1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
|
---------------------------------------------------------------------------
-- PURPOSE : Computation of truncations M_{>=d} for modules
--
-- UPDATE HISTORY : created Oct 2018
-- updated Jun 2021
--
-- TODO :
-- 1. improve speed and caching
-- 2. flattenRing should keep track of the Nef cone
-- 3. turn into hook strategies
-- 4. remove [basis, Truncate], call rawBasis in truncation0
-- 5. finish basis'
---------------------------------------------------------------------------
newPackage(
"Truncations",
Version => "1.0",
Date => "22 May 2021",
Headline => "truncation of a module",
Authors => {
{ Name => "David Eisenbud", Email => "de@msri.org", HomePage => "https://www.msri.org/~de" },
{ Name => "Mike Stillman", Email => "mike@math.cornell.edu", HomePage => "https://www.math.cornell.edu/~mike" },
{ Name => "Mahrud Sayrafi", Email => "mahrud@umn.edu", HomePage => "https://math.umn.edu/~mahrud" }
},
Keywords => { "Commutative Algebra" },
PackageImports => { "Polyhedra", "NormalToricVarieties" },
AuxiliaryFiles => true,
DebuggingMode => true
)
importFrom_Core {"concatCols", "raw", "rawSelectByDegrees"}
-- "truncate" is exported by Core
protect Exterior
protect Nef
--------------------------------------------------------------------
-- Helpers
--------------------------------------------------------------------
-- check whether truncation is implemented for this ring type.
truncateImplemented = method()
truncateImplemented Ring := Boolean => R -> (
ZZ === (A := ambient first flattenRing R)
or isAffineRing A
or isPolynomialRing A and isAffineRing coefficientRing A and A.?SkewCommutative
or isPolynomialRing A and ZZ === coefficientRing A
)
-- checkOrMakeDegreeList: takes a degree, and degree rank:ZZ
-- output: a list of degrees, all of the correct length (degree rank), otherwise an error
-- in the following n represents an integer, and d represents a list of integers:
-- n --> {{n}} if degree rank is 1
-- {n0,...,ns} --> {{n0,...,ns}} if length is the degree rank
-- {d0,...,ds} --> { d0,...,ds } if length of each di is the degree rank
checkOrMakeDegreeList = method()
checkOrMakeDegreeList(ZZ, ZZ) := (n, degrank) -> (
if degrank === 1 then {{n}} else error("expected a degree of length " | degrank))
checkOrMakeDegreeList(List, ZZ) := (L, degrank) -> (
if #L === 0 then error "expected nonempty list of degrees";
if all(L, d -> instance(d, ZZ))
then if #L === degrank then {L} else error("expected a multidegree of length " | degrank)
else ( -- If L is a list of lists of integers, all the same length, L will be returned.
if all(L, deg -> instance(deg, VisibleList) and #deg === degrank and all(deg, d -> instance(d, ZZ)))
then sort L else error("expected a list of multidegrees, each of length " | degrank))
)
-- Helpers for toric varieties
-- Generators of effective cone
effGenerators = method()
effGenerators Ring := (cacheValue symbol effGenerators) (R -> transpose matrix degrees R)
effGenerators NormalToricVariety := X -> effGenerators ring X
-- Nef cone of X as a polyhedral object
nefCone = method()
nefCone NormalToricVariety := (cacheValue symbol nefCone) (X -> convexHull(matrix{0_(picardGroup X)}, nefGenerators X))
nefCone Ring := R -> if R.?variety and instance(R.variety, NormalToricVariety) then nefCone R.variety
-- Effective cone of X as a polyhedral object
effCone = method()
effCone NormalToricVariety := (cacheValue symbol effCone) (X -> convexHull(matrix{0_(picardGroup X)}, effGenerators X))
effCone Ring := R -> if R.?variety and instance(R.variety, NormalToricVariety) then effCone R.variety
--------------------------------------------------------------------
-- Polyhedral algorithms
--------------------------------------------------------------------
-- If columns of A span the effective cone of a simplicial toric variety X
-- (e.g. when columns are the degrees of the variables of the Cox ring S)
-- and b is an element of the Picard group of X (e.g. a multidegree in S)
-- then truncationPolyhedron returns a polyhedron in the lattice of
-- exponent vectors of monomials of S whose degree is in b + nef cone of X
truncationPolyhedron = method(Options => { Exterior => {}, Nef => null })
-- Exterior should be a list of variable indices which are skew commutative; i.e. have max degree 1.
