1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911
|
-- -*- coding: utf-8 -*-
-*
Copyright 2016 Brian Pike
You may redistribute this file under the terms of the GNU General Public
License as published by the Free Software Foundation, either version 2 of
the License, or any later version.
*-
newPackage(
"VectorFields",
Version => "1.80",
Date => "April 7, 2016",
Authors => {
{Name => "Brian Pike",
Email => "bapike@gmail.com",
HomePage => "http://www.brianpike.info/"}},
Headline => "vector fields",
Keywords => {"Commutative Algebra"},
PackageImports => {"PrimaryDecomposition"},
DebuggingMode => false
)
-*
Changelog:
v1.80: April 7, 2016
o This is a large rewrite of VectorFields, and is not compatible with v1.0.
The most notable change is that, rather than using Matrices and Modules interchangeably,
many functions' behavior now changes dramatically depending on which type you provide.
(See, e.g., bracket.) A Matrix represents a finite collection of vector fields,
while a Module represents an actual module of vector fields. In a later release,
this may change so that a Matrix represents a module over the coefficientRing (in most
cases, a finite-dimensional vector space).
Users of this package should carefully audit their code when upgrading.
o Fixed bugs:
o der(Ideal I,Ideal J) has really been computing der(gens of I,J), which is
correct when I is a subset of J (the most common use case) but is not
what was expected. Implement the general case and add a der(List,Ideal)
method with the original behavior.
o Renamed functions:
package v1.0 | package v1.80 | why?
---------------------------------+------------------------------+---------------------------------
isModuleOfVectorFields | isVectorField | does not only apply to modules, shorten
applyVF | applyVectorField | style guidelines (abbreviations should be avoided)
isHomogeneousModuleOfVectorFields| isHomogeneousVectorField | does not only apply to modules, shorten
computeModuleBracket | bracket(Module,Module) | merge these functions
computeCommutator | commutator(Module) | better name
computeDerivedSeries | derivedSeries(ZZ,Module) | better name
computeLowerCentralSeries | lowerCentralSeries(ZZ,Module)| better name
derlogV | derlog | V is arbitrary
o Changes (N=New method or function, C=changed, D=deleted)
(N) applyVectorField(Matrix,List)
(N) applyVectorField(Vector,RingElement or List)
(C) applyVectorField(Module,RingElement) now returns an Ideal, and the Module can have >1 generator.
(N) applyVectorField(Module,Ideal)
(N) homogeneousVectorFieldDegree was added
(C) isHomogeneousVectorField uses an incompatible, but more correct method to compute the 'degrees'
(C) bracket(Module,Module) now computes what computeModuleBracket used to compute
(N) bracket(Vector,Vector)
(N) commutator(Matrix)
(D) isLieAlgebra(Matrix), as this did not do exactly what one might expect
(N) derivedSeries(ZZ,Matrix)
(N) lowerCentralSeries(ZZ,Matrix)
(C) der(Ideal,Ideal) was sometimes producing incorrect results (see above)
(N) der(List,Ideal) is new, but its output should match the (incorrect) output of the old der(Ideal,Ideal)
(C) derlog now returns a module
(D) derlogH(Ideal), as it was not computing the vector fields annihilating the ideal. Instead use derlogH(List)
(N) derlogH(List) is new, but its output should match the output of the old derlogH(Ideal)
(C) derlogH now returns a module
(N) isLogarithmic checks whether vector field(s) are in derlog(I)
(C) stratifyByRank now returns a StratificationByRank, a type of HashTable
(N) isFiniteStratification encapsulates the key step from both isHolonomic and isHHolonomic
(D) getDim, because dim(...) exists and I don't remember why I wrote my own
o change asserts to errors with meaningful error messages.
o rewrite internals of bracket to be faster
o rewrite internal degree-finding function
o Write tests for all functions
o Fix a comment that had an erroneous calc of [fX,gY]
o symbols should be quoted for M2 v1.8
o Add license, changelog, updated contact information
v1.0: April 9, 2013
o initial public release
Maybe TODO someday:
- isLieAlgebra(Matrix)
- allow override of \partial_{...} degrees?
- the other version of Saito's criterion? (eta_i\in derlog(f), is det()=(f)?)
It could be isFreeDivisor(Matrix/Module,f)
- homogeneousVectorFieldDegree(Vector)?
- triple check all proofs...
- Display a 'multiplication table' for a Lie algebra of vfs?
*-
export {
-- utility functions
"isVectorField",
"applyVectorField",
-- homogeneity
"homogeneousVectorFieldDegree",
"isHomogeneousVectorField",
-- bracketing
"bracket",
"commutator",
"isLieAlgebra",
"derivedSeries",
"lowerCentralSeries",
-- logarithmic vector fields
"der",
"derlog",
"derlogH",
"isLogarithmic",
-- free divisors
"isFreeDivisor",
-- stratifications
"StratificationByRank", --(a type)
"stratifyByRank",
"isFiniteStratification",
"isHolonomic",
"isHHolonomic"
};
mydoc:="";
mydoc=concatenate(mydoc,///
Node
Key
VectorFields
Headline
a package for manipulating polynomial vector fields
Description
Text
VectorFields provides functions
to study polynomial vector fields on affine space, and
modules of such vector fields.
This package may be of interest to those studying
representations of Lie groups, foliations, or logarithmic
vector fields.
We represent a vector field on affine $n$-space as an element of
the module $R^n$, where $R$ is a polynomial ring in $n$ variables.
Concretely, the ordering of variables given by {\tt vars(R)} is used to
identify each vector field with a $n\times 1$ @TO Matrix@,
and vice-versa,
with each entry in the matrix storing the coefficient of a derivative
with respect to a particular variable.
For instance, on a 3-dimensional space the vector field
$M=2y \partial_y + z \partial_z$ is entered this way:
Example
R=QQ[x,y,z];
vars(R)
M=matrix {{0},{2*y},{z}}
Text
Many functions in this package are designed to accept
either a finite collection of vector fields (in the form
of a @TO Matrix@ where each column represents a vector field),
or a module of vector fields (in the form of a submodule of $R^n$).
These different versions may compute quite different things!
For instance, the vector field in {\tt M} commutes with itself:
Example
commutator(M)
bracket(M,M)
Text
but the vector fields in the module generated by {\tt M} do not:
Example
commutator(image M)
bracket(M,y*M)
Text
In other cases, the @TO Matrix@ and @TO Module@ versions of a function
compute identical things, perhaps returning different types.
For instance, here we apply vector fields to a function:
Example
applyVectorField(M,x*y-z^2)
applyVectorField(image M,x*y-z^2)
Text
See @TO "differences between certain bracketing functions"@ for more details.
To show some capabilities of this package,
let us use @TO derlog@ to find the vector fields on the ambient space
that are tangent to $xy-z^2=0$:
Example
D=derlog(ideal (x*y-z^2))
Text
Actually, $M$ is one of these vector fields:
Example
isSubset(image M,D)
Text
We may also check some properties of $D$:
Example
isVectorField(gens D)
isVectorField(D)
isLieAlgebra(D)
Text
Note that this package has been rewritten since version 1.0.
Any users of the earlier version should upgrade with care, and
read the comments inside the package's source code.
SeeAlso
commutator
bracket
applyVectorField
derlog
isVectorField
isLieAlgebra
///);
---------------------------------- COMMON UTILITY FUNCTIONS
mydoc=concatenate(mydoc,///
Node
Key
isVectorField
(isVectorField,Module)
(isVectorField,Matrix)
Headline
test whether a module or matrix can be interpreted as a collection of vector fields
Usage
b=isVectorField(m)
b=isVectorField(M)
Inputs
m:Module
M:Matrix
Outputs
b:Boolean
whether the provided module or matrix can be interpreted as a collection of vector fields
Description
Text
This determines whether the provided @TO Module@ or @TO Matrix@ can be interpreted
as a collection of vector fields.
For a @TO Module@ to be interpreted as a module of vector fields, the
module must be presented as a submodule of a free module whose rank
equals the number of variables in the ring.
Example
R=QQ[x,y];
isVectorField(image matrix {{x,y^2}})
isVectorField(image matrix {{x,y^2},{0,0}})
Text
For a @TO Matrix@, it must have the correct number of rows.
Example
isVectorField(matrix {{x,y^2}})
isVectorField(matrix {{x,y^2},{0,0}})
Caveat
Despite the name, the function does not check the number of vector fields provided.
