1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
|
newPackage(
"Tropical",
Version => "1.0",
Date => "July 2019",
Authors => {
{Name => "Carlos Amendola", Email => "carlos.amendola@tum.de", HomePage=>""},
{Name => "Kathlen Kohn", Email => "kathlen.korn@gmail.com", HomePage=>""},
{Name => "Sara Lamboglia", Email => "lamboglia@math.uni-frankfurt.de", HomePage=>""},
{Name => "Diane Maclagan", Email => "D.Maclagan@warwick.ac.uk", HomePage=>"http://homepages.warwick.ac.uk/staff/D.Maclagan/"},
{Name => "Ben Smith", Email => "benjamin.smith-3@manchester.ac.uk", HomePage=>""},
{Name => "Jeff Sommars", Email => "sommars1@uic.edu", HomePage=>"http://homepages.math.uic.edu/~sommars"},
{Name => "Paolo Tripoli", Email => "paolo.tripoli@nottingham.ac.uk", HomePage=>"https://sites.google.com/view/paolotripoli/home"},
{Name => "Magdalena Zajaczkowska", Email => "Magdalena.A.Zajaczkowska@gmail.com", HomePage=>""}
},
Headline => "A package for doing computations in tropical geometry",
Configuration => {
"path" => "",
"fig2devpath" => "",
-- "keepfiles" => true,
"keepfiles" => false,
"cachePolyhedralOutput" => true,
"tropicalMax" => false,
"polymakeCommand" =>""
},
OptionalComponentsPresent => true,
PackageExports => {"gfanInterface","EliminationMatrices","Matroids","Polyhedra"},
AuxiliaryFiles => true,
-- AuxiliaryFiles => false,
CacheExampleOutput => true
)
export{
"TropicalCycle",
"tropicalCycle",
"isBalanced",
"tropicalPrevariety",
"ComputeMultiplicities",
"Prime",
"stableIntersection",
"tropicalVariety",
"isTropicalBasis",
"multiplicities",
"IsHomogeneous",
"Symmetry",
"visualizeHypersurface",
"Valuation",
"BergmanFan"
}
polymakeCommand = (options Tropical)#Configuration#"polymakeCommand"
polymakeOK = polymakeCommand != ""
--Do we want to keep this?
verboseLog = if debugLevel > 0 then printerr else identity
if polymakeOK then verboseLog "polymake is installed" else verboseLog "polymake not present";
------------------------------------------------------------------------------
-- CODE
------------------------------------------------------------------------------
--Polymake visualization for tropical hypersurfaces
--inputs: p prime, x rational number
--outputs: p-adic valuation of x
pAdicVal = (p,x) -> (
num := numerator(x);
denom := denominator(x);
temp := p;
if num%p===0 then (while (num%temp===0) do (temp=temp*p); return round(log(p,temp)-1));
if denom%p===0 then (while (denom%temp===0) do (temp=temp*p); return -round(log(p,temp)-1));
return 0;
)
--inputs: p prime, polyn polynomial with p-adic coefficients
--outputs: polynomial whose coefficients are valuations of coefficients of polyn
pAdicCoeffs := (p,polyn) -> (
(M,C):=coefficients polyn;
valuations := transpose matrix{apply(flatten entries C,i->pAdicVal(p,sub(i,QQ)))};
return (M,valuations);
)
--inputs: parameter specifies the coefficient ring for polyn, polyn polynomial over coefficient ring
--outputss: polynomial whose coefficients are valuations of coefficients of polyn
polynomialCoeffs := (parameter,polyn) -> (
(M,C):=coefficients(Variables=>delete(parameter,gens class polyn),polyn);
return (M,transpose matrix{apply(flatten entries C, i->min apply(exponents(polyn),sum))});
)
--inputs: var power of a monomial
--outputs: term with power as coefficient
expToCoeff = (var) -> (
temp := separate("^",toString(var));
if (length temp === 1) then return var else return concatenate(temp_1,temp_0);
)
--inputs: polyn macaulay 2 polynomial
--outputs: min of linear polynomials for polymake
toTropPoly = method(TypicalValue=>String)
toTropPoly (RingElement) := (polyn) ->(
termList := apply(apply(terms polyn,toString),term->separate("*",term));
tropTerms := apply(apply(apply(termList, term->apply(term,expToCoeff)),term->between("+",term)),concatenate);
return "min("|concatenate(between(",",tropTerms))|")";
)
--inputs: (termList,coeffs)=coefficients polynomial
--outputs: min of linear polynomials for polymake
toTropPoly (Matrix,Matrix) := (termList,coeffs) ->(
noCoeffs := sum flatten entries termList;
termString := apply(apply(terms noCoeffs,toString),term->separate("*",term));
tropTerms := apply(apply(apply(termString, term->apply(term,expToCoeff)),term->between("+",term)),concatenate);
withCoeffs := for i when i<numColumns termList list toString((flatten entries coeffs)_i)|"+"|tropTerms_i;
return "min("|concatenate(between(",",withCoeffs))|")";
)
--outputs: return Min or Max depending on the state of tropcailMax
minmax = () -> (if (Tropical#Options#Configuration#"tropicalMax") then return "Max" else return "Min";)
visualizeHypersurface = method(Options=>{
Valuation=>null
})
visualizeHypersurface (RingElement) := o-> (polyn)->(
polynomial := toTropPoly(polyn);
if (instance(o.Valuation,Number)) then polynomial = toTropPoly(pAdicCoeffs(o.Valuation,polyn));
if (instance(o.Valuation,RingElement)) then polynomial = toTropPoly(polynomialCoeffs(o.Valuation,polyn));
if (instance(o.Valuation,String) and o.Valuation == "constant") then polynomial = toTropPoly(sum flatten entries (coefficients polyn)_0);
print polynomial;
filename := temporaryFileName();
filename << "use application 'tropical';" << endl << "visualize_in_surface(new Hypersurface<"|minmax()|">(POLYNOMIAL=>toTropicalPolynomial(\""|polynomial|"\")));" << close;
runstring := polymakeCommand | " " |filename | " > "|filename|".out 2> "|filename|".err";
run runstring;
removeFile (filename|".err");
removeFile (filename|".out");
removeFile (filename);
)
--Example hypersurface
--visualizeHypersurface("min(12+3*x0,-131+2*x0+x1,-67+2*x0+x2,-9+2*x0+x3,-131+x0+2*x1,-129+x0+x1+x2,-131+x0+x1+x3,-116+x0+2*x2,-76+x0+x2+x3,-24+x0+2*x3,-95+3*x1,-108+2*x1+x2,-92+2*x1+x3,-115+x1+2*x2,-117+x1+x2+x3,-83+x1+2*x3,-119+3*x2,-119+2*x2+x3,-82+x2+2*x3,-36+3*x3)")
--opens in browser
--Setting up the data type TropicalCycle
TropicalCycle = new Type of MutableHashTable
TropicalCycle.synonym = "tropical cycle"
TropicalCycle.GlobalAssignHook = globalAssignFunction
TropicalCycle.GlobalReleaseHook = globalReleaseFunction
--basic operations on a tropical cycle
tropicalCycle = method(TypicalValue => TropicalCycle)
tropicalCycle (Fan, List) := (F,mult)->(
if #maxCones(F) != #mult then error("The multiplicity list has the wrong length");
T := new TropicalCycle;
T#"Multiplicities" = mult;
T#"Fan" = F;
return T
)
--functions to switch to min-convention
minmaxSwitch = method ()
minmaxSwitch (Fan) := F ->
fanFromGfan({- rays F, linSpace F, maxCones F ,dim F,Polyhedra$isPure F,isSimplicial F,Polyhedra$fVector F});
minmaxSwitch (TropicalCycle) := T ->(
tropicalCycle( minmaxSwitch fan T, multiplicitiesReorder({rays (minmaxSwitch fan T),
maxCones (minmaxSwitch fan T),-rays T,maxCones T,multiplicities T})))
--Decide if a one-dimensional tropical cycle is balanced.