truncationPolyhedron(Matrix, List) := Polyhedron => opts -> (A, b) -> truncationPolyhedron(A, transpose matrix {b}, opts)
truncationPolyhedron(Matrix, Matrix) := Polyhedron => opts -> (A, b) -> (
-- assumption: A is m x n. b is m x 1.
-- returns the polyhedron {Ax >= b, x_i >= 0}
-- or if Nef is present {Ax - b in Nef cone, x_i >= 0}
-- TODO: why is it better to be over QQ?
if ring A === ZZ then A = A ** QQ;
if ring A =!= QQ then error "expected matrix over ZZ or QQ";
-- added to ensure x_i >= 0
I := id_(source A);
z := map(source A, QQ^1, 0);
-- data for the polyhedron inequalities
hdataLHS := -(A || I);
hdataRHS := -(b || z);
-- added to ensure x_i <= 1 for skew commuting variables
if #opts.Exterior > 0 then (
-- also need to add in the conditions that each variable in the list has degree <= 1.
hdataLHS = hdataLHS || (I ^ (opts.Exterior));
hdataRHS = hdataRHS || matrix toList(#opts.Exterior : {1_QQ});
);
return if opts.Nef === null or rays opts.Nef == id_(target A)
-- this is correct when the Nef cone equals the positive quadrant
then polyhedronFromHData(hdataLHS, hdataRHS)
-- otherwise, compute the preimage of the Nef cone
else affinePreimage(-hdataLHS, opts.Nef * convexHull(z, I), hdataRHS);
--
-- this is correct when the Nef cone equals the positive quadrant
P := polyhedronFromHData(hdataLHS, hdataRHS);
if opts.Nef === null or rays opts.Nef == id_(target A) then return P;
-- otherwise, intersect with the preimage of the Nef cone
intersection(P, affinePreimage(A, opts.Nef, -b)))
-- Assume the same conditions as above,
-- then basisPolyhedron returns a polyhedron in the lattice of
-- exponent vectors of monomials of S whose degree is exactly b
basisPolyhedron = method(Options => { Exterior => {} })
basisPolyhedron(Matrix, List) := Polyhedron => opts -> (A, b) -> basisPolyhedron(A, transpose matrix {b}, opts)
basisPolyhedron(Matrix, Matrix) := Polyhedron => opts -> (A, b) -> (
-- assumption: A is m x n. b is m x 1.
-- returns the polyhedron {Ax = b, x_i >= 0}
if ring A === ZZ then A = A ** QQ;
if ring A =!= QQ then error "expected matrix over ZZ or QQ";
-- added to ensure x_i >= 0
I := id_(source A);
z := map(source A, QQ^1, 0);
-- added to ensure x_i <= 1 for skew commuting variables
if #opts.Exterior > 0 then (
-- also need to add in the conditions that each variable in the list has degree <= 1.
I = I || (-I ^ (opts.Exterior));
z = z || matrix toList(#opts.Exterior : {-1_QQ});
);
polyhedronFromHData(-I, -z, A, b))
--------------------------------------------------------------------
-- Algorithms for truncations of a polynomial ring
--------------------------------------------------------------------
truncationMonomials = method(Options => { Exterior => {}, Nef => null })
truncationMonomials(List, Module) := opts -> (degs, F) -> (
-- inputs: a list of multidegrees, a free module F = sum_i R(-a_i)
-- assume checkOrMakeDegreeList has already been called on degs
(R1, phi1) := flattenRing (R := ring F);
ext := if opts.Exterior =!= null then opts.Exterior else (options R1).SkewCommutative;
nef := if opts.Nef =!= null then opts.Nef else nefCone R1; -- changing to effCone gives an alternative result
-- TODO: call findMins on degs, but with respect to the Nef cone!