SeeAlso
VectorFields
///);
isVectorField = method(TypicalValue=>Boolean);
isVectorField(Module) := (m) -> (
return (relations(m)==0 and rank(ambient(m))==numgens(ring(m)));
);
isVectorField(Matrix) := (m) -> (
return (numRows(m)==numgens(ring(m)));
);
-*
applyVectorField(Matrix,RingElement) => RingElement
applyVectorField(Vector,RingElement) => RingElement
applyVectorField(Matrix or Vector,List of RingElements) => List of RingElements
applyVectorField(Module,RingElement) => Ideal
applyVectorField(Module,Ideal) => Ideal
Skip:
applyVectorField(Matrix,Ideal)
applyVectorField(Vector,Ideal)
because there's no obvious return type
*-
mydoc=concatenate(mydoc,///
Node
Key
applyVectorField
(applyVectorField,Matrix,RingElement)
(applyVectorField,Vector,RingElement)
(applyVectorField,Matrix,List)
(applyVectorField,Vector,List)
(applyVectorField,Module,RingElement)
(applyVectorField,Module,Ideal)
Headline
apply a vector field to a function or functions
Usage
g=applyVectorField(M,f)
g=applyVectorField(V,f)
L=applyVectorField(M,l)
L=applyVectorField(V,l)
J=applyVectorField(m,f)
J=applyVectorField(m,I)
Inputs
M:Matrix
of vector fields
V:Vector
a column from a matrix of vector fields
f:RingElement
to apply the first parameter to
l:List
of RingElements to apply the first parameter to
m:Module
of vector fields
I:Ideal
an ideal of functions to apply the first parameter to
Outputs
g:RingElement
L:List
of RingElements
J:Ideal
Description
Text
Apply the vector field(s) represented by {\tt M}, {\tt V}, or {\tt m}, to the
second parameter, that is, use the vector field(s) as differential operator(s).
When the first parameter is a @TO Matrix@ or a @TO Vector@, then the return type matches
the second parameter.
If that is a @TO RingElement@, then there must only be 1 column in the matrix.
When the second parameter is a @TO List@ {\tt l} of @TO RingElement@s, then the returned
@TO List@ is formed by applying each vector field in turn to the first
entry of {\tt l}, then each vector field to the second entry of {\tt l},
etc.
Example
R=QQ[x,y,z];
A=matrix {{x},{y},{0}};
B=matrix {{0},{0},{z}};
f=x*y-z^2;
applyVectorField(A,f)
applyVectorField(A,{f,x*f})
applyVectorField(A|B,{f,x*f})
Text
When the first parameter is a @TO Module@, then the return type is an @TO Ideal@.
Applying a @TO Module@ to a @TO RingElement@ gives the @TO Ideal@ generated
by applying each generator to the function.
Applying a @TO Module@ to an @TO Ideal@ {\tt I} produces
the @TO Ideal@ generated by applying every element of the module to
every element of {\tt I}; this is generated by not only
the functions formed by
applying each generator of the module to each generator of {\tt I}
(as might be computed by the (Matrix,List) version of this function),
but also {\tt I} times the ideal of coefficients of the generators of
the module.
Example
applyVectorField(image A,f)
applyVectorField(image A,ideal (f))
trim(ideal(applyVectorField(A,f))+ideal(f)*minors(1,A))
SeeAlso
VectorFields
derlog
der
///);
-- internal. takes (Matrix,List); matrix can have >1 column. Returns a List
applyVectorFieldInternal := (m,l) -> (
if not(isVectorField(m)) then error "applyVectorField: expected a matrix of vector fields";
if not(all(l,f->instance(f,RingElement))) then error "applyVectorField: expected a list of RingElements";
R:=ring(m);
if not(all(l,f->(R===ring(f)))) then error "applyVectorField: expected all parameters to be in the same ring";
T:=transpose(jacobian(ideal(l)));
-- If l={f1,...fk}, then we have:
-- / diff(x1,f1) ... diff(xn,f1) \
-- T= | |
-- \ diff(x1,fk) ... diff(xn,fk) /
-- so (T)*(m) will be a matrix with the answers.
return( flatten(entries(T*m)) );
);
applyVectorField=method();
applyVectorField(Matrix,RingElement) := RingElement => (m,f) -> (
if not(numColumns(m)==1) then error "applyVectorField: expected 1 column matrix";
return (applyVectorFieldInternal(m,{f}))_0;
);
applyVectorField(Vector,RingElement) := RingElement => (V,f) -> (
-- Using a Vector from a Module (instead of a Matrix) can make this fail.
if not(isVectorField(matrix {V})) then error "applyVectorField: expected a Vector from a Matrix of vector fields";
return (applyVectorFieldInternal(matrix {V},{f}))_0;
);
applyVectorField(Matrix,List) := List => (m,l) -> applyVectorFieldInternal(m,l);
applyVectorField(Vector,List) := List => (V,l) -> (
-- Using a Vector from a Module (instead of a Matrix) can make this fail.
if not(isVectorField(matrix {V})) then error "applyVectorField: expected a Vector from a Matrix of vector fields";
return applyVectorFieldInternal(matrix {V},l);
);
applyVectorField(Module,RingElement) := Ideal => (M,f) -> (
if not(isVectorField(M)) then error "applyVectorField: expected a module of vector fields";
return ideal(applyVectorFieldInternal(gens M,{f}));
);
applyVectorField(Module,Ideal) := Ideal => (M,I) -> (
if not(isVectorField(M)) then error "applyVectorField: expected a module of vector fields";
-- This is certainly contained in the Ideal desired
A:=ideal (applyVectorFieldInternal(gens M,flatten entries gens I));
-- Applying a general elt of the Module to a general elt of the Ideal shows that
-- we also need the product of I and the ideal generated by the coefficients of the
-- generators of M.
B:=I*(ideal(flatten entries gens M));
return trim(A+B);
);
---------------------------------- HOMOGENEITY
-- Check if the coefficients of vf are all homogeneous,
-- and if so, return the degree.
-- Return false if it is NOT homogeneous, and -infinity if it is zero.
getDegreeInternal := (vf) -> (
-- vf is a Vector
assert(instance(vf,Vector));
vfentries:=entries vf;
zero:=0_(ring(vf));
-- get the degrees of the variables in that ring
degs:=apply(flatten entries vars(ring(vf)),degree);
-- Find the first nonzero entry
firstnz:=position(vfentries,x->not(x===zero));
if firstnz===null then return -infinity;
-- note that vfentries_firstnz could fail to be homogeneous
apparentdeg:=degree((vfentries)_firstnz)-(degs_firstnz);
if all(length(vfentries),i->vfentries_i===zero or (isHomogeneous(vfentries_i) and degree(vfentries_i)-(degs_i)==apparentdeg)) then
return apparentdeg
else
return false;
);
mydoc=concatenate(mydoc,///
Node
Key
homogeneousVectorFieldDegree
(homogeneousVectorFieldDegree,Matrix)
(homogeneousVectorFieldDegree,Module)
Headline
check if vector fields are homogeneous, and of what degree
Usage
l=homogeneousVectorFieldDegree(M)
l=homogeneousVectorFieldDegree(m)
Inputs
M:Matrix
of vector fields
m:Module
of vector fields
Outputs
l:List
either of degrees or {\tt false} if a vector field is
not homogeneous
Description
Text
This finds the degree of each vector field.
When given a @TO Matrix@, the function checks the degree of each column.
When given a @TO Module@, the function checks the degree of each generator.
In a coordinate system $x_1,\ldots,x_n$ with $x_i$ having degree $k_i$,
each $\partial_{x_i}$ has degree $-k_i$.
Hence, a non-zero vector field $\sum_i f_i\partial_{x_i}$
has degree $d$ if and only if for each $i$, $f_i$ is either
$0$ or weighted homogeneous of degree $d+k_i$.
The zero vector field has degree $-\infty$.
Example
R=QQ[x,y];
M=matrix {{x^2,1,0,x^2,x*y},{y^2,0,0,y^4,y^2}}
homogeneousVectorFieldDegree(M)
homogeneousVectorFieldDegree(image M)
Text
We also handle non-standard degrees:
Example
R=QQ[x,y,Degrees=>{{3},{1}}];
M=matrix {{x^2,1,0,x^2,x*y},{y^2,0,0,y^4,y^2}}
homogeneousVectorFieldDegree(M)
Text
and multidegrees:
Example
R=QQ[x,y,Degrees=>{{3,1},{1,1}}];
M=matrix {{x^2,1,0,x^2,x*y},{y^2,0,0,y^4,y^2}}
homogeneousVectorFieldDegree(M)
SeeAlso
VectorFields
isHomogeneousVectorField
///);
homogeneousVectorFieldDegree = method(TypicalValue=>List);
homogeneousVectorFieldDegree(Module) := (M) -> (
if not(isVectorField(M)) then error "homogeneousVectorFieldDegree: expected a module of vector fields";
return homogeneousVectorFieldDegree(gens M);
);
homogeneousVectorFieldDegree(Matrix) := (m) -> (
if not(isVectorField(m)) then error "homogeneousVectorFieldDegree: expected a matrix of vector fields";
return apply(numColumns(m),i->getDegreeInternal(m_i));
);
-- Check if the vector fields are all homogeneous...
mydoc=concatenate(mydoc,///
Node
Key
isHomogeneousVectorField
(isHomogeneousVectorField,Matrix)
(isHomogeneousVectorField,Module)
(isHomogeneousVectorField,Matrix,Set)
(isHomogeneousVectorField,Module,Set)
(isHomogeneousVectorField,Matrix,List)
(isHomogeneousVectorField,Module,List)
Headline
determine whether a matrix or module is generated by homogeneous vector fields
Usage
b=isHomogeneousVectorField(M)
b=isHomogeneousVectorField(m)
b=isHomogeneousVectorField(M,s)
b=isHomogeneousVectorField(m,s)
Inputs
M:Matrix
of vector fields
m:Module
of vector fields
s:List
of degrees
s:Set
of degrees
Outputs
b:Boolean
whether the vector fields are homogeneous, or homogeneous of a type in {\tt s}
Description
Text
Determine whether the matrix or module is generated by homogeneous vector fields,
or homogeneous vector fields of degrees appearing in {\tt s}.
