongPolynomial,
	    Syzygies   => true,
	    SyzygyRows => 1);
	ideal h),
    }

-- Installing hooks for Module : Module
scan({Quotient, Iterate}, strategy ->
    addHook(key := (quotient, Module, Module), algorithms#key#strategy, Strategy => strategy))

--------------------------------------------------------------------
-- Saturations
--------------------------------------------------------------------
-- TODO:
-- - should saturate(I) use the irrelevant ideal when multigraded?

-- keys: the second ideal of saturation
SaturateContext = new SelfInitializingType of QuotientContext
SaturateContext.synonym = "saturate context"

SaturateComputation = new Type of QuotientComputation
SaturateComputation.synonym = "saturate computation"

-- TODO: try to find other compatible cacheKeys, perhaps of type QuotientContext, that can be used in the computation
new SaturateContext from Sequence := (C, S) -> ( (A, B) := S; SaturateContext{ mingens B } )
new SaturateComputation from Sequence := (C, S) -> new SaturateComputation from {
    BasisElementLimit => (S#2).BasisElementLimit,
    DegreeLimit       => (S#2).DegreeLimit,
    PairLimit         => (S#2).PairLimit,
    Result            => null}

-- Note: isComputationDone and updateComputation inherit from QuotientComputation
-- TODO: is there something smarter that can be done for saturation in particular?

-- saturate = method(Options => options saturate) -- defined in m2/quotient.m2
saturate(Ideal,  Ideal)       := Ideal  => opts -> (I, J) -> saturateHelper(I, J, (saturate, Ideal, Ideal), opts)
saturate(Ideal,  Number)      :=
saturate(Ideal,  RingElement) := Ideal  => opts -> (I, f) -> saturateHelper(I, f, (saturate, Ideal, RingElement), opts)
saturate Ideal                := Ideal  => opts ->  I     -> saturate(I, ideal vars ring I, opts)

saturate(MonomialIdeal, RingElement) := MonomialIdeal => opts -> (I, f) -> (
    saturate(I, if size f === 1 and leadCoefficient f == 1 then monomialIdeal f else ideal f, opts))

saturate(Module, Ideal)       := Module => opts -> (M, J) -> saturateHelper(M, J, (saturate, Module, Ideal), opts)
saturate(Module, Number)      :=
saturate(Module, RingElement) := Module => opts -> (M, f) -> saturateHelper(M, f, (saturate, Module, RingElement), opts)
saturate Module               := Module => opts ->  M     -> saturate(M, ideal vars ring M, opts)

-- TODO: is M / saturate 0_M a correct computation of saturation of M?
saturate(Vector, Ideal)       := Module => opts -> (v, J) -> saturate(image matrix {v}, J, opts)
saturate(Vector, Number)      :=
saturate(Vector, RingElement) := Module => opts -> (v, f) -> saturate(image matrix {v}, f, opts)
saturate Vector               := Module => opts ->  v     -> saturate(image matrix {v}, opts)

-- used when P = decompose irr
-- TODO: do a one-step caching here
saturate(Ideal,  List)        := Ideal  => opts -> (I, L) -> fold(L, I, (J, I) -> saturate(I, J, opts))
saturate(Module, List)        := Module => opts -> (M, L) -> fold(L, M, (J, M) -> saturate(M, J, opts))
saturate(Vector, List)        := Module => opts -> (v, L) -> saturate(image matrix {v}, L, opts)

-- TODO: the methods with "Number" should be unnecessary via https://github.com/Macaulay2/M2/issues/1519

-- Helper for saturation methods
saturateHelper = (A, B, key, opts) -> (
    R := ring A;
    if ring B === ZZ then B = sub(B, R);

    -- this is only here because some methods are not implemented for RingElement
    B' := if instance(B, RingElement) or instance(B, Number) then ideal B else B;

    strategy := opts.Strategy;
    doTrim := if opts.MinimalGenerators then trim else identity;
    opts = opts ++ { DegreeLimit => resolutionDegreeLimit(R, opts.DegreeLimit) };