--input: TropicalCycle T, which we assume is 1-dimensional
isBalancedCurves = T ->(
-- find first integer lattice points on each vector (get list of points)
-- check whether sum * multiplicity is 0
-- assuming already have lattice points V = {...}
m := multiplicities T;
r := entries transpose rays T;
(first unique sum(#r, i->(m_i * r_i))) == 0
)
--computes the star of the codimension-one polyhedron P in the tropical cycle Sigma
star (TropicalCycle, Polyhedron) := (Sigma, P) -> (
--Create the linear space parallel to P
--and quotient by it
--Version for cones
d:=dim P;
V:= gens kernel transpose (rays(P)|linealitySpace(P));
B:=inverse(rays(P) | linealitySpace(P) | V);
--version for polyhedral complex
-- adjacentCells=select(maxPolyhedra(fan Sigma),sigma->(contains(sigma,P)));
--version for fans, as currently implemented
maxConesSigma:=facesAsCones(0, fan Sigma);
adjacentCellsPos:=positions(maxConesSigma,sigma->(contains(sigma,P)));
adjacentCells:=apply(adjacentCellsPos,i->(maxConesSigma_i));
raysStar:=apply(adjacentCells,sigma->(
--Create vector pointing from P into sigma
--version for Polyhedral complexes
-- w:=interiorPoint(sigma)-interiorPoint(P);
--version for fans
w:=sum(rank source rays sigma, i->(rays sigma)_{i}) -
sum(rank source rays P, i->(rays P)_{i});
--Project it onto ker(P)
w=entries(B*w);
w=posHull matrix apply(#w-d,i->(w_(i+d)))
));
multsSigma:=multiplicities Sigma;
multStar:=apply(adjacentCellsPos,i->(multsSigma_i));
return(tropicalCycle(fan raysStar,multStar));
);
isBalanced = method(TypicalValue => Boolean)
isBalanced (TropicalCycle):= T->(
if polymakeOK then (
--in polymake, the lineality span (1,...,1) is default. we embed the
--fans in a higher dimensional fan in case our lineality span does not
--contain (1,...,1)
C := tropicalCycle(embedFan fan T, multiplicities T);
-- parse object into a polymake script, run polymake and get result back from the same file (which got overwritten by polymake)
filename := temporaryFileName();
filename << "use application 'tropical';" << endl << "my $c = "|convertToPolymake(C) <<
endl << "print is_balanced($c);" << endl;
filename<<close;
-- filename << "use strict;" << endl << "my $filename = '" << filename << "';" << endl << "open(my $fh, '>', $filename);" << endl;
-- filename << "print $fh is_balanced($c);" << endl << "close $fh;" << endl << close;
runstring := polymakeCommand | " "|filename | " > "|filename|".out 2> "|filename|".err";
run runstring;
removeFile (filename|".err");
result := get (filename|".out");
removeFile (filename|".out");
removeFile (filename);
if (substring(-4,result)=="true") then return true
else if (substring(-5,result)=="false") then return false
else if (substring(-1,result)=="1") then return true
else if (substring(0,result)=="") then return false
else return "Polymake throws an error";
)
else (
if dim T == 1 then return (isBalancedCurves T) else (
--loop over all co-dimension 1 faces F of T (use faces(ZZ, PolyhedralObject))
--for each F, compute star F / lineality space F (can use linSpace, write star of polyhedral complex)
--use isBalancedCurves to check if balanced for all F
d:=dim T;
balanced:=true;
F:= Polyhedra$faces(1, fan T);
i:=0;
while balanced and i<#F do (
--change next line when PolyhedralComplex change is made
balanced = isBalancedCurves(star(T,polyhedronFromFace(fan T,F_i)));
i=i+1;
);
return balanced;
);
);
);
--F is a fan and f is a list describing a face of F
polyhedronFromFace = (F, f) -> (
L := linealitySpace F;
R := rays F;
ambientDim := numgens target rays F;
origin := transpose matrix{apply(ambientDim, i -> 0)};
convexHull(origin, R_f, L)
);
--Computing a tropical prevariety
tropicalPrevariety = method(TypicalValue => Fan, Options => {
--in the future, more strategies not dependent on "gfan" will be available
Strategy=> "gfan"
})
tropicalPrevariety (List) := o -> L -> (
gfanopt:=(new OptionTable) ++ {"tropicalbasistest" => false,"tplane" => false,"symmetryPrinting" => false,
"symmetryExploit" => false,"restrict" => false,"stable" => false};
--using strategy gfan
if (o.Strategy=="gfan") then (
F:= gfanTropicalIntersection(L, gfanopt);
--gives only the fan and not the fan plus multiplicities which are wrongly computed in gfan
if (Tropical#Options#Configuration#"tropicalMax" == true) then return F_0 else return minmaxSwitch (F_0))
else error "options not valid"
)
tropicalPrevariety (List, List) := o -> (L, symmetryList) -> (
gfanopt:=(new OptionTable) ++ {"tropicalbasistest" => false,"tplane" => false,"symmetryPrinting" => false,
"symmetryExploit" => true,"restrict" => false,"stable" => false};
--using strategy gfan
if (o.Strategy=="gfan") then (
F:= gfanTropicalIntersection(L, symmetryList, gfanopt);
--gives only the fan and not the fan plus multiplicities which are wrongly computed in gfan
if (Tropical#Options#Configuration#"tropicalMax" == true) then return F_0 else return minmaxSwitch (F_0))
else error "options not valid"
)
--Computing a tropical variety
--The input is a matrix R, consisting of the rays of the variety,
--a list of lists M, being the list of maximal cones, and a matrix L giving generators
--for the lineality space. R has the first lattice point on rays as columns, while L has generators
--for the lineality space as columns.
--output:list of matrices whose rows span the span of each cone.
-- note that ConesOfVariety is a local variable also in findMultiplicities
computeCones=(R,M,L)->(
ConesOfVariety:={};
i:=0;
ConeOfVariety:={};
if M!={{}} then(
--this i is going through the maximal cones
while(i<#M) do(
ConeOfVariety={};
j:=0;
--this j is going through the rays inside the maximal cone you are in
while(j<#M_i) do(
--creates a list of rays
ConeOfVariety=append(ConeOfVariety, R_(M_i_j));
j=j+1);
-- creates a matrix whose rows are the rays of the cone
ConeOfVariety= L|matrix ConeOfVariety;
-- each cone has to contain also the lineality space since we are not quotienting by it
-- ConeOfVariety = matrix ConeOfVariety ;
--add the cone to the list of cones
ConesOfVariety=append(ConesOfVariety,ConeOfVariety);
i=i+1;
);
)
else
(ConesOfVariety={L};
) ;
ConesOfVariety
)
--Compute the multiplicity of the cone spanned by the columns of the matrix M in trop(V(I))
findMultiplicity=(M,I)->(
--compute vector w in relative interior in order to get the initial ideal in_w(I) with w in the maximal cone M
w:=flatten entries(sum(numColumns M, j->M_{j}));
--weight the ring according to this w , we are using leadTerm and max
--convention since the input fan has not been changed to min
--convention yet
S:=ring I;
R:=newRing(S, MonomialOrder=>{Weights=>w},Global=>false);
J:=sub(I,R);
K:=ideal(leadTerm(1,J));
--you saturate since you don't want the components outside the torus
initialIdeal:= saturate(sub(K,S), product gens S);
--this is the basis of the lattice associated to the toric ideal we are going to compute
-- Basis:= (maxCol( generators kernel transpose M))_0;
toricIdeal:= ideal apply(entries transpose gens kernel transpose M, u->(
mon1:=1_R;
mon2:=1_R;
scan(numgens ring I,i->(if u_i>0 then mon1=mon1*R_i^(u_i) else mon2=mon2*R_i^(-u_i)));
mon1-mon2
));
--this is where we used to use Binomials package
-- toricIdeal:=saturate(latticeBasisIdeal(ring InitialIdeal,Basis),ideal product gens ring I);
toricIdeal = saturate(toricIdeal,product gens R);
m:=(degree(initialIdeal)/degree (toricIdeal));
--return multiplicity m as integer, since it lives currently in QQ
--if m is an integer (as it should be), then the following command parses it to ZZ
--otherwise, an errow will be returned "rational number is not an integer"
lift(m,ZZ)
)
--input Matrix whose columns are the generators of the cone and the ideal of the variety
--output a list of one number that is the multiplicity
--maths behind it look at exercise 34 chapter 3 Tropical book and [Stu96]
--(Grobner basis and Convex Polytopes )
--input: the ideal of the variety and the fan computed by gfanbruteforce
--output: list with the multiplicities to add to the tropicalCycle
findMultiplicities=(I,T)->(
ConesOfVariety:=computeCones( rays T,maxCones T, linSpace T);
--creates a list with matrices that correspond to the maximal cones
M:= apply(ConesOfVariety, linearSpan->(
--for each cone computes the multiplicity and adds this to a list of multiplicities
findMultiplicity(linearSpan,I))
);
M
)
tropicalVariety = method(TypicalValue => TropicalCycle, Options => {
ComputeMultiplicities => true,
Prime => true,
IsHomogeneous=>false,
Symmetry => {}
})
--Main function to call for tropicalVariety. Makes no assumption on ideal
tropicalVariety (Ideal) := o -> (I) ->(
local F;
local T;
newSymmetry:= o.Symmetry; --In case of homogenization we adjust the user given symmetries, recorded in the var newSymmetry.