See @TO homogeneousVectorFieldDegree@ for more information on degrees.
Text
This is not homogeneous because of $1 \partial_x + 2x \partial_y$:
Example
R=QQ[x,y];
M1=derlog(ideal (x^2-y))
isHomogeneousVectorField(gens M1)
Text
This is homogeneous, of degree -1 and 0:
Example
M2=gens derlog(ideal (x))
homogeneousVectorFieldDegree(M2)
isHomogeneousVectorField(M2)
isHomogeneousVectorField(M2,{{-1},{0}})
Text
This is homogeneous, of degrees 0, 1, and -infinity:
Example
M3=matrix {{x,0,0},{0,y^2,0}}
homogeneousVectorFieldDegree(M3)
isHomogeneousVectorField(M3)
isHomogeneousVectorField(M3,{{1},{0}})
isHomogeneousVectorField(M3,{-infinity,{1},{0}})
Text
If the parameter is a module, then the generators
given by @TO gens@ are studied.
Consequently, the routine may return {\tt false} even though
a module may have a homogeneous basis:
Example
m=matrix {{0,0},{x,x^3+x}}
isHomogeneousVectorField(image m)
isHomogeneousVectorField(trim image m)
Caveat
Despite the name, the function does not check the number of vector fields provided.
SeeAlso
VectorFields
homogeneousVectorFieldDegree
///);
isHomogeneousVectorField = method(TypicalValue=>Boolean);
isHomogeneousVectorField(Matrix,Set) := (m,s) -> (
if not(isVectorField(m)) then (
return false;
);
return all(numColumns(m),i-> member(getDegreeInternal(m_i),s));
);
isHomogeneousVectorField(Matrix) := (m) -> (
if not(isVectorField(m)) then (
return false;
);
return all(numColumns(m),i-> not(getDegreeInternal(m_i)===false));
);
isHomogeneousVectorField(Module,Set) := (M,s) -> (
if not(isVectorField(M)) then (
return false;
);
return isHomogeneousVectorField(gens M,s);
);
isHomogeneousVectorField(Module) := (M) -> (
if not(isVectorField(M)) then (
return false;
);
return isHomogeneousVectorField(gens M);
);
isHomogeneousVectorField(Matrix,List) := (M,s) -> isHomogeneousVectorField(M,set(s));
isHomogeneousVectorField(Module,List) := (M,s) -> isHomogeneousVectorField(M,set(s));
---------------------------------- BRACKETING
-- Compute the derivation f |-> vf1(vf2(f))-vf2(vf1(f)), but
-- try to write the code to be flexible and (for speed) avoid
-- any explicit loops.
--
-- When have coordinates x_1,\ldots,x_n and we indicate the
-- \partial_{x_i}-component by _i, we have:
-- ([vf1,vf2])_i=\sum_j ( (vf1)_j*partial_{x_j}(vf2_i)-(vf2)_j*partial_{x_j}(vf1_i) )
--
-- Internal only
bracketFast := (M1,M2,variables,indices) -> (
-- M1,M2 are matrices, variables is a list
-- indices is a list of pairs like (1,2)
n:=numRows(M1);
R:=ring(M1);
ans:=map(R^n,R^(length(indices)),
(row,col) -> (
-- Calculate the d/d(variables_row)--component of
-- [M1_((indices_col)_0),M2_((indices_col)_1)].
l:=(indices_col)_0;
r:=(indices_col)_1;
sum(n, j->
M1_(j,l)*diff(variables_j,M2_(row,r))
- M2_(j,r)*diff(variables_j,M1_(row,l)) )
)
);
return ans;
);
mydoc=concatenate(mydoc,///
Node
Key
bracket
(bracket,Matrix,Matrix)
(bracket,Matrix,Matrix,List)
(bracket,Vector,Vector)
(bracket,Module,Module)
Headline
compute the Lie bracket of vector fields
Usage
M=bracket(M1,M2)
M=bracket(M1,M2,L)
V=bracket(V1,V2)
m=bracket(m1,m2)
Inputs
M1:Matrix
of vector fields
M2:Matrix
of vector fields
L:List
of 2-element lists, giving indices of columns of {\tt M1} and
of {\tt M2}
V1:Vector
vector from a matrix of vector fields
V2:Vector
vector from a matrix of vector fields
m1:Module
of vector fields
m2:Module
of vector fields
Outputs
M:Matrix
V:Vector
m:Module
where the output type matches the input type
Description
Text
This computes the Lie bracket of pairs of vector fields from
the first and second parameters.
If $D_1$ and $D_2$ are vector fields, then the Lie bracket of $D_1$ and
$D_2$, denoted $[D_1,D_2]$, is the vector field $F$ such that
$F(g)=D_1(D_2(g))-D_2(D_1(g))$ for all $g$, where $V(f)$ denotes the operation of
applying a vector field to a function (see @TO applyVectorField@).
When the first two parameters are matrices {\tt M1} and {\tt M2},
this function
returns a @TO Matrix@ of {\tt (numColumns(M1))*(numColumns(M2))}
columns, consisting of all possible brackets of a column from
{\tt M1} with a column from {\tt M2}.
If a specific ordering (or subset) of the brackets
is desired, then a @TO List@ of
column index pairs should also be provided.
When the first two parameters are @TO Vector@s, this returns the
@TO Vector@ formed by the Lie bracket of the two vector fields.
When the parameters are @TO Module@s {\tt m1} and {\tt m2}, then we
compute the module generated by $[X,Y]$, for $X$ in {\tt m1}
and $Y$ in {\tt m2}.
This is a superset of the module generated by the brackets
of the generators!
(A calculation shows that {\tt bracket(m1,m2)} is generated by
{\tt image bracket(gens m1,gens m2)}, {\tt I1*m2}, and {\tt I2*m1},
where {\tt I1} is the ideal generated by the coefficients of the
generators of {\tt m1}, and similarly {\tt I2}.)
See
@TO "differences between certain bracketing functions"@ for
more details on the differences.
Example
R=QQ[x,y];
A=matrix {{0},{x}};
B=matrix {{x^2},{y}};
C=matrix {{1},{x}};
bracket(A,B)
bracket(B,A)==-bracket(A,B)
bracket(A,C)
bracket(A_0,C_0)
bracket(A,B|C)
bracket(A|C,B|C,{(0,0),(1,1)})===bracket(A,B)|bracket(C,C)
bracket(A|C,B|C,{{0,1}})===bracket(A,C)
Text
Providing @TO Module@s computes something much different:
Example
trim bracket(image(A),image(B))
Text
because, for example,
Example
(2*x+1)*bracket(A,B)-bracket(x*A,B)
--trim image bracket(A|x*A|y*A,B|x*B|y*B)
Text
An action of SL_2 on GL_2 differentiates to the following vector fields:
Example
R=QQ[a,b,c,d];
e=matrix {{c},{d},{0},{0}};
f=matrix {{0},{0},{a},{b}};
h=matrix {{-a},{-b},{c},{d}};
L=e|f|h;
Text
Verify that this is a representation of sl_2, where [e,f]=h, [h,f]=-2f, [h,e]=2e.
Example
bracket(e,f)-h==0
bracket(h,f)+2*f==0
bracket(h,e)-2*e==0
Text
Of course we should have [L,L]=L:
Example
bracket(L,L)
image bracket(L,L)==image L
Caveat
The @TO Matrix@ and @TO Module@ versions of this routine compute different
things;
see @TO "differences between certain bracketing functions"@.