    -- this logic runs the strategies in order, or the specified strategy
    computation := (opts, container) -> (
	if R =!= ring B then error "expected objects in the same ring";
	-- note: if B \subset A then A:B^infty should be "everything", but computing
	-- a gb for A can be slow, so isSubset' doesn't compute a gb
	-- TODO: if radical A is cached and B \subset radical A then A : B^infty = ambient A
	-- alternatively, can radical containment be efficiently checked?
	if isSubset'(B', A) then return ambient' A;
	-- note: ideal(..A..) :            f^infty = A <==> f is nzd /A
	-- note: ideal(..A..) : ideal(..B..)^infty = A <==> B is not contained in any associated primes of A
	-- TODO: can either of the above be efficiently checked?
	if isSubset'(ambient' A, B') then return A;
	-- TODO: add speedup for when isSubset'(A, B'), being cautious of (a3):(a3,bc) in kk[abc]/ac

	opts = new OptionTable from override'(options gb, opts ++ {Strategy => null});
	runHooks(key, (opts, A, B), Strategy => strategy));

    -- this is the logic for caching partial saturation computations. A.cache contains an option:
    --   SaturateContext{ mingens B } => SaturateComputation{ Result }
    container := fetchComputation(SaturateComputation, A, (A, B, opts), new SaturateContext from (A, B'));

    -- the actual computation of saturation occurs here
    C := (cacheComputation(opts, container)) computation;

    if C =!= null then doTrim C else if strategy === null
    then error("no applicable strategy for ", toString key)
    else error("assumptions for saturation strategy ", toString strategy, " are not met"))

-- Helper for GRevLex strategy
saturationByGRevLexHelper := (I, v, opts) -> (
    R := ring I;
    (R1, fto, fback) := grevLexRing(index v, R);
    g1 := groebnerBasis(fto I, Strategy => "F4");
    (g1', maxpower) := divideByVariable(g1, R1_(numgens R1 - 1));
    if maxpower == 0 then (I, 0) else (ideal fback g1', maxpower))

--------------------------------------------------------------------
-- Algorithms for Module : Ideal^infinity
algorithms#(saturate, Module, Ideal) = new MutableHashTable from {
    Iterate => (opts, M, I) -> (
	M' := quotient(M, I, opts); while M' != M do ( M = M'; M' = quotient(M, I, opts) ); M ),

    -- TODO: if decompose is already cached, do this strategy instead
    Decompose => (opts, M, I) -> saturate(M, decompose I, Strategy => Iterate),
    }

-- Installing hooks for Module : Ideal^infinity
scan({Decompose, Iterate}, strategy ->
    addHook(key := (saturate, Module, Ideal), algorithms#key#strategy, Strategy => strategy))

--------------------------------------------------------------------
-- Algorithms for Module : RingElement^infinity
algorithms#(saturate, Module, RingElement) = new MutableHashTable from {
    Iterate => (opts, M, f) -> (
	M' := quotient(M, f, opts); while M' != M do ( M = M'; M' = quotient(M, f, opts) ); M ),
    }

-- Installing hooks for Module : RingElement^infinity
scan({Iterate}, strategy ->
    addHook(key := (saturate, Module, RingElement), algorithms#key#strategy, Strategy => strategy))

--------------------------------------------------------------------
-- Algorithms for Ideal : Ideal^infinity
algorithms#(saturate, Ideal, Ideal) = new MutableHashTable from {
    -- TODO: this is sometimes faster than Eliminate
    Iterate => (opts, I, J) -> (
	R := ring I;
	m := transpose generators J;
	while (
	    S := (ring I)/I;
	    m = m ** S;
	    I = ideal syz gb(m, Syzygies => true);
	    I != 0) do ();
	ideal (presentation ring I ** R)),