-- checks to see if twist S(-a) needs to be truncated
isInNef := if nef === null then a -> any(degs, d -> d << a) else (
truncationCone := nef + convexHull matrix transpose degs;
a -> contains(truncationCone, convexHull matrix transpose{a}));
-- TODO: either figure out a way to use cached results or do this in parallel
directSum apply(degrees F, a -> if isInNef a then gens R^{a} else concatCols(
apply(degs, d -> truncationMonomials(d - a, R, Exterior => ext, Nef => nef)))))
truncationMonomials(List, Ring) := opts -> (d, R) -> (
-- inputs: a single multidegree, a graded ring
-- valid for total coordinate ring of any simplicial toric variety
-- or any polynomial ring, quotient ring, or exterior algebra.
if R#?(symbol truncate, d)
then R#(symbol truncate, d)
else R#(symbol truncate, d) = (
(R1, phi1) := flattenRing R;
-- generates the effective cone
A := effGenerators R1;
P := truncationPolyhedron(A, transpose matrix{d}, opts);
H := hilbertBasis cone P; -- ~50% of computation
H = for h in H list flatten entries h;
J := leadTerm ideal R1;
ambR := ring J;
-- generates the Nef cone
--nefgens := matrix(ambR, { for h in H list if h#0 === 0 then ambR_(drop(h, 1)) else continue });
mongens := matrix(ambR, { for h in H list if h#0 === 1 then ambR_(drop(h, 1)) else continue });
result := mingens ideal(mongens % J);
if R1 =!= ambR then result = result ** R1;
if R =!= R1 then result = phi1^-1 result;
result))
truncation0 = (deg, M) -> (
-- WARNING: valid for a polynomial ring with degree length = 1.
-- uses the engine routines for basis with Truncate => true
-- deg: a List of integers
-- M: Module
-- returns a submodule of M
if M.?generators then (
F := cover basis(deg, deg, cokernel presentation M, Truncate => true);
subquotient(M.generators * F, if M.?relations then M.relations))
else image basis(deg, deg, M, Truncate => true))
truncation1 = (deg, M) -> (
-- WARNING: valid for towers of rings with degree length = 1.
-- uses the engine routines for basis with Truncate => true
-- deg: a List of integers
-- M: Module
-- returns a submodule of M
R := ring M;
(R1, phi1) := flattenRing R;
if R1 === R then return truncation0(deg, M);
-- why not just do phi1? or M ** phi1?
M1 := if isFreeModule M then phi1 M else subquotient(
if M.?generators then phi1 M.generators,
if M.?relations then phi1 M.relations);
result1 := truncation0(deg, M1);
gensM := if not result1.?generators then null else phi1^-1 result1.generators;
relnsM := if not result1.?relations then null else phi1^-1 result1.relations;
if gensM === null and relnsM === null then phi1^-1 result1
else subquotient(gensM, relnsM))
--------------------------------------------------------------------
-- truncate
--------------------------------------------------------------------
truncateModuleOpts := {
MinimalGenerators => true -- whether to trim the output
}
truncate(ZZ, Ring) :=
truncate(ZZ, Ideal) :=
truncate(ZZ, Matrix) :=
truncate(ZZ, Module) := truncateModuleOpts >> opts -> (d, m) -> truncate({d}, m, opts)
truncate(List, Ring) := Ideal => truncateModuleOpts >> opts -> (degs, R) -> ideal truncate(degs, module R, opts)
truncate(List, Ideal) := Ideal => truncateModuleOpts >> opts -> (degs, I) -> ideal truncate(degs, module I, opts)
truncate(List, Module) := Module => truncateModuleOpts >> opts -> (degs, M) -> (
if M == 0 then return M;
if not truncateImplemented(R := ring M) then error "cannot use truncate with this ring type";
degs = checkOrMakeDegreeList(degs, degreeLength R);
doTrim := if opts.MinimalGenerators then trim else identity;
doTrim if degreeLength R === 1 and any(degrees R, d -> d =!= {0})
then truncation1(min degs, M)
else if isFreeModule M then return ( -- NOTE: skip trimming