--If Symmetry present, check user has input permutations with the right length. If newSymmetry is {}, any always returns false.
M := #(gens ring I);
if any(newSymmetry, listPermutation -> #listPermutation != M) then
error ("Length of permutations should be " | M);
if o.IsHomogeneous==false then
(
--First homogenize, append variable AA to the beginning
R := ring I;
AA := symbol AA;
--Extend to a new coefficient ring. The added variable is at the beginning.
S := first flattenRing(R[AA, Join =>false]);
J:=substitute(I,S);
J=homogenize(J,S_0);
J=saturate(J,S_0);
--we transform I in J so that the procedure continues as in the homogeneous case
I=J;
--If Symmetry present, adjust the symmetry vectors to the right length and shift the values up by one. If not present, this operates on an empty list.
--Increase the values of these lists by 1.
newSymmetry = for listPermutation in newSymmetry list --make a list with the following values
apply(listPermutation, j -> j + 1);
--Prepend a 0.
newSymmetry = apply(newSymmetry, listPermutation -> prepend(0, listPermutation));
);
if (o.Prime== true) then (
cone := gfanTropicalStartingCone I;
--check if resulting fan would be empty
if instance(cone, String) then return cone;
if(newSymmetry == {}) then
F= gfanTropicalTraverse cone
else
F= gfanTropicalTraverse (cone, "symmetry" => newSymmetry);
--check if resulting fan would be empty
if (instance(F,String)) then return F;
T=tropicalCycle(F_0,F_1))
else
--If ideal not prime, use gfanTropicalBruteForce to ensure disconnected parts are not missed at expense of multiplicities
(if o.ComputeMultiplicities==false
then (
F= gfanTropicalBruteForce gfanBuchberger I;
--check if resulting fan is empty
if (instance(F,String)) then return F;
mult := {};
i:=0;
while(i<#maxCones (F))do(
mult=append(mult,{});
i=i+1);
T=tropicalCycle(F,mult)
--note that the output of gfanTropicalBruteForce is a fan and an empty list of multiplicities this is why we have to add the right number of empty multiplicities
)
else (
F= gfanTropicalBruteForce gfanBuchberger I;
--check if resulting fan is empty
if (instance(F,String)) then return F;
--call the function tropicalCycle to create a new tropical variety with multiplicities
T=tropicalCycle(F,findMultiplicities(I,F))
); );
--Need to fix the paragraph below - why arewe doing all these checks when the
--tropical variety is computed?
if o.IsHomogeneous==false then
(
newRays:=dehomogenise(rays T);
newLinSpace:=gens gb dehomogenise(linealitySpace T);
TProperties := {newRays,
newLinSpace,
maxCones T,
dim(T)-1,
Polyhedra$isPure fan T,
isSimplicial T,
drop(fVector T,1)};
UFan:=fanFromGfan(TProperties);
U:= tropicalCycle(UFan,multiplicitiesReorder({rays UFan,maxCones UFan,newRays,maxCones T,multiplicities(T)}));
-- we always want the output to be called T so we change U to T
T=U;
);
if (Tropical#Options#Configuration#"tropicalMax" == true) then return T else return minmaxSwitch T
)
--auxiliary function to quotient out the lineality space (1,1,...1) introduced by the homogenisation
--input= matrix whose columns are either the rays or the generators of the lineality space of a fan
--output= matrix whose columns are either the rays or the generators of the lineality space of the fan quotiented by (1,...,1)
dehomogenise=(M) -> (
vectorList:= entries transpose M;
dehomog:= new List;
for L in vectorList do (
newL := apply(#L-1,i->(L#(i+1)-L#0));
gcdL := gcd(newL);
if gcdL==0 then continue;
newL = newL/gcdL;
newL = apply(newL,i->(lift(i,ZZ)));
dehomog = append(dehomog,newL);
);
if dehomog=={} then map(ZZ^(#entries(M)-1),ZZ^0,0)
else transpose matrix dehomog
)
--Check if a list of polynomials is a tropical basis for the ideal they generate
--Current Strategy is using 'gfan'
isTropicalBasis = method(TypicalValue => Boolean, Options => {
Strategy=> "gfan"
})
isTropicalBasis (List) := o -> L -> (
if (o.Strategy=="gfan") then (
gfanopt:=(new OptionTable) ++ {"tropicalbasistest" => true,"tplane" => false,"symmetryPrinting" => false,"symmetryExploit" => false,"restrict" => false,"stable" => false};
if not all(L, a-> isHomogeneous a) then error "Not implemented for non homogeneous polynomials yet";
return gfanTropicalIntersection(L, gfanopt)
)
)
stableIntersection = method(TypicalValue =>
TropicalCycle, Options => {Strategy=> if polymakeOK then "atint" else "gfan"})
stableIntersection (TropicalCycle, TropicalCycle) := o -> (T1,T2) -> (
--TODOS:
--4) gfan strategy outputs only a fan, not a tropical cycle
--5) test cases
--6) make tropical an immutable hash table
if (o.Strategy=="atint") then (
--in polymake, the lineality span (1,...,1) is default.
--we embed the fans in a higher dimensional fan in case our lineality span does not contain (1,...,1)
C1 := tropicalCycle(embedFan fan T1, multiplicities T1);
C2 := tropicalCycle(embedFan fan T2, multiplicities T2);
filename := temporaryFileName();
--ugly declaration of helping strings
openingStr := "\"_type SymmetricFan\\n\\nAMBIENT_DIM\\n\";";
dimStr := "\"\\n\\nDIM\\n\";";
linDimStr := "\"\\n\\nLINEALITY_DIM\\n\";";
raysStr := "\"\\n\\nRAYS\\n\";";
nRaysStr := "\"\\nN_RAYS\\n\";";
linSpaceStr := "\"\\n\\nLINEALITY_SPACE\\n\";";
orthLinStr := "\"\\n\\nORTH_LINEALITY_SPACE\\n\";";
fStr := "\"\\n\\nF_VECTOR\\n\";";
simpStr := "\"\\n\\nSIMPLICIAL\\n\";";
pureStr := "\"\\n\\nPURE\\n\";";
coneStr := "\"\\n\\nCONES\\n\";";
maxConeStr := "\"MAXIMAL_CONES\\n\";";
weightStr := "\"\\nMULTIPLICITIES\\n\";";
filename << "use application 'tropical';" << "my $c = "|convertToPolymake(C1) << "my $d = "|convertToPolymake(C2) << "my $i = intersect($c,$d);" << "use strict;" << "my $filename = '" << filename << "';" << "open(my $fh, '>', $filename);" << "print $fh " << openingStr << "print $fh $i->AMBIENT_DIM;" << "print $fh " << dimStr << "print $fh $i->DIM;" << "print $fh " << linDimStr << "print $fh $i->LINEALITY_DIM;" << "print $fh " << raysStr << "print $fh $i->RAYS;" << "print $fh " << nRaysStr << "print $fh $i->N_RAYS;" << "print $fh " << linSpaceStr << "print $fh $i->LINEALITY_SPACE;" << "print $fh " << orthLinStr << "print $fh $i->ORTH_LINEALITY_SPACE;" << "print $fh " << fStr << "print $fh $i->F_VECTOR;" << "print $fh " << simpStr << "print $fh $i->SIMPLICIAL;" << "print $fh " << pureStr << "print $fh $i->PURE;" << "print $fh " << coneStr << "my $cones = $i->CONES;" << "$cones =~ s/['\\>','\\<']//g;" << "print $fh $cones;" << "print $fh " << maxConeStr << "print $fh $i->MAXIMAL_CONES;" << "print $fh " << weightStr << "print $fh $i->WEIGHTS;" << "close $fh;" << close;
runstring := polymakeCommand | " "|filename | " > "|filename|".out 2> "|filename|".err";
run runstring;
result := get filename;
removeFile (filename|".out");
removeFile (filename|".err");
removeFile (filename);
parsedResult := gfanParsePolyhedralFan(result);
if instance(parsedResult, String) then return parsedResult;
(polyfan, mult) := parsedResult;
--now we still need to transform things back to our format:
--1) adjust the rays
R := rays polyfan;
row := (entries R)#0;
ind := -1;
scan(#row, i -> if ((row#i)==1) then ind = i);
R = submatrix'(R, {0} , {ind});
--2)adjust the maximal cones
C := maxCones polyfan;
C = apply(C, c -> delete(ind, c));
C = apply(C, c -> apply(c, n -> if (n > ind) then (n-1) else (n) ));
--3)adjust lineality space
L := linSpace polyfan;
L = submatrix'(L, {0} , );
-- L = L|(transpose matrix {apply(numgens target L , i -> 1)});
--4)inverse of our function embedFan
F := unembedFan fan(R,L,C);