    Eliminate => (opts, I, J) -> intersect apply(J_*, g -> saturate(I, g, opts)),

    GRevLex => (opts, I, J) -> (
	-- FIXME: this might not be necessary, but the code isn't designed for this case.
	if not isFlatPolynomialRing ring I
	or not isHomogeneous I
	or not isHomogeneous J
	or not isGRevLexRing ring I
	then return null;
	-- First check that all generators are variables of the ring
	-- TODO: can this strategy work with generators of the irrelevant ideal?
	if any(index \ J_*, v -> v === null) then return null;
	-- Saturate with respect to each variable separately
	L := for g in J_* list saturationByGRevLexHelper(I, g, opts);
	-- Intersect them all
	-- TODO: when exactly is I returned?
	if any(last \ L, x -> x == 0) then I
	else intersect(first \ L)),

    Monomial => (opts, I, J) -> (
	R := ring I;
	if not isMonomialIdeal I
	or not isMonomialIdeal J
	or not isPolynomialRing R
	or not isCommutative R
	then return null;
	cast := if instance(I, MonomialIdeal) then identity else ideal;
	-- TODO: make sure (monomialIdeal, MonomialIdeal) isn't forgetful
	cast newMonomialIdeal(R, rawSaturate(raw monomialIdeal I, raw monomialIdeal J))),
    }

-- Installing hooks for Ideal : Ideal^infinity
scan({Iterate, Eliminate, GRevLex, Monomial}, strategy ->
    addHook(key := (saturate, Ideal, Ideal), algorithms#key#strategy, Strategy => strategy))

--------------------------------------------------------------------
-- Algorithms for Ideal : RingElement^infinity
algorithms#(saturate, Ideal, RingElement) = new MutableHashTable from {
    Iterate => (opts, I, f) -> saturate(I, ideal f, opts ++ {Strategy => Iterate}), -- backwards compatibility
    Linear => (opts, I, f) -> (
	-- assumptions for this case:
	--   (1) the ring is of the form k[x1..xn].  No quotients, k a field or ZZ, grevlex order
	--   (2) all variables have degree 1.
	--   (3) I is homogeneous
	--   (4) f = homog linear form
	R := ring I;
	if not isFlatPolynomialRing R
	or not isGRevLexRing R
	or not all(gens R, g -> sum degree g == 1)
	or not isHomogeneous I
	or not isHomogeneous f or not isLinearForm f
	then return null;
	-- TODO: what does this do?
	res := newCoordinateSystem(R, matrix{{f}});
	fto := res#1;
	fback := res#0;
	v := R_(numgens R - 1);
	g := gens gb(fto I, opts);
	ideal fback first divideByVariable(g, v)),

    Bayer => (opts, I, f) -> (
	-- Bayer method. This may be used if I, f are homogeneous.
	-- Basic idea: in a ring R[z]/(f - z), with the RevLex order, compute GB of I.
	-- assumptions for this case:
	--   (1) the ring is of the form k[x1..xn].  No quotients, k a field or ZZ
	--   (2) I is homogeneous
	--   (3) f = homog, generated by one element
	R := ring I;
	if not isFlatPolynomialRing R
	or not isHomogeneous I
	or not isHomogeneous f or sum degree f === 0
	then return null;
	n := numgens R;
	degs := append(degrees R, degree f);
	X := local X;
	R1 := (coefficientRing R)[X_0 .. X_n, Degrees => degs, MonomialSize => 16];
	i  := map(R1, R, (vars R1)_{0..n-1});
	f1 := i f;
	I1 := ideal (i generators I);
	A  := R1/(f1 - R1_n); -- TODO: add to ideal instead of quotient?
	iback := map(R, A, vars R | f);
	IA := generators I1 ** A;
	g := groebnerBasis(IA, Strategy => "F4"); -- TODO: compare with MGB
	(g1, notused) := divideByVariable(g, A_n);
	ideal iback g1),