SeeAlso
commutator
"differences between certain bracketing functions"
VectorFields
///);
-- bracket should return matrices or modules, depending on its inputs.
bracket = method();
bracket(Matrix,Matrix) := Matrix => (m1,m2) -> (
if not(isVectorField(m1) and isVectorField(m2) and ring(m1)===ring(m2)) then error "bracket: expected matrices of vector fields over the same ring";
variables:=flatten entries vars(ring(m1));
-- list all possible pairs of indices
indices:=flatten table(numColumns(m1),numColumns(m2),identity);
return bracketFast(m1,m2,variables,indices);
);
bracket(Vector,Vector) := Vector => (v1,v2) -> (bracket(matrix {v1},matrix {v2}))_0;
bracket(Matrix,Matrix,List) := Matrix => (m1,m2,l) -> (
if not(isVectorField(m1) and isVectorField(m2) and ring(m1)===ring(m2)) then error "bracket: expected matrices of vector fields over the same ring";
-- allow the use of {1,2} or (1,2)
if not(instance(l,List) and all(l, i-> instance(i,VisibleList)) and all(l, i-> (#i)==2)) then error "bracket: expected a list of 2-element VisibleLists";
nc1:=numColumns(m1);
nc2:=numColumns(m2);
if not(all(l, i-> (instance(i_0,ZZ) and instance(i_1,ZZ) and 0<= i_0 and i_0< nc1 and 0<= i_1 and i_1< nc2))) then error "bracket: list contains invalid indices";
variables:=flatten entries vars(ring(m1));
return bracketFast(m1,m2,variables,l);
);
-- Similarly, we should have a way to compute the bracket of
-- two modules...
-- For X in m1, Y in m2, f in R, we have
-- [fX,Y] =f*[X,Y]-Y(f)*X
-- [X,fY] =f*[X,Y]+X(f)*Y
-- [fX,gY]=fg[X,Y]+f X(g) Y-g Y(f) X
bracket(Module,Module) := Module => (m1,m2) -> (
if not(isVectorField(m1) and isVectorField(m2) and ring(m1)===ring(m2)) then error "bracket: expected modules of vector fields over the same ring";
gm1:=gens(m1);
gm2:=gens(m2);
tmp:=image bracket(gm1,gm2);
-- If m1 or m2 has no generators, then we may accidentally get a ZZ ideal. Force it
-- to be over the correct ring.
I1:=promote(ideal (flatten entries gm1),ring(m1));
I2:=promote(ideal (flatten entries gm2),ring(m1));
return (tmp+(I1*m2)+(I2*m1));
);
mydoc=concatenate(mydoc,///
Node
Key
commutator
(commutator,Matrix)
(commutator,Module)
Headline
the commutator of a collection of vector fields
Usage
N=commutator(M)
n=commutator(m)
Inputs
M:Matrix
of vector fields
m:Module
of vector fields
Outputs
N:Matrix
with columns containing the brackets of pairs of columns of {\tt M}
n:Module
the module generated by brackets of elements of {\tt m}
Description
Text
When given a @TO Matrix@, this returns a @TO Matrix@
with columns containing the brackets of pairs of columns of {\tt M}.
When given a @TO Module@, this returns the @TO Module@
generated by $[X,Y]$, for $X$ and $Y$ in the module {\tt m}.
This is a superset of the module generated by the brackets
of generators of {\tt m};
see @TO bracket@ for more details.
In either case, @TO commutator@ computes much the same thing as
calling @TO bracket@ with repeated parameters,
but is more efficient because it takes advantage of skew-symmetry.
See
@TO "differences between certain bracketing functions"@
for more information.
Example
R=QQ[x,y];
D=derlog(ideal (x*y*(x-y)))
commutator(gens D)
bracket(gens D,gens D)
commutator(D)
bracket(D,D)
Caveat
The @TO Matrix@ and @TO Module@ versions of this routine compute different
things;
see @TO "differences between certain bracketing functions"@.
SeeAlso
bracket
"differences between certain bracketing functions"
VectorFields
///);
commutator = method();
commutator(Matrix) := Matrix => (vfs) -> (
if not(isVectorField(vfs)) then error "commutator: expected a matrix of vector fields";
-- Use the symmetry
variables:=flatten entries vars(ring(vfs));
ss:=subsets(numColumns(vfs),2);
return bracketFast(vfs,vfs,variables,ss);
);
commutator(Module) := Module => (m) -> (
if not(isVectorField(m)) then error "commutator: expected a module of vector fields";
gm:=gens m;
mat:=commutator(gm);
I:=promote(ideal (flatten entries gm),ring(m));
return (image(mat)+I*m);
);
mydoc=concatenate(mydoc,///
Node
Key
isLieAlgebra
(isLieAlgebra,Module)
-- TODO: implement this in the future?
--(isLieAlgebra,Matrix)
Headline
check that a module of vector fields is closed under the Lie bracket
Usage
b=isLieAlgebra(m)
--b=isLieAlgebra(M)
Inputs
m:Module
of vector fields
--M:Matrix
-- of vector fields
Outputs
b:Boolean
whether the module is a Lie algebra of vector fields
Description
Text
Checks whether the module generated by the provided vector fields is closed under
the Lie bracket of vector fields (see @TO bracket@) and thus forms a Lie algebra.
Example
R=QQ[a,b,c,d];
Text
An action of SL_2 on GL_2 differentiates to the following vector fields:
Example
e=matrix {{c},{d},{0},{0}};
f=matrix {{0},{0},{a},{b}};
h=matrix {{-a},{-b},{c},{d}};
Text
Verify that this is sl_2, where [e,f]=h, [h,f]=-2f, [h,e]=2e.
Example
bracket(e,f)-h==0
bracket(h,f)+2*f==0
bracket(h,e)-2*e==0
Text
In particular, the module these generate form a Lie algebra:
Example
isLieAlgebra(image (e|f|h))
Caveat
There is no {\tt isLieAlgebra(Matrix)}, yet.
SeeAlso
VectorFields
///);
isLieAlgebra = method(TypicalValue=>Boolean);
isLieAlgebraInternal := (vfs) -> (
if not(isVectorField(vfs)) then error "isLieAlgebra: expected a matrix of vector fields";
variables:=flatten entries vars(ring(vfs));
-- each column of vfs represents a different vector field.
ss:=subsets(numColumns(vfs),2);
return all(ss,combo->
isSubset(image bracketFast(vfs,vfs,variables,{combo}), image vfs) );
);
-*
isLieAlgebra(Matrix) := (vfs) -> isLieAlgebraInternal(vfs);
*-
-- Note: a calculation shows we only need to check that the brackets of the
-- generators are in the module
isLieAlgebra(Module) := (M) -> (
if not(isVectorField(M)) then error "isLieAlgebra: expected a module of vector fields";
return isLieAlgebraInternal(gens M);
);
-- information about the difference:
mydoc=concatenate(mydoc,///
Node
Key
"differences between certain bracketing functions"
Headline
The difference between certain bracketing functions
Description
Text
This package contains a variety of functions that calculate
or work with brackets, including
@TO bracket@, @TO commutator@, @TO derivedSeries@, and @TO lowerCentralSeries@.
Each function has two variants:
those that work on only the provided vector fields,
and those that work on a module of vector fields.
The former type accept a @TO Matrix@ as the parameter, while the
latter type accept a @TO Module@ as the parameter.
The documentation for each function explains what is
calculated, and how.
Here is an example to illustrate the difference.
Example
R=QQ[x,y];
D=gens derlog(ideal (x*y))
bracket(D,D)
commutator(D)
Text
The generating vector fields of {\tt D} commute
but not all pairs of elements from the module {\tt D} are commutative:
Example
co1=commutator(D|x*D|y*D)
commutator(D|x*D|y*D|x^2*D|x*y*D|y^2*D)
Text
In this case only the first-order terms are necessary to achieve the
results calculated by the @TO Module@ versions of the functions:
Example
bracket(image D,image D)
commutator(image D)
bracket(image D,image D)==image co1
commutator(image D)==image co1
SeeAlso
bracket
commutator
derivedSeries
lowerCentralSeries
VectorFields
///);
mydoc=concatenate(mydoc,///
Node
Key
derivedSeries
(derivedSeries,ZZ,Matrix)
(derivedSeries,ZZ,Module)
Headline
compute the derived series of a set of vector fields
Usage
L=derivedSeries(k,M)
L=derivedSeries(k,m)
Inputs
k:ZZ
a nonnegative integer
M:Matrix
of vector fields
m:Module
of vector fields
Outputs
L:List
containing {\tt m} or {\tt M}, and the first {\tt k} terms of the
derived series.
The types of the terms of the list agrees with the input type.
Description
Text
Compute the first few terms of the {\em derived series} of a set of
vector fields.
For an object $n$, if we define
$n^{(0)}=n$ and $n^{(i+1)}=bracket(n^{(i)},n^{(i)})$, then
$n^{(i)}$ is the $i$th term of the derived series, and will be
in the $i$th index position of the returned list.
As with @TO bracket@, this function computes different things,
depending on the type of the parameter.