image map(M, , truncationMonomials(degs, M)))
else if not M.?relations then (
image map(M, , truncationMonomials(degs, cover M)))
else subquotient(
gens truncate(degs, image generators M, MinimalGenerators => false),
gens truncate(degs, image relations M, MinimalGenerators => false))
)
truncate(List, Matrix) := Matrix => truncateModuleOpts >> opts -> (degs, f) -> (
F := truncate(degs, source f, opts);
G := truncate(degs, target f, opts);
map(G, F, (f * gens F) // gens G))
--------------------------------------------------------------------
-- basis using basisPolyhedron (experimental)
--------------------------------------------------------------------
-- c.f https://github.com/Macaulay2/M2/pull/2056
-- add as a strategy to basis
-- add partial multidegree support
-- ensure the output is a module over the degree 0 of R
basisMonomials = method()
basisMonomials(List, Module) := (degs, F) -> (
-- inputs: a list of multidegrees, a free module
-- assume checkOrMakeDegreeList has already been called on degs
-- TODO: either figure out a way to use cached results or do this in parallel
R := ring F; directSum apply(degrees F, a -> concatCols apply(degs, d -> basisMonomials(d - a, R))))
basisMonomials(List, Ring) := (d, R) -> (
-- inputs: a single multidegree, a graded ring
-- valid for total coordinate ring of any simplicial toric variety
-- or any polynomial ring, quotient ring, or exterior algebra.
if R#?(symbol basis', d)
then R#(symbol basis', d)
else if R#?(symbol truncate, d)
then R#(symbol basis', d) = (
-- opportunistically use cached truncation results
-- TODO: is this always correct? with negative degrees?
truncgens := R#(symbol truncate, d);
psrc := rawSelectByDegrees(raw source truncgens, d, d);
submatrix(truncgens, , psrc))
else R#(symbol basis', d) = (
(R1, phi1) := flattenRing R;
-- generates the effective cone
A := effGenerators R1;
P := basisPolyhedron(A, transpose matrix{d},
Exterior => (options R1).SkewCommutative);
H := hilbertBasis cone P; -- ~40% of computation
H = for h in H list flatten entries h;
J := leadTerm ideal R1;
ambR := ring J;
-- generates the degree zero part of the basis
--zerogens := matrix(ambR, { for h in H list if h#0 === 0 then ambR_(drop(h, 1)) else continue });
mongens := matrix(ambR, { for h in H list if h#0 === 1 then ambR_(drop(h, 1)) else continue });
result := mingens ideal(mongens % J); -- ~40% of computation
if R1 =!= ambR then result = result ** R1;
if R =!= R1 then result = phi1^-1 result;
result))
-- FIXME: when M has relations, it should be pruned
basis' = method(Options => options basis)
basis'(List, Module) := Matrix => opts -> (degs, M) -> (
if M == 0 then return M;
if not truncateImplemented(R := ring M) then error "cannot use basis' with this ring type";
degs = checkOrMakeDegreeList(degs, degreeLength R);
if isFreeModule M
then map(M, , basisMonomials(degs, M))
else map(M, , basis'(degs, target presentation M, opts)))
--------------------------------------------------------------------
----- Tests section
--------------------------------------------------------------------
load "./Truncations/tests.m2"
--------------------------------------------------------------------
----- Documentation section
--------------------------------------------------------------------
beginDocumentation()
load "./Truncations/docs.m2"
--------------------------------------------------------------------
----- Development section
--------------------------------------------------------------------
end--
restart
uninstallPackage "Truncations"
restart
loadPackage "Truncations"
debug needsPackage "Truncations"
restart
installPackage "Truncations"
check "Truncations"
|