    Eliminate => (opts, I, f) -> (
	-- Eliminate(t, (I, t * f - 1))
	-- assumptions for this case:
	--  I is an ideal in a flat polynomial ring (ring of the form k[x1..xn], no quotients, k a field or ZZ)
	--  f is an ideal, generated by one elem
	R := ring I;
	if not isFlatPolynomialRing R then return null;
	(R1, fto, fback) := eliminationInfo R;
	J := ideal(R1_0 * fto f - 1) + fto I;
	g := groebnerBasis(J, Strategy => "F4"); -- TODO: compare with MGB
	p1 := selectInSubring(1, g);
	ideal fback p1),

    GRevLex => (opts, I, v) -> (
	-- FIXME: this might not be necessary, but the code isn't designed for this case.
	if not isHomogeneous I
	or not isFlatPolynomialRing ring I
	or not isGRevLexRing ring I
	then return null;
	-- First check that v is a variable of the ring
	-- TODO: can this strategy work with generators of the irrelevant ideal?
	if index v === null then return null;
	-- Saturate with respect to each variable separately
	first saturationByGRevLexHelper(I, v, opts)),

    "Unused" => (opts, I, f) -> (
	-- NOT USED; TODO: assumptions?
	R := ring I;
	I1 := ideal 1_R;
	while I1 != I do (
	    I1 = I;
	    I = ideal syz gb(matrix{{f}} | generators I,
		Syzygies   => true,
		SyzygyRows => 1)
	    );
	I)
    }

-- Installing hooks for Ideal : RingElement^infinity
scan({"Unused", Iterate, Eliminate, GRevLex, Bayer, Linear}, strategy ->
    addHook(key := (saturate, Ideal, RingElement), algorithms#key#strategy, Strategy => strategy))

--------------------------------------------------------------------
-- isSupportedInZeroLocus
--------------------------------------------------------------------

-- Note: this function isn't cached because the usecase in VirtualResolutions doesn't
-- require it but it does take advantage of precomputed saturation of the annihilator
isSupportedInZeroLocus = method()
isSupportedInZeroLocus(Ideal, Ideal)  := (B, I) -> isSupportedInZeroLocus(B, comodule I)
isSupportedInZeroLocus(Ideal, Module) := (B, M) -> (
    -- Returns true if M is supported only on the zero locus of B
    S := ring B;
    -- There are two ways to check this:
    -- 1. saturate the annihilator of M with respect to B and compare it to ideal(1)
    -- In general, computing the saturation is unnecessary, but when the saturation of the
    -- annihilator is known, it's faster to check whether saturate(annihilator M, B) == ideal 1
    if M.cache.?annihilator then (
	N := annihilator M;
	container := fetchComputation(SaturateComputation, N, (N, B, options saturate), new SaturateContext from (N, B));
	if isComputationDone container then ( cacheHit container; return saturate(N, B) == ideal 1_S ) else true);
    -- 2. check that a high enough power of elements of B annihilates M
    n := numgens S;
    all(first entries mingens B, g -> (
	supp := index \ support g;
	perm := toList(set(0..n-1) - set supp) | supp;
	R := (coefficientRing S)[(S_*)_perm,
	    MonomialSize  => 16,
	    MonomialOrder => {Position => Up, n - #supp, #supp}];
	-- TODO: can we compute gb once at the top instead?
	G := groebnerBasis(sub(presentation M, R), Strategy => "F4"); -- TODO: try "MGB"
	-- TODO: is "ann coker" necessary?
	0 != ann coker selectInSubring(1, leadTerm G))))
-- check if a graded module sheafifies to zero
isSupportedInZeroLocus(Ideal, GradedModule) := (B, G) -> (
    all(min G .. max G, deg -> isSupportedInZeroLocus(B, G_deg)))

--------------------------------------------------------------------
-- Annihilators
--------------------------------------------------------------------