See @TO "differences between certain bracketing functions"@ for
more information.
The following Lie algebra is generated by a finite-dimensional
representation of gl_2.
Example
R=QQ[a,b,c];
D=derlog(a*c-b^2)
Text
The derived series (when provided with a @TO Matrix@)
stabilizes as a representation of sl_2:
Example
ds=derivedSeries(3,gens D)
apply(ds,f->gens trim image f)
Text
The derived series (when provided with a @TO Module@)
stabilizes immediately
with a linear part isomorphic to sl_2, and a higher-order part
equal to {\tt ideal (a,b,c)*D}.
Example
derivedSeries(3,D)
trim((image commutator(gens D))+(ideal (a,b,c))*D)
Text
This Lie algebra is generated by a finite-dimensional representation
of t_2, a solvable Borel subalgebra of gl_2.
Consequently, the linear part disappears:
Example
D=derlog(a*(a*c-b^2))
derivedSeries(3,gens D)
derivedSeries(3,D)
SeeAlso
commutator
lowerCentralSeries
"differences between certain bracketing functions"
VectorFields
///);
derivedSeries=method(TypicalValue=>List);
-- internal only
derivedSeriesInternal := (k,t,fn) -> (
if not(k>=0) then error "derivedSeries: expected a nonnegative integer";
lastone:=t;
l:=for i from 0 when i<k list (
-- We may want to simplify along the way...
lastone=fn(commutator(lastone))
);
return {t}|l;
);
derivedSeries(ZZ,Matrix) := (k,m) -> (
if not(isVectorField(m)) then error "derivedSeries: expected a matrix of vector fields";
-- `trim' is not appropriate here, but if we don't do something then
-- we quickly get many many columns.
-- TODO: we could throw away the zero columns?
return derivedSeriesInternal(k,m,identity);
);
derivedSeries(ZZ,Module) := (k,M) -> (
if not(isVectorField(M)) then error "derivedSeries: expected a module of vector fields";
return derivedSeriesInternal(k,M,trim);
);
mydoc=concatenate(mydoc,///
Node
Key
lowerCentralSeries
(lowerCentralSeries,ZZ,Matrix)
(lowerCentralSeries,ZZ,Module)
Headline
compute the lower central series of a set of vector fields
Usage
L=lowerCentralSeries(k,M)
L=lowerCentralSeries(k,m)
Inputs
k:ZZ
a nonnegative integer
M:Matrix
of vector fields
m:Module
of vector fields
Outputs
L:List
a list containing {\tt m} or {\tt M} and the first {\tt k} terms of the
lower central series.
The types of the terms of the list agrees with the input type.
Description
Text
Compute the first few terms of the {\em lower central series}
of a set of vector fields.
For an object $n$, if we define
$n^{(0)}=n$ and $n^{(i+1)}=bracket(n,n^{(i)})$, then
$n^{(i)}$ is the $i$th term of the lower central series, and will be
in the $i$th index position of the returned list.
As with @TO bracket@, this function computes different things,
depending on the type of the parameter.
See @TO "differences between certain bracketing functions"@ for
more information.
The following Lie algebra is generated by a finite-dimensional
representation of gl_2.
Example
R=QQ[a,b,c];
D=derlog(a*c-b^2)
Text
The lower central series (when provided with a @TO Matrix@)
stabilizes as a representation of sl_2:
Example
lcs=lowerCentralSeries(2,gens D)
apply(lcs,f->gens trim image f)
Text
The lower central series (when provided with a @TO Module@)
stabilizes with a linear part isomorphic to sl_2, and a higher-order
part equal to {\tt ideal (a,b,c)*D}.
Example
lowerCentralSeries(2,D)
trim((image commutator(gens D))+(ideal (a,b,c))*D)
Text
In this example, with 1 generator, the difference between the two versions
is particularly stark.
Example
D=image matrix {{0},{a},{2*b}};
lowerCentralSeries(5,gens D)
lowerCentralSeries(5,D)
SeeAlso
bracket
derivedSeries
"differences between certain bracketing functions"
VectorFields
///);
lowerCentralSeries = method(TypicalValue=>List);
-- internal only
lowerCentralSeriesInternal := (k,t,fn) -> (
if not(k>=0) then error "lowerCentralSeries: expected a nonnegative integer";
lastone:=t;
l:=for i from 0 when i<k list (
-- We may want to simplify along the way...
lastone=fn(bracket(t,lastone))
);
return {t}|l;
);
lowerCentralSeries(ZZ,Matrix) := (k,m) -> (
if not(isVectorField(m)) then error "lowerCentralSeries: expected a matrix of vector fields";
-- TODO: may want to simplify? throw away zero columns or gens trim image
return lowerCentralSeriesInternal(k,m,identity);
);
lowerCentralSeries(ZZ,Module) := (k,M) -> (
if not(isVectorField(M)) then error "lowerCentralSeries: expected a module of vector fields";
return lowerCentralSeriesInternal(k,M,trim);
);
---------------------------------- LOGARITHMIC VECTOR FIELD FUNCTIONS
mydoc=concatenate(mydoc,///
Node
Key
der
(der,Ideal,Ideal)
(der,VisibleList,Ideal)
Headline
compute the module of vector fields which send one set to another
Usage
m=der(I,J)
m=der(L,J)
Inputs
J:Ideal
I:Ideal
over the same ring as {\tt J}
L:VisibleList
of RingElements in the same ring as {\tt J}
Outputs
m:Module
the module of derivations sending {\tt I} or {\tt L} to {\tt J}
Description
Text
This computes the module of vector fields that, as derivations, send each
element of {\tt I} (or {\tt L}) to an element of {\tt J}.
This can be used to calculate, for example, the module of vector fields
tangent to an algebraic variety (see @TO derlog@).
Note that {\tt der(I,J)} is always a subset of
{\tt der(list of generators of I,J)}, and frequently a proper subset.
For {\tt der(L,J)}, the computation is done by
finding the syzygies between the partial derivatives of the
entries of {\tt L} and the generators of {\tt J}.
This method of computation was adapted from Singular's
{\tt KVequiv.lib}, written by Anne Frühbis-Krüger.
For {\tt der(I,J)}, we intersect {\tt der(list of generators of I,J)} with
the free module consisting of vector fields with coefficients
in {\tt J:I}; the latter is unnecessary when {\tt I} is a subset of {\tt J}.
For example, consider the following ideals.
Example
R=QQ[x,y];
I=ideal (x*y);
J=ideal (0_R);
K=ideal (x,y);
Text
Every vector field sends the zero ideal to zero:
Example
der(J,I)
der(J,K)
Text
This finds the vector fields tangent to {\tt x*y=0} (see @TO derlog@):
Example
D=der(I,I)
applyVectorField(D,I)
Text
This finds the vector fields annihilating {\tt x*y} (see @TO derlogH@):
Example
D=der({x*y},J)
Text
This is different than
Example
der(I,J)
Text
because, for example, the generator of {\tt D} does not
annihilate {\tt x^2*y}:
Example
applyVectorField(gens D,x^2*y)
Text
Another illustration of the difference is:
Example
der({x},ideal (y))
der(ideal (x),ideal (y))
Text
This illustrates a basic identity:
Example
intersect(der(ideal (x),K),der(ideal (y),K))==der(K,K)
SeeAlso
VectorFields
"Ideal : Ideal"
derlog
derlogH
///);
der= method(TypicalValue=>Module);
-- Returns the module of vector fields which send all elements of
-- the list to elements of J.
-- TODO: doing this for each generator of I and then intersecting could be faster.
der(VisibleList,Ideal) := (L,J) -> (
R:=ring(J);
if not(all(L,f->instance(f,RingElement)) and all(L,f->ring(f)===R)) then error "der: expected a list of RingElements in the same ring as the given ideal";
Ln:=length(L);
if (Ln==0) then (
L={0_R};
Ln=1;
);
Jn:=numgens(J);
-- dimension of the space containing the vfs.
d:=numgens(R);
-- We want to find the vfs eta such that
-- eta(l_i)=\sum_k (-alpha_{i,k})*(kth generator of J)
-- for all i. If we move everything over to the left side, then this amounts
-- to finding relations between the partials of l_i and the generators of J,
-- except that for each i there is a different copy of the generators of J.
-- Thus we construct a large matrix, and find the kernel/syzygies of it.
-- (idea from Singular's "KVequiv.lib", written by Anne Frühbis-Krüger)
-- First we need the derivatives of the elts of L.