return tropicalCycle (F,mult);
)
else if (o.Strategy=="gfan") then (
F1 := fan(T1);
m1 := multiplicities(T1);
F2 := fan(T2);
m2 := multiplicities(T2);
return gfanStableIntersection(F1,m1,F2,m2);
)
else (
return "Strategy unknown: Choose 'atint' or 'gfan'";
);
)
embedFan = F -> (
--embeds a fan into a fan of one dimension higher
--and DOES NOT add the lineality space (1,...,1)
--1) adjust rays
rs := rays F;
numberOfEntries := (numgens target rs)+1;
rs = entries transpose rs;
if (#rs != 0) then (
-- rs = apply(rs, s -> s|{-sum s});
rs = apply(rs, s -> s|{0});
-- numberOfEntries = #first(rs);
rs = transpose matrix rs;
) else (
rs = matrix apply(numberOfEntries, i -> {})
);
--2) adjust lineality space
ls := entries transpose linSpace F;
if (#ls != 0) then(
-- ls = apply(ls, s -> s|{-sum s});
ls = apply(ls, s -> s|{0});
-- ad := ambDim F;
-- ls = ls|{apply(ad+1, i -> 1)};
ls = transpose matrix ls;
) else (
ls = matrix apply(numberOfEntries, i -> {});
);
return fan(rs,ls,maxCones F);
)
unembedFan = F -> (
--inverse function to embedFan
--1) adjust rays
rs := entries transpose rays F;
if (#rs != 0) then (
-- rs = apply(rs, s -> apply(s, i -> i-sum(s)/(#s)));
rs = apply(rs, s -> apply(s, i -> i-last(s)));
rs = apply(rs, s -> drop(s,-1));
-- rs = apply(rs, s -> apply(s, i -> i*(#s+1)));
rs = transpose matrix rs;
) else (
rs = matrix apply(numgens(target rays F)-1, i -> {});
);
--2) adjust lineality space
ls := entries transpose linSpace F;
if (#ls != 0) then (
-- ls = apply(ls, s -> apply(s, i -> i-sum(s)/(#s)));
ls = apply(ls, s -> apply(s, i -> i-last(s)));
ls = apply(ls, s -> drop(s,-1));
-- ls = apply(ls, s -> apply(s, i -> i*(#s+1)));
ls = transpose matrix ls;
) else (
ls = matrix apply(numgens(target rays F)-1, i -> {});
);
return fan(rs,ls,maxCones F);
)
convertToPolymake = (T) ->(
-- converts a tropical cycle into a string, which is a constructor of a tropical cycle in polymake
--
F := fan(T);
--check if given cycle is empty
if (dim(F) < 0) then (return "new Cycle<Min>(PROJECTIVE_VERTICES=>[],MAXIMAL_POLYTOPES=>[],WEIGHTS=>[]);";) else (
--if not empty, check if min- or max-convention is used
str := "new Cycle<";
if Tropical#Options#Configuration#"tropicalMax" then str=str|"Max" else str=str|"Min";
rs := entries transpose rays T;
numberOfRays := #rs;
ambientDim := ambDim F;
--convert to polymake convention of rays: 1) add origin of the form (1,0,...,0)
str = str|">(PROJECTIVE_VERTICES=>[[1";
local ray;
scan (ambientDim,i -> str = str|",0");
str = str|"]";
--2) add every ray with a leading 0
scan (numberOfRays,i -> (
ray = rs#i;
str = str|",[0";
scan (ambientDim,j -> str = str|","|ray#j);
str = str|"]";
));
--every cone must now also be spanned by the origin
str = str|"],MAXIMAL_POLYTOPES=>[";
maxCs := maxCones(F);
numberOfMaxCones := #maxCs;
local cone;
scan (numberOfMaxCones,i -> (
cone = maxCs#i;
str = str|"[0";
scan (#cone,j -> str = str|","|(cone#j+1));
str = str|"],";
));
--delete last comma
str = substring(0,#str-1,str);
ls := entries transpose linSpace F;
if (#ls != 0) then (
str = str|"],LINEALITY_SPACE=>[";
--add lineality space
scan (#ls, i -> (
ray = ls#i;
str = str|"[0";
scan(#ray, j -> str = str|","|(ray#j));
str = str|"],";
));
--delete last comma
str = substring(0,#str-1,str);
);
str = str|"],WEIGHTS=>[";
--the multiplicities stay unchanged
mult := multiplicities(T);
scan (numberOfMaxCones,i -> str = str|mult#i|",");
str = substring(0,#str-1,str);
str = str | "]);";
return str;
)
)
--functions to get stuff from fans and tropical cycles
rays TropicalCycle:= T->( rays fan T)
cones (ZZ,TropicalCycle):= (i,T)->( cones(i,fan T))
dim TropicalCycle:= T->( dim fan T)
ambDim TropicalCycle:= T->( ambDim fan T)
fVector (TropicalCycle) := T->(Polyhedra$fVector fan T)
fan TropicalCycle := T -> (T#"Fan")
linealitySpace (TropicalCycle):= T->( linSpace fan T)
maxCones (TropicalCycle):= T->( maxCones fan T)
multiplicities = method(TypicalValue => List)
multiplicities (TropicalCycle) := T -> (T#"Multiplicities")
isPure TropicalCycle := Boolean => T->( Polyhedra$isPure(fan(T)))
isSimplicial TropicalCycle:= Boolean => T->( isSimplicial(fan(T)))
--------------------
--Bergman fan code
--------------------
-- BergmanconeC returns the matrix of generators of the cones
-- corresponding to the chain of flats C. It does not check whether C
-- is a chain of flats or not.
BergmanconeC = (M, C) -> (
groundSetM:=#M.groundSet;
L := {};
for F in C do(
vect:={};
scan(groundSetM, i->(
if member(i,F) then vect = append(vect,1) else vect = append(vect,0);
));
L = append(L, vect)
);
transpose matrix L
)
-- BergmanFan returns the fan of a loopless well-defined matroid
-- ground set must be [n]
-- depends on functions above
BergmanFan = (M) -> (
if ( loops(M) != {} ) then
error("The current method only works for loopless matroids");
E := toList M.groundSet;
L := {};
LM := latticeOfFlats M;
redLM := dropElements(LM, {{}, E});
redOrdcplx := maximalChains redLM;
allOnes := apply(E,i->1);
for C in redOrdcplx do(
L = append(L, coneFromVData(BergmanconeC(M,C),transpose matrix {allOnes}));
);
F:= fan L;
mults:=apply(#(maxCones F),i->1);
tropicalCycle(F,mults)
)
----------------------------------------------------------------------------
------------------------------------------------------------------------------
-- DOCUMENTATION
------------------------------------------------------------------------------
beginDocumentation()
doc ///
Key
Tropical
Headline
the main M2 package for tropical computations
Description
Text
This is the main M2 package for all tropical computations.
This uses Anders Jensen's package gfan, Michael Joswig's
package Polymake, and also internal M2 computations.
The package defaults to using the min convention for tropical geometry.
To switch to the max convention, reload the package using the command
loadPackage("Tropical",Configuration=>{"tropicalMax"=>true});
The main command is @TO tropicalVariety@.
To use the Polymake commands see the @TO "Polymake interface instructions"@.
Text
@SUBSECTION "Contributors"@
Text
The following people have also contributed to the package:
Text
@UL {
{HREF("https://users.math.yale.edu/~km995/","Kalina Mincheva")},
{HREF("http://www.math.unibe.ch/ueber_uns/personen/vargas_de_leon_alejandro/index_ger.html","Alejandro Vargas de Leon")},
{HREF("http://www.math.harvard.edu/~cmwang/","Charles Wang")},
{HREF("https://math.berkeley.edu/~yelena/", "Yelena Mandelshtam")},
{HREF("https://alessioborzi.github.io/", "Alessio Borzì")},
{HREF("https://www.linkedin.com/in/timothyxu/", "Timothy Xu")},
{HREF{"https://publish.uwo.ca/~aashra9/","Ahmed Umer Ashraf"}}
}@
///
doc ///
Key
visualizeHypersurface
(visualizeHypersurface,RingElement)
Valuation
Headline
visualize the tropical hypersurface of the given polynomial
Usage
visualizeHypersurface(polyn)
visualizeHypersurface(Valuation=>p,polyn)
visualizeHypersurface(Valuation=>t,polyn)
Inputs
polyn: RingElement
polynomial
Valuation=>Number
use p-adic coefficients with given p
Valuation=>RingElement
use coefficients in R[t] with given t
Description
Text
This function wraps the Polymake visualization for a
tropical hypersurface given an input polynomial. The input
should be entered as a homogeneous polynomial. Running
this method opens an image in a new browser window. The
coefficients can be interpreted as p-adic coefficients or as
polynomials via the option @TO Valuation@. Examples are
commented out because they open a new browser window.