-- annihilator = method(Options => {Strategy => null}) -- defined in m2/quotient.m2
annihilator RingElement := Ideal => opts -> f -> annihilator(ideal f,  opts)
annihilator Ideal       := Ideal => opts -> I -> annihilator(module I, opts)
annihilator Module      := Ideal => opts -> (cacheValue symbol annihilator) (
    M -> annihilatorHelper(M, (annihilator, Module), opts))

-- Helper for annihilator methods
annihilatorHelper = (A, key, opts) -> (
    R := ring A;
    if isWeylAlgebra R then error "annihilator has no meaning for objects over a Weyl algebra";
    -- TODO: add more instant checks
    f := presentation A;
    -- TODO: is this any different from A == 0?
    F := target f;
    if numgens F === 0 then return ideal 1_R;

    strategy := opts.Strategy;

    C := runHooks(key, (opts, A), Strategy => strategy);

    if C =!= null then C else if strategy === null
    then error("no applicable strategy for ", toString key)
    else error("assumptions for annihilator strategy ", toString strategy, " are not met"))

-- Algorithms for annihilator Module
algorithms#(annihilator, Module) = new MutableHashTable from {
    -- TODO: annihilator routines for MonomialIdeals?
    Quotient     => (opts, M) -> (
	f := presentation M;
	image f : target f),
    Intersection => (opts, M) -> (
	f := presentation M;
	F := target f;
	intersect apply(numgens F, i -> ideal modulo(F_{i}, f))),
    }

-- Installing hooks for annihilator Module
scan({Quotient, Intersection}, strategy ->
    addHook(key := (annihilator, Module), algorithms#key#strategy, Strategy => strategy))

--------------------------------------------------------------------
----- Development section
--------------------------------------------------------------------

saturationByGRevLex     = (I,J) -> saturate(I, J, Strategy => GRevLex)
saturationByElimination = (I,J) -> saturate(I, J, Strategy => Eliminate)
intersectionByElimination =  L  -> intersect(L,   Strategy => Eliminate)

--------------------------------------------------------------------
----- Tests section
--------------------------------------------------------------------

load "./Saturation/quotient-test.m2"
load "./Saturation/saturate-test.m2"
load "./Saturation/annihilator-test.m2"

--------------------------------------------------------------------
----- Documentation section
--------------------------------------------------------------------

beginDocumentation()

-- TODO: review
load "./Saturation/doc.m2"
load "./Saturation/quotient-doc.m2"
load "./Saturation/saturate-doc.m2"
load "./Saturation/annihilator-doc.m2"

end--

restart
debugLevel = 1
debug needsPackage "Saturation"

kk = ZZ/32003
R = kk(monoid[x_0, x_1, x_2, x_3, x_4, Degrees => {2:{1, 0}, 3:{0, 1}}, Heft => {1,1}])
B0 = ideal(x_0,x_1)
B1 = ideal(x_2,x_3,x_4)