-- Shape: Ln x d
mat:=transpose(jacobian(ideal L));
-- Then we need Jn copies of multiples of the Ln x Ln identity matrix,
-- concatenated horizontally. We could loop like this:
-- for j from 0 when j<Jn do ( mat=mat|diagonalMatrix(R,Ln,Ln,toList(Ln:J_j)); );
-- but repeatedly concatenating matrices is discouraged.
mat2:=mutableMatrix(R,Ln,Ln*Jn);
for j from 0 when j<Jn do (
for i from 0 when i<Ln do (
mat2_(i,j*Ln+i)=J_j;
);
);
-- Will there ever be a problem with the degrees of the targets not agreeing?
mat=mat|(matrix mat2);
-- Now mat is Ln x (d+ Ln*Jn).
-- Could also use 'ker' here, but that calls modulo(mat,Nothing) which calls syz.
smat:=syz(mat);
-- Syzygy will have shape (d+Ln*Jn) x (??), but we only care about the first d rows.
-- The target module should just be the free one, without gradings
return(trim image map(R^d,,submatrix(smat,toList(0..(d-1)),)));
);
-- Returns the module of vector fields which send all elements of I to
-- elements of J.
der(Ideal,Ideal) := (I,J) -> (
R:=ring(I);
if not(R===ring(J)) then error "der: expected a pair of ideals over the same ring";
d:=numgens R;
-- If I is a subset of J, then der(list-of-gens-of I,J) is enough, but that's not always
-- the case.
K:=(J:I);
D2:=K*(image id_(R^d));
-- avoid time-consuming computation of der(...,...) if possible
if (K==ideal (0_R)) then return D2;
D1:=der(flatten entries gens I,J);
return intersect(D1,D2);
);
mydoc=concatenate(mydoc,///
Node
Key
derlog
(derlog,Ideal)
(derlog,RingElement)
derlogH
(derlogH,List)
(derlogH,RingElement)
Headline
compute the logarithmic (tangent) vector fields to an ideal
Usage
m=derlog(I)
m=derlog(f)
n=derlogH(L)
n=derlogH(f)
Inputs
I:Ideal
f:RingElement
L:List
nonempty, of RingElements
Outputs
m:Module
the module of logarithmic vector fields for {\tt I} or {\tt ideal(f)}
n:Module
the module of vector fields that annihilates {\tt f} or the entries of {\tt L}
Description
Text
{\tt derlog} computes the module of {\it logarithmic vector fields} to an
affine
variety defined by {\tt I} or {\tt f}; these are the ambient vector
fields tangent to the variety.
{\tt derlogH} computes the module of ambient
vector fields tangent to all level sets of {\tt f} or
of the entries of {\tt L}.
Note that {\tt derlog(I)=der(I,I)} and
{\tt derlogH(L)=der(L,0)};
see @TO der@.
Example
R=QQ[x,y,z];
f=x*y-z^2;
derlog(ideal (f))
derlogH(f)
dH=derlogH({f})
Text
Although every element of {\tt dH} annihilates {\tt f}, they do not annihilate the
ideal generated by {\tt f}:
Example
applyVectorField(dH,f)
applyVectorField(dH,ideal(f))
SeeAlso
VectorFields
der
isLogarithmic
///);
derlog=method();
derlog(Ideal) := Module => (I) -> der(I,I);
derlog(RingElement) := Module => (f) -> derlog(ideal (f));
derlogH=method();
derlogH(List) := Module => (L) -> (
if #L==0 then (
error "derlogH: expected nonempty list";
);
if not(all(L,f->instance(f,RingElement)) and all(L,f->ring(f)===ring(L#0))) then (
error "derlogH: expected list of RingElements over the same ring";
);
R:=ring(L#0);
return der(L,ideal (0_(R)));
);
derlogH(RingElement) := Module => (f) -> derlogH({f});
mydoc=concatenate(mydoc,///
Node
Key
isLogarithmic
(isLogarithmic,Matrix,Ideal)
(isLogarithmic,Vector,Ideal)
(isLogarithmic,Module,Ideal)
Headline
check if the given vector fields are logarithmic
Usage
b=isLogarithmic(M,I)
b=isLogarithmic(V,I)
b=isLogarithmic(m,I)
Inputs
M:Matrix
of vector fields
V:Vector
a column from a matrix of vector fields
m:Module
of vector fields
I:Ideal
the ideal
Outputs
b:Boolean
whether the vector fields are in {\tt derlog(I)}
Description
Text
Check if the vector field(s) given are in the module of logarithmic
vector fields of {\tt I} (see @TO derlog@).
This function does not compute {\tt derlog(I)}, but instead applies the vector fields
to the generators of {\tt I} and checks if the result lies in {\tt I}.
Example
R=QQ[x,y,z];
f=x*y-z^2;
I=ideal (f);
M=matrix {{x,2*z,2*z},{y,0,0},{z,y,x}};
applyVectorField(M,{f})
isLogarithmic(M,I)
isLogarithmic(M_{0,1},I)
isLogarithmic(derlog(I),I)
SeeAlso
VectorFields
derlog
applyVectorField
///);
-- Note: for der(I,J) we would need to do more, but for der(I,I) we only
-- need to check the generators of I.
isLogarithmic=method(TypicalValue=>Boolean);
isLogarithmic(Matrix,Ideal) := (M,I) -> (
if not(isVectorField(M)) then error "isLogarithmic: expected a matrix of vector fields";
if not(ring(M)===ring(I)) then error "isLogarithmic: expected parameters to have the same ring";
return all(applyVectorFieldInternal(M,flatten entries gens I),f->isSubset(ideal (f),I));
);
isLogarithmic(Vector,Ideal) := (V,I) -> (
-- Using a Vector from a Module (instead of a Matrix) can make this fail.
if not(isVectorField(matrix {V})) then error "isLogarithmic: expected a Vector from a Matrix of vector fields";
return isLogarithmic(matrix {V},I);
);
isLogarithmic(Module,Ideal) := (m,I) -> (
if not(isVectorField(m)) then error "isLogarithmic: expected a module of vector fields";
return isLogarithmic(gens m,I);
);
---------------------------------- FREE DIVISORS
mydoc=concatenate(mydoc,///
Node
Key
isFreeDivisor
(isFreeDivisor,Matrix)
(isFreeDivisor,Module)
(isFreeDivisor,RingElement)
Headline
check if the provided information is associated with a free divisor
Usage
t=isFreeDivisor(M)
t=isFreeDivisor(m)
t=isFreeDivisor(f)
Inputs
M:Matrix
of vector fields, usually square
m:Module
of vector fields
f:RingElement
a polynomial defining a hypersurface
Outputs
t:Boolean
whether {\tt M} or {\tt m} generate the module of vector fields for a
free divisor, or whether {\tt f=0} defines a free divisor
Description
Text
Determine whether the given object is associated to a free divisor,
using a variety of methods.
A {\em free divisor} is a
hypersurface germ $X$ for which the associated module of
logarithmic vector fields (see @TO derlog@) is free.
When given a @TO RingElement@ {\tt f}, this tests whether
{\tt f=0} is a free divisor by
computing {\tt derlog(ideal (f))} and
then testing if this is a free module by computing a partial
@TO resolution@.
This method may give false negatives
if the resolution computed is not minimal;
use with caution.
When given a @TO Matrix@ {\tt M}, this tests whether
the given vector fields are a free set of generators of
the module of logarithmic vector fields for a free divisor.
A criterion of Kyoji Saito is used:
if the number of vector fields provided equals the
dimension of the ambient space (i.e., {\tt M} is square),
the vector fields generate a Lie algebra,
and the determinant of the matrix is reduced (square-free),
then the provided vector fields are a
free basis of the free module {\tt derlog(ideal det(M))}, and
{\tt det(M)=0} defines a free divisor.
This method may give false negatives
if redundant generators are provided.
When given a @TO Module@, this tests whether
the module is the module of logarithmic vector fields of
a free divisor.
The method applies the @TO Matrix@ version of the command
to the generators given by {\tt gens(m)}.
If the generators provided by @TO gens@ are not minimal,
then this may give false negatives; use @TO trim@ first.
For example, this is not a free divisor:
Example
R=QQ[a,b,c];
f=a*c-b^2;
M=derlog(ideal (f))
isFreeDivisor(gens M)
isFreeDivisor(M)
isFreeDivisor(f)
Text
This is a free divisor:
Example
f=a*(a*c-b^2);
M=derlog(ideal (f))
isFreeDivisor(gens M)
isFreeDivisor(M)
isFreeDivisor(f)
Text
This is a free divisor:
Example
f=a;
D=derlog(ideal (f))
isFreeDivisor(f)
isFreeDivisor(D)
Text
but the vector fields in {\tt M} are not
a generating set of the logarithmic vector fields:
Example
M=matrix {{a,0,0},{0,a,0},{0,0,1}};
isSubset(image M,D)
isFreeDivisor(M)
Text
False negatives can occur with a set of generators that is not minimal:
Example
isFreeDivisor((gens D)|M)
isFreeDivisor(trim image ((gens D)|M))
SeeAlso
VectorFields
isLieAlgebra
derlog
///);
isFreeDivisor = method(TypicalValue => Boolean);
isFreeDivisor(Matrix) := (vfs) -> (
if not(isVectorField(vfs)) then error "isFreeDivisor: expected a matrix of vector fields";
if not(numColumns(vfs)==numRows(vfs)) then
return false;
if not(isLieAlgebra(image vfs)) then
return false;
f:=det(vfs);
if f==0 then
return false;
-- Is f reduced?
return (ideal(f)==radical ideal (f));
);
isFreeDivisor(Module) := (m) -> (
if not(isVectorField(m)) then error "isFreeDivisor: expected a module of vector fields";
return isFreeDivisor(gens m);
);
isFreeDivisor(RingElement) := (p) -> (
-- p is a polynomial.