Example
--Examples are commented because they open in browser. Uncomment to run.
R=ZZ[x,y,z]
f=2*x*y+x*z+y*z+z^2
--visualizeHypersurface(Valuation=>2,f)
f=2*x^2+x*y+2*y^2+x*z+y*z+2*z^2
--visualizeHypersurface(f)
R=ZZ[w,x,y,z]
f=8*x^2+8*y^2+8*z^2+8*w^2+2*x*y+2*x*z+2*y*z+2*x*w+2*y*w+2*z*w
--visualizeHypersurface(f)
///
doc ///
Key
TropicalCycle
Headline
a Type for working with tropical cycles
Description
Text
This is the main type for tropical cycles. A TropicalCycle
consists of a Fan with an extra HashKey Multiplicities,
which is the list of multiplicities on the maximal cones
listed in the order that the maximal cones appear in the
MaxCones list. A TropicalCycle
is saved as a hash table which contains the Fan and the
Multiplicities.
///
doc ///
Key
tropicalCycle
(tropicalCycle, Fan, List)
Headline
constructs a TropicalCycle from a Fan and a list with multiplicities
Usage
tropicalCycle(F,mult)
Inputs
F:Fan
mult:List
Outputs
T:TropicalCycle
Description
Text
This function creates a tropical cycle from a fan and a list of multiplicities.
The multiplicities must be given in the same order as the maximal cones
appear in the MaximalCones list.
Example
F = fan {posHull matrix {{1},{0},{0}}, posHull matrix {{0},{1},{0}}, posHull matrix {{0},{0},{1}}, posHull matrix {{-1},{-1},{-1}}}
mult = {1,2,-3,1}
tropicalCycle(F, mult)
///
doc///
Key
isBalanced
(isBalanced, TropicalCycle)
Headline
checks whether a tropical cycle is balanced
Usage
isBalanced T
Inputs
T:TropicalCycle
Outputs
B:Boolean
Description
Text
This function checks if a tropical cycle is balanced.
Example
QQ[x,y,z]
V = tropicalVariety(ideal(x+y+z))
isBalanced V
F = fan {posHull matrix {{1},{0},{0}}, posHull matrix {{0},{1},{0}}, posHull matrix {{0},{0},{1}}, posHull matrix {{-1},{-1},{-1}}}
mult = {1,2,-3,1}
isBalanced (tropicalCycle(F, mult))
///
doc///
Key
tropicalPrevariety
(tropicalPrevariety, List)
(tropicalPrevariety, List, List)
[tropicalPrevariety, Strategy]
Headline
the intersection of the tropical hypersurfaces
Usage
tropicalPrevariety(L)
tropicalPrevariaty(L,LS)
tropicalPrevariety(L,Strategy=>S)
tropicalPrevariety(L,LS,Strategy=>S)
Inputs
L:List
of polynomials
LS: List
of Symmetries (optional)
Strategy=>String
Strategy (currently only "gfan")
Outputs
F:Fan
the intersection of the tropical hypersurfaces of polynomials in L
Description
Text
This method intersects the tropical hypersurfaces
coming from the tropicalizations of the polynomials in the list L.
If there are symmetries that leave the specified polynomials fixed,
they can be specified by passing a list with the symmetries
as second argument, with the same format as the option @TO Symmetry@.
Example
QQ[x_1,x_2,x_3,x_4]
L={x_1+x_2+x_3+x_4,x_1*x_2+x_2*x_3+x_3*x_4+x_4*x_1,x_1*x_2*x_3+x_2*x_3*x_4+x_3*x_4*x_1+x_4*x_1*x_2,x_1*x_2*x_3*x_4-1}
tropicalPrevariety L
QQ[x_0,x_1]
tropicalPrevariety({x_0+x_1+1}, {{1,0}})
QQ[x_0,x_1]
tropicalPrevariety({x_0+x_1+1,x_0+x_1},Strategy => "gfan")
///
doc///
Key
tropicalVariety
(tropicalVariety, Ideal)
[tropicalVariety, ComputeMultiplicities]
[tropicalVariety, Prime]
[tropicalVariety, IsHomogeneous]
[tropicalVariety, Symmetry]
Headline
the tropical variety associated to an ideal
Usage
tropicalVariety(I)
tropicalVariety(I,ComputeMultiplicities=>true)
tropicalVariety(I,Prime=>true)
tropicalVariety(I,IsHomogeneous=>false)
tropicalVariety(I,Symmetry=>{{...},{...}})
Inputs
I:Ideal
of polynomials
IsHomogeneous=>Boolean
that ensures whether the ideal is already homogeneous
ComputeMultiplicities=>Boolean
that confirms whether the multiplicities will be computed
Prime=>Boolean
that ensures whether the ideal is already prime
Symmetry=>List
that records the symmetries of the ideal
Outputs
F:TropicalCycle
Description
Text
This method takes an ideal and computes the tropical variety
associated to it. By default the ideal is assumed to be
prime. If this is not the case the default answer will not
necessarily give the correct answer. In this case use the
optional argument Prime=>false. By default the
tropicalVariety command computes multiplicities but setting
computeMultiplicities=>false turns this off. This only saves
time if Prime is set to false. The ideal I is not assumed to
be homogeneous. The optional argument IsHomogeneous=>true
allows the user to assert that the ideal is homogeneous. If there
are symmetries of the ring corresponding to I that leave I fixed,
they can be specified with the option @TO Symmetry@.
Example
QQ[x,y];
I=ideal(x+y+1);
T=tropicalVariety(I);
rays(T)
maxCones(T)
linealitySpace T
Polyhedra$fVector fan T
multiplicities(T)
QQ[x,y,z,w];
I = ideal(w+x+y+z)
T = tropicalVariety(I, IsHomogeneous=>true, Symmetry=>{{1,0,2,3},{2,1,0,3},{3,1,2,0}})
rays(T)
maxCones(T)
I=intersect(ideal(x+y+z+w),ideal(x-y,y-z));
T= tropicalVariety(I,Prime=>false);
rays(T)
maxCones(T)
multiplicities(T)
linealitySpace T
QQ[x,y,z,w];
I=intersect(ideal(x+y+z+1),ideal(x^2-y*z));
T= tropicalVariety(I,Prime=>false,ComputeMultiplicities=>false);
rays(T)
maxCones(T)
linealitySpace T
multiplicities(T)
///
doc///
Key
stableIntersection
(stableIntersection,TropicalCycle,TropicalCycle)
[stableIntersection, Strategy]
Headline
computes the stable intersection of two tropical varieties
Usage
stableIntersection(F,G)
stableIntersection(L,Strategy=>S)
Inputs
F:TropicalCycle
a tropical cycle
G:TropicalCycle
another tropical cycle
Strategy=>String
Strategy ("atint" (polymake) or "gfan")
Outputs
T:TropicalCycle
a tropical cycle
Description
Text
This computes the stable intersection of two tropical
cycles. For details on the definition of stable
intersection, see, for example, Section 3.6 of TROPICALBOOK.
If a recent enough version of polymake is installed,
the Strategy "atint" is default. Otherwise "gfan" will be used,
which only computes the fan of the stable intersection
without multiplicities.
Example
QQ[x,y,z];
I = ideal(x^2+y^2+z^2-1);
T1 = tropicalVariety(I);
J = ideal(x*y+y*z+x*z+1);
T2 = tropicalVariety(J);
V = tropicalVariety(I+J);
-- W1 = stableIntersection(T1,T2,Strategy=>"atint");
W2 = stableIntersection(T1,T2,Strategy=>"gfan");
-- V#"Fan" == W1#"Fan"
-- V#"Multiplicities" == W1#"Multiplicities"
V#"Fan" == W2
///
doc///
Key
isTropicalBasis
(isTropicalBasis, List)
[isTropicalBasis, Strategy]
Headline
checks if a list of polynomials is a tropical basis for the ideal they generate
Usage
isTropicalBasis(L)
isTropicalBasis(L,Strategy=>S)
Inputs
L:List
of polynomials
Strategy=>String
Strategy (currently only "gfan")
Outputs
F:Boolean
whether the list of polynomials is a tropical basis for the ideal it generates
Description
Text
This method checks if the intersection of the tropical hypersurfaces associated to the polynomials in the list equals the tropicalization of the variety corresponding to the ideal they generate.