I = ideal(x_0^2*x_2^2*x_3^2+44*x_0*x_1*x_2^2*x_3^2+2005*x_1^2*x_2^2*x_3^2+12870
     *x_0^2*x_2*x_3^3-725*x_0*x_1*x_2*x_3^3-15972*x_1^2*x_2*x_3^3-7768*x_0^2*x_2
     ^2*x_3*x_4-13037*x_0*x_1*x_2^2*x_3*x_4-14864*x_1^2*x_2^2*x_3*x_4+194*x_0^2*
     x_2*x_3^2*x_4-2631*x_0*x_1*x_2*x_3^2*x_4-2013*x_1^2*x_2*x_3^2*x_4-15080*x_0
     ^2*x_3^3*x_4-9498*x_0*x_1*x_3^3*x_4+5151*x_1^2*x_3^3*x_4-12401*x_0^2*x_2^2*
     x_4^2+4297*x_0*x_1*x_2^2*x_4^2-13818*x_1^2*x_2^2*x_4^2+7330*x_0^2*x_2*x_3*x
     _4^2-13947*x_0*x_1*x_2*x_3*x_4^2-12602*x_1^2*x_2*x_3*x_4^2-14401*x_0^2*x_3^
     2*x_4^2+8101*x_0*x_1*x_3^2*x_4^2-1534*x_1^2*x_3^2*x_4^2+8981*x_0^2*x_2*x_4^
     3-11590*x_0*x_1*x_2*x_4^3+1584*x_1^2*x_2*x_4^3-13638*x_0^2*x_3*x_4^3-5075*x
     _0*x_1*x_3*x_4^3-14991*x_1^2*x_3*x_4^3,x_0^7*x_2-6571*x_0^6*x_1*x_2+13908*x
     _0^5*x_1^2*x_2+11851*x_0^4*x_1^3*x_2+14671*x_0^3*x_1^4*x_2-14158*x_0^2*x_1^
     5*x_2-15190*x_0*x_1^6*x_2+6020*x_1^7*x_2+5432*x_0^7*x_3-8660*x_0^6*x_1*x_3-
     3681*x_0^5*x_1^2*x_3+11630*x_0^4*x_1^3*x_3-4218*x_0^3*x_1^4*x_3+6881*x_0^2*
     x_1^5*x_3-6685*x_0*x_1^6*x_3+12813*x_1^7*x_3-11966*x_0^7*x_4+7648*x_0^6*x_1
     *x_4-10513*x_0^5*x_1^2*x_4+3537*x_0^4*x_1^3*x_4+2286*x_0^3*x_1^4*x_4+733*x_
     0^2*x_1^5*x_4+11541*x_0*x_1^6*x_4+660*x_1^7*x_4);

--              B0       B1
-- GRevLex      25.95s   0.18s
-- Eliminate    28.35s   0.29s
-- Iterate      60.02s   0.05s
for B in {B0, B1} do (
    for strategy in {GRevLex, Eliminate, Iterate} do
    print(strategy, (try elapsedTime saturate(I, B, Strategy => strategy);)))

ans1 = elapsedTime saturationByGRevLex(saturationByGRevLex(I, B0), B1); -- 25.53s
ans2 = elapsedTime saturationByGRevLex(saturationByGRevLex(I, B1), B0); -- 22.93s

elapsedTime saturationByGRevLex(I, x_0); -- 9.01s
elapsedTime saturationByGRevLex(I, x_1); -- 8.77s

-- TODO: what a discrepancy
ans3 = elapsedTime saturationByElimination(saturationByElimination(I, B0), B1); -- 49.22s
ans4 = elapsedTime saturationByElimination(saturationByElimination(I, B1), B0); -- 28.63


elapsedTime J1 = saturationByElimination(I, x_0);
elapsedTime J2 = saturationByElimination(I, x_1);
elapsedTime J = intersectionByElimination(J1,J2);
elapsedTime J' = intersectionByElimination(J2,J1);
elapsedTime J'' = intersect(J1,J2);
elapsedTime J''' = intersect(J2,J1);
J == J'
J == J''

time gens gb I;
J2 = elapsedTime saturationByElimination(I, x_0);
assert isHomogeneous J2
J2' = elapsedTime saturationByElimination(I, x_1);

J2 = elapsedTime saturationByElimination(I, ideal(x_0,x_1));
J2' = elapsedTime saturationByElimination(J2, ideal(x_2,x_3,x_4));

J1 = elapsedTime saturate(I, x_0);
J1' = elapsedTime saturate(I, x_1);
J1 == J2
J1' == J2'

betti J2
betti J1

restart
load "./Saturation/badsaturations.m2"

-- TODO: how was this so fast before??
J = paramRatCurve({2,2},{3,3},{4,2});
elapsedTime genSat(J,2) -- 200 sec
elapsedTime genSat2(J,2) -- 50 sec
elapsedTime genSat3(J,2) -- 35 sec

J = paramRatCurve({2,2},{3,3},{5,2});
elapsedTime genSat(J,2) -- 691 sec
elapsedTime genSat2(J,2) -- 104 sec
elapsedTime genSat3(J,2) -- 71 sec