R:=res(derlog(ideal (p)),LengthLimit=>1);
if (length(R)==0) then
(
return true;
);
-- We could be saying that things aren't free divisors when they are, but...
return false;
);
---------------------------------- STRATIFICATIONS
mydoc=concatenate(mydoc,///
Node
Key
StratificationByRank
Headline
a type to hold a rank computation
Description
Text
This is a type of @TO HashTable@ with positive integer keys, used to store the
output of @TO stratifyByRank@.
If {\tt M} is a module of vector fields and
{\tt h=stratifyByRank(M)} is the StratificationByRank object, then
{\tt h#i} is the radical ideal defining the set of points $p$ such that
the generators of $M$ evaluated at $p$ span a subspace of dimension
less than $i$.
These objects are primarily used by @TO isFiniteStratification@.
If {\tt M} is a Lie algebra, then this gives some information about
the 'orbits' or maximal integral submanifolds of the vector fields.
SeeAlso
stratifyByRank
isFiniteStratification
VectorFields
///);
StratificationByRank = new Type of HashTable;
mydoc=concatenate(mydoc,///
Node
Key
stratifyByRank
(stratifyByRank,Matrix)
(stratifyByRank,Module)
Headline
compute ideals describing where the vector fields have a particular rank
Usage
H=stratifyByRank(M)
H=stratifyByRank(m)
Inputs
M:Matrix
of vector fields
m:Module
of vector fields
Outputs
H:StratificationByRank
a type of @TO HashTable@ with integer keys: {\tt i} maps to the radical ideal defining the
set where the vector fields have rank less than {\tt i}.
Description
Text
Computes ideals describing where the provided vector fields have a
particular rank.
For $1\leq i\leq n$, where $n$ is the dimension of the space,
{\tt (stratifyByRank(M))#i} will be an ideal defining
the set of points $p$ such that
the generators of $M$ evaluated at $p$ span a subspace of
dimension less than $i$.
If the vector fields generate a Lie algebra, then this gives some
information about their 'orbits' or their maximal integral
submanifolds.
For details on the parts of the calculation,
make @TO "debugLevel"@ positive.
Example
R=QQ[a,b,c];
f=a*b*(a-b)*(a-c*b)
D=derlog(ideal (f))
S=stratifyByRank(D);
Text
{\tt D} has rank 0 on $a=b=0$, that is, the vector fields all vanish
there:
Example
S#1
Text
{\tt D} has rank <3 precisely on the hypersurface $f=0$, and hence rank 3
off the hypersurface:
Example
S#3
Text
This submodule of {\tt D} has rank $<3$ everywhere since it only has
2 generators:
Example
Df=derlogH(f)
isSubset(Df,D)
S=stratifyByRank(Df);
S#3
SeeAlso
VectorFields
StratificationByRank
isFiniteStratification
///);
stratifyByRank = method(TypicalValue=>StratificationByRank);
stratifyByRank(Matrix) := (N) -> (
if not(isVectorField(N)) then error "stratifyByRank: expected a matrix of vector fields";
-- N is a matrix generating a Lie algebra of vector fields (assumed)?
-- returns a hash table where i maps to the radical ideal defining the
-- set where the vfs have rank less than i.
n:=numRows(N);
mindim:=min({numColumns(N),n});
-- When it makes sense to take minors, do so.
ranklt:=for i from 1 when i<=mindim list (
if debugLevel>0 then stdio<<"stratifyByRank: Taking minors of order "<<toString(i)<<endl;
I:=trim minors(i,N);
if debugLevel>0 then stdio<<"stratifyByRank: Taking radical..."<<endl;
i=>radical I
);
ranklt=ranklt|(for i from mindim+1 when i<=n list (
i=>ideal (0_(ring(N)))
));
if debugLevel>0 then stdio<<"stratifyByRank: Done."<<endl;
return new StratificationByRank from ranklt;
);
stratifyByRank(Module) := (m) -> (
if not(isVectorField(m)) then error "stratifyByRank: expected a module of vector fields";
return stratifyByRank(gens m);
);
mydoc=concatenate(mydoc,///
Node
Key
isFiniteStratification
(isFiniteStratification,StratificationByRank)
Headline
checks if a stratification by integral submanifolds is finite
Usage
b=isFiniteStratification(strat)
Inputs
strat:StratificationByRank
the output of @TO stratifyByRank@ applied to a collection of vector fields
Outputs
b:Boolean
whether {\tt strat} is a finite stratification
Description
Text
Let {\tt strat} be the output of @TO stratifyByRank@ applied to a
module $L$ of vector fields.
When $L$ is a Lie algebra, {\tt strat} contains information about
the integral submanifolds of $L$;
under the assumption that $L$ is a Lie algebra,
this function checks whether there are a finite number
of connected integral submanifolds.
The algorithm used,
and perhaps even the term {\em integral submanifold},
is only valid in real or complex geometry.
This routine checks that, for all $j$, each component of
{\tt strat#j} has dimension $<j$.
It is up to the user to check that the answers obtained
by Macaulay2 (e.g., in {\tt QQ[x,y,z]})
would not change if the calculation was done
over the real or complex numbers.
-- Ex: though x^2-5 doesn't factor in QQ[x], M2 correctly computes the dim as though it's in CC[x].
The algorithm is motivated by the results of section 4.3 of
``James Damon and Brian Pike.
Solvable groups, free divisors and nonisolated matrix singularities II:
Vanishing topology. {\it Geom. Topol.}, 18(2):911-962, 2014'',
available at \url{http://dx.doi.org/10.2140/gt.2014.18.911} or
\url{http://arxiv.org/abs/1201.1579}.
To display progress reports, make @TO "debugLevel"@$>1$.
Example
R=QQ[a,b,c];
f=a*b*(a-b)*(a-c*b)
D=derlog(ideal (f))
S=stratifyByRank(D);
Text
Since {\tt D} has rank 0 on $a=b=0$, that is, the vector fields all vanish:
Example
S#1
Text
the stratification cannot be finite (every point on $a=b=0$ is its own stratum):
Example
isFiniteStratification(S)
Text
This stratification is finite:
Example
D=derlog(ideal (a*b*c))
isFiniteStratification(stratifyByRank(D))
Caveat
The assumption that $L$ is a Lie algebra is not checked.
SeeAlso
VectorFields
stratifyByRank
isHolonomic
isHHolonomic
///);
isFiniteStratification = method(TypicalValue=>Boolean);
isFiniteStratification(StratificationByRank) := (strat) -> (
-- dimension of the space
n:=max(keys(strat));
R:=ring(strat#n);
-- Make sure this is a reasonable stratification
if not(dim(R)==n and numColumns(vars(R))==n) then error "isFiniteStratification: unexpected behavior from the stratification";
if not(sort(keys(strat))==toList(1..n)) then error "isFiniteStratification: unexpected key behavior from stratification";
-- Let D_k be the locus of rank <=k, so it is defined by strat#(k+1)
-- Check that each irreducible component of D_k has dimension <=k, for 0<=k<n.
-- Check that each irreducible component of D_k has dimension <k+1, for 0<=k<n.
-- (Translating indices (j=k+1))
-- Check that each irreducible component of D_(j-1) has dimension <j, for 1<=j<n+1.
-- Check that each irreducible component of V(strat#j) has dimension <j, for 1<=j<=n.
for j from 1 when j<=n do (
-- Make sure that all components of strat#j have dimension <j.
l:=primaryDecomposition (strat#j);
ld:=apply(l,dim);
if debugLevel>1 then (
for i from 0 when i<length(l) do (
stdio<<"isFiniteStratification, #"<<j<<": component "<<toString(l#i)<<" has dimension "<<toString(ld#i)<<endl;
);
);
if not(all(ld,i->i<j)) then (
-- List any strata that have more than the expected dim
for i from 0 when i<length(l) do (
if not(ld#i<j) then (
stdio<<"isFiniteStratification: Component "<<toString(l#i)<<" has dim "<<ld#i<<" but should be of dim <"<<j<<" to have a finite stratification."<<endl;
);
);
return false;
);
);
return true;
);
mydoc=concatenate(mydoc,///
Node
Key
isHolonomic
(isHolonomic,Ideal)
(isHolonomic,RingElement)
Headline
test whether an algebraic set is holonomic
Usage
b=isHolonomic(I)
b=isHolonomic(f)
Inputs
I:Ideal
defining an algebraic set
f:RingElement
a nonzero function defining a hypersurface
Outputs
b:Boolean
whether the algebraic set is holonomic
Description
Text
Test if $X$, the algebraic set defined by {\tt I} or {\tt f}, is holonomic.