Example
QQ[x,y,z]
isTropicalBasis({x+y+z,2*x+3*y-z})
isTropicalBasis(flatten entries gens Grassmannian (1,4,QQ[a..l]))
///
doc///
Key
multiplicities
(multiplicities, TropicalCycle)
Headline
returns the list of multiplicities on maximal cones in a tropical cycle
Usage
multiplicities(T)
Inputs
T:TropicalCycle
Outputs
L:List
Description
Text
This method returns the list of multiplicities on maximal cones in a tropical cycle.
Example
QQ[x,y,z]
V = tropicalVariety(ideal(x+y+z));
multiplicities V
///
doc///
Key
ComputeMultiplicities
Headline
option to compute the multiplicities in case they ideal is not prime
Usage
tropicalVariety(I,ComputeMultiplicities=>true)
Description
Text
This option allows to compute the multiplicities in case the ideal I is not prime. In fact the output of gfan
does not include them and hence they are computed separately by this package. By default the ideal is assumed to be prime.
Example
QQ[x,y,z];
I=ideal(x^2-y^2);
isPrime I
T=tropicalVariety(I,Prime=>false,ComputeMultiplicities=>true);
rays T
maxCones T
multiplicities T
///
doc///
Key
Prime
Headline
option to declare if the input ideal is prime
Usage
tropicalVariety(I,Prime=>false)
Description
Text
By default the ideal is assumed to be prime. If the ideal is not prime then the internal procedure to compute the tropicalization is different.
It is used gfan_tropicalbrute force instead of gfan_tropicaltraverse.
Example
QQ[x,y,z];
I=ideal(x^2+y^2-2*x*y);
isPrime I
T=tropicalVariety(I,Prime=>false)
///
doc///
Key
IsHomogeneous
Headline
option to declare if the input ideal is homogeneous
Usage
tropicalVariety(I,IsHomogeneous=>true)
Description
Text
If the option is used than homogeneity of the
ideal is not tested. By default the ideal is
always assumed not homogeneous and a test is
performed before applying the function
tropicalVariety.
Example
QQ[x,y];
I=ideal(x+y+1);
T=tropicalVariety (I,IsHomogeneous=>false)
///
doc///
Key
Symmetry
Headline
option to declare if the input ideal has symmetries
Usage
tropicalVariety(I,Symmetry=>{{..},{..}})
Description
Text
If the option is used, the specified
symmetries are used in the calculation of the
tropical variety. For an ideal I of a
polynomial ring R = KK[x_0 .. x_N], each
symmetry is a permutation encoded in a list
\{s_0, s_1, ..., s_N\} of numbers from 0 to N
which records that swapping the variable x_j
with the variable x_{s_j} in R leaves the
ideal I fixed. Exploiting symmetries reduces
the number of computations needed. The length
of each symmetry equals the number of
generators of R, otherwise an error is raised.
Example
QQ[x_0,x_1,x_2];
I=ideal(x_0+x_1+x_2+1);
T=tropicalVariety (I,Symmetry=>{{1,0,2}, {2,1,0} })
///
doc///
Key
(fan,TropicalCycle)
Headline
outputs the fan associated to the tropical cycle
Usage
fan(T)
Inputs
T:TropicalCycle
Outputs
F:Fan
the fan associated to the tropical cycle T
Description
Text
This function outputs the fan associated to the tropical cycle T.
Example
QQ[x,y,z]
T=tropicalVariety (ideal(x+3*y+3));
fan T
peek o3#cache
///
doc///
Key
(maxCones,TropicalCycle)
Headline
computes the maximal cone of a tropical cycle
Usage
maxCones(T)
Inputs
T:TropicalCycle
Outputs
L:List
Description
Text
This function computes the maximal cones of the fan associated to the tropical cycle.
Example
QQ[x,y,z,w]
I=ideal(x^2-y*z+w^2,w^3-x*y^3+z^3);
T=tropicalVariety I;
maxCones T
///
doc///
Key
(isPure,TropicalCycle)
Headline
checks whether a tropical cycle is pure
Usage
isPure(T)
Inputs
T:TropicalCycle
Outputs
B:Boolean
Description
Text
This function checks whether the fan associated to the tropical cycle is pure, i.e. if the maximal cones have all the same dimension.
Example
F=fan ({posHull(matrix{{1,2,3},{0,2,0}}),posHull(matrix{{0},{1}})});
T=tropicalCycle (F,{1,2});
isPure T
///
doc///
Key
(isSimplicial,TropicalCycle)
Headline
checks whether a tropical cycle is simplicial
Usage
isSimplicial(T)
Inputs
T:TropicalCycle
Outputs
B:Boolean
Description
Text
This function checks if the fan associated to the tropical cycle T is simplicial, i.e. if for each cone the rays generating it are linearly independent.
Example
F=fan ({posHull(matrix{{1,2,3},{0,2,0}}),posHull(matrix{{0},{1}})});
T=tropicalCycle (F,{1,2});
isSimplicial T
///
doc///
Key
(rays,TropicalCycle)
Headline
computes the rays of a tropical cycle
Usage
rays(T)
Inputs
T:TropicalCycle
Outputs
M:Matrix
Description
Text
This function computes the rays of the fan associated to the tropical cycle. These are the columns of
the output matrix.
Example
QQ[x,y,z,w]
I=ideal(x^2-y*z+w^2,w^3-x*y^3+z^3);
T=tropicalVariety I;
rays T
///
doc///
Key
(dim,TropicalCycle)
Headline
computes the dimension of a tropical cycle
Usage
dim(T)
Inputs
T:TropicalCycle
Outputs
k:ZZ
the dimension of the tropical cycle T
Description
Text
This function computes the dimension of the fan associated to the tropical cycle T.
Example
QQ[x,y,z,w]
I=ideal(x^2-y*z+w^2,w^3-y^3*x+z^3);
T=tropicalVariety I;
dim T
///
doc///
Key
(fVector,TropicalCycle)
Headline
computes the fVector of a tropical cycle
Usage
fVector(T)
Inputs
T:TropicalCycle
Outputs
L:List
the fVector of the fan associated to the tropical cycle T
Description
Text
This function computes the fVector of the fan associated to the tropical cycle T.
Example
QQ[x,y,z]
T=tropicalVariety (ideal(x+3*y+3));
fVector T
///
doc///
Key
(ambDim,TropicalCycle)
Headline
computes the dimension of the ambient space of a tropical cycle
Usage
ambDim(T)
Inputs
T:TropicalCycle
Outputs
n:ZZ
the dimension of the tropicalCycle T
Description
Text
This function computes the dimension of the space where the tropical cycle is contained.
Example
QQ[x,y,z]
T=tropicalVariety(ideal(x+y+z));
ambDim T
///
doc///
Key
(cones,ZZ,TropicalCycle)
Headline
computes the cones of a tropical cycle
Usage
cones(k,T)
Inputs
k:ZZ
T:TropicalCycle
Outputs
L:List
the cones of codimension k in T
Description
Text
This function computes the cone of codimension k of the fan associated to the tropical cycle T.
Example
QQ[x,y,z,w,t]
I=ideal(x^2-y*z+w^2,w^3-y^3*x+z^3,t-w+x);
T=tropicalVariety I;
cones(2,T)
///
doc///
Key
(linealitySpace,TropicalCycle)
Headline
computes the lineality space of a tropical cycle
Usage
linealitySpace(T)
Inputs
T:TropicalCycle
Outputs
M:Matrix
Description
Text
This function computes the lineality space of the fan associated to the tropical cycle T. The generators of the lineality space are the columns of the
output matrix
Example
QQ[x,y,z];
I=ideal(x-y);
T=tropicalVariety I;
L=linealitySpace T
///
doc///
Key
"Polymake interface instructions"
Headline
instructions for loading Polymake with this package.
Description
Text
The software program Polymake is not distributed with
Macaulay2, so to use the Polymake commands the user needs
to install Polymake on their own machine, and tell
Macaulay2 where to find it. This is done with the
Configuration option "polymakeCommand". The default is
that this is empty, which means that Polymake options will
not be used. To tell the package where your copy of Polymake is installed, use either
loadPackage("Tropical",Configuration=>\{"polymakeCommand"=>"YOUR COMMAND"\}), or
edit the init-Tropical.m2 file (created after you install the package)
by changing "polymakeCommand" => "", into "polymakeCommand" => "YOUR COMMAND"
On a Mac, the default value for YOUR COMMAND is
/Applications/polymake.app/Contents/MacOS/polymake.start
and the init-Tropical.m2 file is usually in ~/Library/Application Support/Macaulay2.