J = paramRatCurve({2,2},{3,4},{4,3});
elapsedTime genSat(J,2) --  sec
elapsedTime genSat2(J,2) --  sec
elapsedTime genSat3(J,2) -- 75 sec

I = ideal J_*_{5,13}
use ring I
elapsedTime I1 = saturate(I, x_0);
elapsedTime (I2,pow) = saturationByGRevLex(I,x_0);
I1 == I2

elapsedTime I1 = saturate(I, x_1);
elapsedTime (I2,pow) = saturationByGRevLex(I,x_1);
I1 == I2
elapsedTime J1 = intersectionByElimination(I1,I2);

elapsedTime I1 = saturationByGRevLex(I, B0);
elapsedTime I2 = saturationByGRevLex(I1, B1);

elapsedTime saturationByGRevLex(saturationByGRevLex(I, B0), B1);
elapsedTime saturationByGRevLex(saturationByGRevLex(I, B1), B0);

elapsedTime saturationByElimination(saturationByElimination(I, B0), B1);
elapsedTime saturationByElimination(saturationByElimination(I, B1), B0);

elapsedTime J0a = saturationByGRevLex(I,x_0);
elapsedTime J0b = saturationByGRevLex(I,x_1);
--J1 = elapsedTime intersectionByElimination(first J0a,first J0b);
La = elapsedTime trim first J0a;
Lb = elapsedTime trim first J0b;
J1 = elapsedTime intersectionByElimination(La, Lb);
J1a = elapsedTime saturationByGRevLex(J1,x_2);
J1b = elapsedTime saturationByGRevLex(J1,x_3);
J1c = elapsedTime saturationByGRevLex(J1,x_4);
J1a#1, J1b#1, J1c#1
J1ab = elapsedTime intersectionByElimination(J1a,J1b);
elapsedTime J2 = intersectionByElimination{first J1a, first J1b, first J1c};
elapsedTime saturationByGRevLex(I,B0);

saturationByElimination(I,x_0);

(R1,fto,fback) = grevLexRing(0,S)
L = fto I;
satL = ideal first divideByVariable(gens gb L, R1_4);
fback satL
oo == I1
leadTerm oo
ideal oo
(R1,fto,fpack) = grevLexRing(1,S)
use S

R = ZZ/101[a..d]
I = ideal"ab-ac,b2-cd"
I1 = saturate(I,a)
elapsedTime (I2,pow) = saturationByGRevLex(I,a);
I1 == I2
pow
(R1,fto,fback) = grevLexRing(0,R)
fto I
fto

----------------------------
-- Benchmarking example:
restart
needsPackage "Saturation"

R = ZZ/101[vars(0..14)]
M = genericMatrix(R, a, 3, 5)
I = minors(3, M);
codim I
d = 4
J = ideal((gens I) * random(R^10, R^d));

-- algorithm; d =   2    3    4    5
-- null          0.45   40
-- Linear         N/A  N/A  N/A  N/A
-- Iterate       0.41   40
-- Quotient        22  271
elapsedTime J'  = quotient(J, I);
for strategy in {Linear, Iterate, Quotient} do
print(strategy, (try (elapsedTime J'  === quotient(J, I, Strategy => strategy)) else "not applicable"))

-- algorithm; d =   2    3    4    5
-- null          0.45  430
-- GRevLex        N/A  N/A  N/A  N/A
-- Eliminate     2.87  378
-- Iterate         20  575
elapsedTime J'' = saturate(J, I);
for strategy in {GRevLex, Eliminate, Iterate} do
print(strategy, (try (elapsedTime J'' === saturate(J, I, Strategy => strategy)) else "not applicable"))

elapsedTime quotient(J, I, Strategy => Iterate);
elapsedTime saturate(J, I, Strategy => Eliminate);

degree I
elapsedTime(J : I_0);