On Unix, the default value for YOUR COMMAND is
/usr/bin/polymake
and the init-Tropical.m2 file is usually in ~/.Macaulay2.
If polymake is installed in a nonstandard location, you can
find YOUR COMMAND with the terminal command "which polymake".
This package should work with Polymake versions > 3.2, and has been tested up to 4.2.
///
doc///
Key
BergmanFan
Headline
the Bergman fan of a matroid
Usage
BergmanFan(M)
Inputs
M:Matroid
Outputs
T:TropicalCycle
Description
Text
Computes the Bergman fan of a matroid, with the fine
fan structure. This uses the Matroids package; the
input should be a matroid in the sense of that
package. The output is a tropical cycle T whose
underlying fan is the fine fan structure in the sense
of Ardila-Klivans on the Bergman fan of the matroid.
This has underlying simplicial complex the order
complex of the lattice of flats of the matroid M.
If the ground set of the matroid has size n, then the
fan given is in R^n, so there is always a lineality
space of dimension at least one.
Example
M=uniformMatroid(2,3);
T=BergmanFan(M);
rays T
maxCones T
linealitySpace T
///
----- TESTS -----
-----------------------
--tropicalCycle
-----------------------
TEST ///
F:=fan(matrix{{0,0,0},{1,0,-1},{0,1,-1}},matrix{{1},{1},{1}},{{0,1},{0,2},{1,2}})
assert((tropicalCycle(F,{1,1,1}))#"Fan"== F)
assert((tropicalCycle(F,{1,1,1}))#"Multiplicities"== {1,1,1})
///
-----------------------
--isTropicalBasis
-----------------------
TEST ///
assert(isTropicalBasis (flatten entries gens Grassmannian(1,4,QQ[a..l]))==true)
R:=QQ[x,y,z]
assert( not isTropicalBasis({x+y+z,2*x+3*y-z}))
///
-----------------------
--getters
-----------------------
--rays
TEST///
T:=new TropicalCycle
F:=fan(matrix{{0,0,0},{1,0,-1},{0,1,-1}},matrix{{1},{1},{1}},{{0,1},{0,2},{1,2}})
T#"Multiplicities" ={1,1,1};
T#"Fan" = F;
assert((rays T)==( matrix{{0,0,0},{1,-1,0},{0,-1,1}}))
F:=fan(map(ZZ^3,ZZ^0,0),matrix{{1},{1},{1}},{{}})
T#"Multiplicities" ={1};
T#"Fan" = F;
assert((rays(T))==(matrix {{}, {}, {}}))
///
--maxCones
TEST///
T:=new TropicalCycle
F:=fan(matrix{{0,0,0},{1,0,-1},{0,1,-1}},matrix{{1},{1},{1}},{{0,1},{0,2},{1,2}})
T#"Multiplicities" ={1,1,1};
T#"Fan" = F;
assert(sort(maxCones T)==( sort({{0,1},{0,2},{1,2}})))
F:=fan(map(ZZ^3,ZZ^0,0),matrix{{1},{1},{1}},{{}})
T#"Multiplicities" ={1};
T#"Fan" = F;
assert((maxCones(T))==({{}}))
///
--dim
TEST///
T:=new TropicalCycle
F:=fan(matrix{{0,0,0},{1,0,-1},{0,1,-1}},matrix{{1},{1},{1}},{{0,1},{0,2},{1,2}})
T#"Multiplicities" ={1,1,1};
T#"Fan" = F;
assert((dim T)==( 3))
F:=fan(map(ZZ^3,ZZ^0,0),matrix{{1},{1},{1}},{{}})
T#"Multiplicities" ={1};
T#"Fan" = F;
assert((dim T)==(1))
///
--ambDim
TEST///
T:=new TropicalCycle
F:=fan(matrix{{0,0,0},{1,0,-1},{0,1,-1}},matrix{{1},{1},{1}},{{0,1},{0,2},{1,2}})
T#"Multiplicities" ={1,1,1};
T#"Fan" = F;
assert((ambDim T)==( 3))
F:=fan(map(ZZ^3,ZZ^0,0),matrix{{1},{1},{1}},{{}})
T#"Multiplicities" ={1};
T#"Fan" = F;
assert((ambDim T)==(3))
///
--fVector
TEST///
T1:=new TropicalCycle
G:=fan(matrix{{0,0,0},{1,0,-1},{0,1,-1}},matrix{{1},{1},{1}},{{0,1},{0,2},{1,2}})
T1#"Multiplicities" ={1,1,1};
T1#"Fan" = G;
assert((fVector T1)==( {0, 1, 3, 3}))
G=fan(map(ZZ^3,ZZ^0,0),matrix{{1},{1},{1}},{{}})
T1#"Multiplicities" ={1};
T1#"Fan" = G;
assert((fVector T1)==({0,1}))
///
--linealitySpace
TEST///
T:=new TropicalCycle
F:=fan(matrix{{0,0,0},{1,0,-1},{0,1,-1}},matrix{{1},{1},{1}},{{0,1},{0,2},{1,2}})
T#"Multiplicities" ={1,1,1};
T#"Fan" = F;
assert((linealitySpace T)==( matrix{{1},{1},{1}}))
F=fan(matrix{{1,0,-1},{0,1,-1}},map(ZZ^2,ZZ^0,0),{{0,1},{0,2},{1,2}})
T#"Multiplicities" ={1,1,1};
T#"Fan" = F;
assert((linealitySpace T)==(0))
///
--multiplicities
TEST///
T:=new TropicalCycle
F:=fan(matrix{{0,0,0},{1,0,-1},{0,1,-1}},matrix{{1},{1},{1}},{{0,1},{0,2},{1,2}})
T#"Multiplicities" ={1,1,1};
T#"Fan" = F;
assert((multiplicities T)==( {1,1,1}))
F:=fan(map(ZZ^3,ZZ^0,0),matrix{{1},{1},{1}},{{}})
T#"Multiplicities" ={1};
T#"Fan" = F;
assert((multiplicities T)==({1}))
///
--fan
TEST///
T=new TropicalCycle
F=fan(matrix{{0,0,0},{1,0,-1},{0,1,-1}},matrix{{1},{1},{1}},{{0,1},{0,2},{1,2}})
T#"Multiplicities" ={1,1,1};
T#"Fan" = F;
assert((fan T)==(F))
F:=fan(map(ZZ^3,ZZ^0,0),matrix{{1},{1},{1}},{{}})
T#"Multiplicities" ={1};
T#"Fan" = F;
assert((fan T)==(F))
///
--cones
TEST///
T:=new TropicalCycle
F:=fan(matrix{{0,0,0},{1,0,-1},{0,1,-1}},matrix{{1},{1},{1}},{{0,1},{0,2},{1,2}})
T#"Multiplicities" ={1,1,1};
T#"Fan" = F;
assert((cones(1,T))==({{}}))
assert((cones(2,T))==({{0},{1},{2}}))
assert((cones(3,T))==({{0,1},{0,2},{1,2}}))
F:=fan(map(ZZ^3,ZZ^0,0),matrix{{1},{1},{1}},{{}})
T#"Multiplicities" ={1};
T#"Fan" = F;
assert((cones(1,T))==({{}}))
///
-----------------------
--isBalanced
-----------------------
TEST///
F=fan(matrix{{0,0,0},{1,0,-1},{0,1,-1}},matrix{{1},{1},{1}},{{0,1},{0,2},{1,2}});
T= tropicalCycle(F,{1,1,1});
assert(isBalanced T)
T2 = tropicalCycle(F,{1,2,3});
assert(not isBalanced T2);
///
TEST///
R=QQ[x,y,z];
V = tropicalVariety(ideal(x+y+z))
assert(isBalanced V)
G = V;
G#"Multiplicities" = {1,2,1}
assert(not isBalanced G)
///
TEST///
S = QQ[x,y];
V = tropicalVariety(ideal(x+y+1))
assert(isBalanced V)
///
TEST///
F = fan {posHull matrix {{1},{0},{0}}, posHull matrix {{0},{1},{0}}, posHull matrix {{0},{0},{1}}, posHull matrix {{-1},{-1},{-1}}}
mult = {1,2,-3,1}
assert(not isBalanced (tropicalCycle(F, mult)))
///
-----------------------
--tropicalPrevariety
-----------------------
TEST///
QQ[x,y,z,w]
F=tropicalPrevariety({x+y+z+w,x^2+y*z})
assert((rays F) == matrix {{1,1,-1},{5,-3,-1},{-3,5,-1},{-3,-3,3}})
///
TEST///
QQ[x,y,z,w]
F=tropicalPrevariety({x+y+z+w,x^2+y*z}, {{0,2,1,3}})
assert((rays F) == matrix {{1,1,-1},{5,-3,-1},{-3,5,-1},{-3,-3,3}})
///
TEST///
QQ[x,y]
F=tropicalPrevariety({x+y+1}, {{1,0}})
assert((rays F) == matrix {{1,-1,0},{0,-1,1}})
///
-----------------------
--stableIntersection
-----------------------
TEST///
F=fan(matrix{{0,0,0},{1,0,-1},{0,1,-1}},matrix{{1},{1},{1}},{{0,1},{0,2},{1,2}});
T= tropicalCycle(F,{1,1,1});
T2= stableIntersection(T,T,Strategy=>"gfan")
assert(dim T2 == 3)
assert(maxCones T2 == {{1, 2}, {0, 2}, {0, 1}})
///
if polymakeOK then (
TEST///
F1:=fan(matrix{{0,0,0},{1,0,-1},{0,1,-1}},matrix{{1},{1},{1}},{{0,1},{0,2},{1,2}});
T1:= tropicalCycle(F1,{1,1,1});
R1:= stableIntersection(T1,T1,Strategy=>"atint");
R2:= stableIntersection(T1,T1,Strategy=>"gfan");
assert(R1#"Fan" == R2)
assert(dim R2 == 3)
assert(maxCones R2 == {{1, 2}, {0, 2}, {0, 1}})
R =QQ[x,y,z,t];
I=ideal(x+y+z+t);
J=ideal(4*x+y-2*z+5*t);
T1 = stableIntersection(tropicalVariety(I),tropicalVariety(J));
T2 = tropicalVariety(I+J);
assert(T1#"Fan" == T2#"Fan")
assert(T1#"Multiplicities" == T2#"Multiplicities")
R = QQ[x,y,z];
I = ideal(x^2+y^2+z^2-1);
T1 = tropicalVariety(I);
J = ideal(x*y+y*z+x*z+1);
T2 = tropicalVariety(J);
V = tropicalVariety(I+J);
W1 = stableIntersection(T1,T2,Strategy=>"gfan");
W2 = stableIntersection(T1,T2,Strategy=>"atint");
assert(V#"Fan" == W1)
assert(V#"Fan" == W2#"Fan")
assert(V#"Multiplicities" == W2#"Multiplicities")
///
)
-----------------------
--tropicalVariety
-----------------------
TEST///
QQ[x,y,z,w]
--homogeneous
I=ideal(x^2+y^2+z^2)
T:=tropicalVariety(I)
assert ((rays T)==(matrix {{2, -1, -1},{-1, 2, -1}, {-1, -1, 2}, {0, 0, 0}}))
assert((linealitySpace T)==( matrix {{1, 0}, {1, 0}, {1, 0}, {0, 1}}))
assert((multiplicities T)==( {2,2,2}))
assert((maxCones T)==( {{0},{1},{2}}))
--homogeneous and binomial
I=ideal(x^2+x*z)
T=tropicalVariety (I,Prime=>false)
assert ((rays T)==(0 ))
assert((linealitySpace T)==( matrix {{0, 1, 0}, {1, 0, 0}, {0, 1, 0}, {0, 0, 1}}))
assert((maxCones T)==( {{}}))
assert((multiplicities T)==( {1}))
T=tropicalVariety (I,Prime=>false,ComputeMultiplicities=>false)
assert ((rays T)==(0))
assert((linealitySpace T)==( matrix {{0, 1, 0}, {1, 0, 0}, {0, 1, 0}, {0, 0, 1}}))
assert((maxCones T)==( {{}}))
assert((multiplicities T)==( {{}}))
--non homogeneous
I=ideal(x^2-y*z+w^2,w^3-y^3*x+z^3)
T=tropicalVariety(I)
assert((rays T)== (matrix {{-6, -3, 0, 1, 3, 6}, {-5, -2, -1, 1, 2, 5}, {-7, -3, -1, 1, 4, 7}, {-6, -3, -1, 1, 3, 7}}))
assert((linealitySpace T)==(0))
assert((maxCones T)==( {{0, 1}, {0, 2}, {0, 5}, {1, 3}, {2, 3}, {1, 4}, {2, 4}, {3, 5}, {4, 5}}))
assert((multiplicities T)==( {2, 1, 1, 6, 3, 2, 1, 3, 1}))
QQ[x,y,z]
--non homogeneous
I=ideal(x*y-y+1)
T=tropicalVariety(I)
assert ((rays T)== (matrix {{-1, 0, 3}, {1, -3, 0}, {0, -1, 1}}))
assert((linealitySpace T)==( matrix {{0}, {0}, {1}} ))
assert((maxCones T)==( {{1}, {0}, {2}}))
assert((multiplicities T)==( {1, 1, 1}))
--symmetry and homogeneous
QQ[x,y, z]
I=ideal(x^2+y^2+z^2)
G=tropicalVariety(I, Symmetry=>{{1, 0, 2}, {1, 2, 0}, {2, 0, 1}})
assert ((rays G)==(matrix {{2, -1, -1},{-1, 2, -1}, {-1, -1, 2}}))
--symmetry and non-homogeneous
QQ[x,y]
G=tropicalVariety(ideal(x+y+1), Symmetry=>{{1,0}})
assert((rays G) == matrix {{1,-1,0},{0,-1,1}})
///
-----------------------
--findMultiplicities
--findMultiplicity
--computeCones
-----------------------
-----------------------
--isPure
-----------------------
TEST///
T:=new TropicalCycle
F:=fan(matrix{{0,0,0},{1,0,-1},{0,1,-1}},matrix{{1},{1},{1}},{{0,1},{0,2},{1,2}})
T#"Multiplicities" ={1,1,1};
T#"Fan" = F;
assert(isPure(T)==(true))
F:=fan(matrix{{0,0,0},{1,0,-1},{0,1,-1}},matrix{{1},{1},{1}},{{0},{1,2}})
T#"Multiplicities" ={1,1};
T#"Fan" = F;
assert(isPure(T)==(false))
///
-----------------------
--isSimplicial
-----------------------
TEST///
T:=new TropicalCycle
F:=fan(matrix{{0,0,0},{1,0,-1},{0,1,-1}},matrix{{1},{1},{1}},{{0,1},{0,2},{1,2}})
T#"Multiplicities" ={1,1,1};
T#"Fan" = F;
assert(isSimplicial(T)==(true))
F:=fan(matrix{{0,0,0,0},{1,0,-1,2},{0,1,-1,1}},matrix{{1},{1},{1}},{{0,1,2},{0,1,3},{0,2,3},{1,2,3}});
T#"Multiplicities" ={1,1,1,1};
T#"Fan" = F;
assert(isSimplicial(T)==(false))
///
-----------------------
--BergmanFan
-----------------------
TEST///
U24 = uniformMatroid(2,4)
F = BergmanFan U24
ray = rays F
mC = maxCones F
l = sort(flatten(mC))
assert(ray*transpose(matrix({{1,1,1,1}})) == 0)
assert(l == toList(0..3))
assert(isBalanced(F)==(true))
///
TEST///
A=transpose matrix{{1,0,0},{1,1,0},{1,2,0},{1,0,1},{1,2,1},{1,0,2}};
M=matroid(A);
T=BergmanFan M;
R=rays T;
assert(rank source R ==17)
assert(dim(T)==rank(A))
///
-----------------------
--convertToPolymake
-----------------------
-----------------------
--star
-----------------------
TEST ///
R=QQ[x,y,z];
I=ideal(x+y+z+1);
T=tropicalVariety(I);
P=convexHull(matrix{{0},{0},{0}}, matrix{{1},{0},{0}});
starT=star(T,P);
R=rays starT;
assert(rank source R == 3);
assert(dim starT== 1);
R=QQ[x,y,z,w];
I=ideal(x+y+z+w);
T=tropicalVariety(I);
P=convexHull(matrix{{0},{0},{0},{0}}, matrix{{1},{0},{0},{0}}, matrix{{1},{1},{1},{1}});
starT=star(T,P);
assert(dim starT== 1);
///
end
restart
uninstallPackage "Tropical"
installPackage "Tropical"
check "Tropical"
|