Let $D$ be the module of logarithmic vector fields for {\tt I}.
Then $X$ is called {\em holonomic} if at any point $p$ in $X$,
the generators of $D$ evaluated at $p$ span the tangent space of
the stratum containing $p$ of the canonical Whitney stratification
of $X$;
equivalently, the maximal integral submanifolds of $D$ equal the
the canonical Whitney stratification of $X$
(except that the complement of $X$ forms additional integral submanifold(s)).
The algorithm used amounts to computing
{\tt isFiniteStratification(stratifyByRank(derlog(I)))}
(see @TO isFiniteStratification@, @TO stratifyByRank@, @TO derlog@).
Details may be found in section 4.3 of
``James Damon and Brian Pike.
Solvable groups, free divisors and nonisolated matrix singularities II:
Vanishing topology. {\it Geom. Topol.}, 18(2):911-962, 2014'',
available at \url{http://dx.doi.org/10.2140/gt.2014.18.911} or
\url{http://arxiv.org/abs/1201.1579}.
The basic idea, however, is present in (3.13) of
``Kyoji Saito.
Theory of logarithmic differential forms and logarithmic vector fields.
{\it J. Fac. Sci. Univ. Tokyo Sect. IA Math.}, 27: 265-291, 1980''.
Example
R=QQ[a,b,c];
Text
This hypersurface is not holonomic, since {\tt gens(D)} has rank 0 on the
$1$-dimensional space $a=b=0$:
Example
f=a*b*(a-b)*(a-c*b);
D=derlog(ideal (f))
isHolonomic(f)
Text
This is holonomic; the stratification consists of the origin,
and the rest of the surface $ac-b^2=0$:
Example
f=a*c-b^2;
D=derlog(ideal (f))
isHolonomic(f)
S=stratifyByRank(D);
S#1
S#2
S#3
Text
The Whitney Umbrella is also holonomic; the stratification consists
of the origin, the rest of the line $a=b=0$, and the rest of the surface:
Example
f=a^2-b^2*c;
D=derlog(ideal (f));
isHolonomic(f)
S=stratifyByRank(D);
S#1
S#2
S#3
Caveat
See the warnings in @TO isFiniteStratification@.
Also, this usage of {\em holonomic} originates with Kyoji Saito and
may vary from other meanings of the word, particularly in D-module theory.
SeeAlso
isHHolonomic
derlog
stratifyByRank
isFiniteStratification
VectorFields
///);
isHolonomic = method(TypicalValue=>Boolean);
isHolonomic(Ideal) := (I) -> (
-- I is an Ideal defining an algebraic set.
DV:=gens derlog(I);
sV:=stratifyByRank(DV);
-- sanity checks
n:=numColumns vars(ring(I));
if not(numColumns(DV)>=n) then error "isHolonomic: too few logarithmic vector fields (this should not happen)";
if not(I==ideal (0_(ring(I))) or I==ideal (1_(ring(I))) or sV#n==radical I) then error "isHolonomic: sanity checks on derlog failed!";
return isFiniteStratification(sV);
);
isHolonomic(RingElement) := (H) -> (
-- H is a ringElement defining a hypersurface.
return isHolonomic(ideal (H));
);
mydoc=concatenate(mydoc,///
Node
Key
isHHolonomic
(isHHolonomic,RingElement)
Headline
test whether a hypersurface is H-holonomic
Usage
b=isHHolonomic(H)
Inputs
H:RingElement
a nonzero function defining a hypersurface
Outputs
b:Boolean
whether the hypersurface is H-holonomic
Description
Text
Test if $X$, the algebraic set defined by {\tt H}, is
H-holonomic.
Let $D$ be the module of vector fields annihilating $H$
(see @TO derlogH@), a submodule of the module of logarithmic
vector fields for $H$.
Then $X$ is called {\em H-holonomic} if at any point $p$ in $X$,
the generators of $D$ evaluated at $p$ span the tangent space of
the stratum containing $p$ of the canonical Whitney stratification
of $X$;
equivalently, the collection of maximal integral submanifolds of $D$
that are contained in $X$ will equal the canonical Whitney
stratification of $X$.
The ``H'' in H-holonomic refers to the name of the function.
The algorithm used essentially checks the dimensions of the components
of the sets given by {\tt stratifyByRank(derlog(ideal (H)))}
(see @TO isHolonomic@ and @TO isFiniteStratification@)
and then compares these sets with those given by
{\tt stratifyByRank(derlogH(H))}.
Details may be found in section 4.3 of
``James Damon and Brian Pike.
Solvable groups, free divisors and nonisolated matrix singularities II:
Vanishing topology. {\it Geom. Topol.}, 18(2):911-962, 2014'',
available at \url{http://dx.doi.org/10.2140/gt.2014.18.911} or
\url{http://arxiv.org/abs/1201.1579}.
-- The term {\em H-holonomic} seems to date to at least
-- ``James Damon. On the legacy of free divisors: discriminants and
-- Morse-type singularities. {\it Am. J. of Math.}, 120(3):453-492, 1998.''
To display progress reports, set @TO "debugLevel"@>0.
Example
R=QQ[a,b,c];
Text
This hypersurface is not even holonomic, as the logarithmic
vector fields have rank 0 on $a=b=0$:
Example
f=a*b*(a-b)*(a-c*b);
derlog(ideal (f))
derlogH(f)
isHHolonomic(f)
isHolonomic(f)
Text
This hypersurface is H-Holonomic, although the generators of {\tt D}
are linearly dependent everywhere:
Example
f=a*c-b^2;
D=gens derlogH(f)
det(D)
isHHolonomic(f)
S=stratifyByRank(D)
S#1
S#2
S#3
Text
The Whitney Umbrella is also H-Holonomic:
Example
f=a^2-b^2*c;
isHHolonomic(f)
Caveat
See the warnings in @TO isFiniteStratification@.
SeeAlso
isHolonomic
isFiniteStratification
derlog
derlogH
stratifyByRank
VectorFields
///);
isHHolonomic = method(TypicalValue=>Boolean);
isHHolonomic(RingElement) := (H) -> (
DV:=gens derlog(ideal (H));
sV:=stratifyByRank(DV);
-- sanity checks
n:=numColumns vars(ring(H));
if not(numColumns(DV)>=n) then error "isHHolonomic: too few logarithmic vector fields (this should not happen)";
if not(H==0_(ring(H)) or H==1_(ring(H)) or sV#n==radical ideal (H)) then error "isHHolonomic: sanity checks on derlog failed!";
-- Test if holonomic
if not(isFiniteStratification(sV)) then (
if debugLevel>0 then stdio<<"isHHolonomic: not even holonomic"<<endl;
return false;
);
-- So we're holonomic. Are we H-holonomic?
DH:=gens derlogH(H);
sH:=stratifyByRank(DH);
-- Note that DH may have fewer than n vector fields, so we can't take
-- n x n minors. Instead, stop at (n-1).
-- The test is the same as that for isHolonomic, except we also check
-- that sH and sV give us the same thing, at least below level n.
for j from 1 when j<n do (
-- Check if sH#j and sV#j are the same.
if not(sH#j==sV#j) then (
stdio<<"isHHolonomic: DerlogH and DerlogV differ in their rank<"<<j<<" sets"<<endl;
if debugLevel>0 then stdio<<"isHHolonomic: holonomic but not H-holonomic"<<endl;
return false;
);
);
return true;
);
---------------------------------- DOCUMENTATION
beginDocumentation();
--print(mydoc);
multidoc(mydoc);
---------------------------------- TESTS
-- isVectorField
TEST ///
R=QQ[x,y];
assert(isVectorField(map(R^2, ,{{x,y^3+x^3},{24/3,x*y}})))
assert(isVectorField(map(R^{2:-1}, ,{{x},{24/3}})))
assert(not isVectorField(map(R^{3:-1}, ,{{x},{24/3},{y}})))
assert(not isVectorField(map(R^1, ,{{x,y}})))
assert(isVectorField(image map(R^2, ,{{x,y^3+x^3},{24/3,x*y}})))
assert(isVectorField(image map(R^{2:-1}, ,{{x},{24/3}})))
assert(not isVectorField(image map(R^{3:-1}, ,{{x},{24/3},{y}})))
assert(not isVectorField(image map(R^1, ,{{x,y}})))
assert(not isVectorField(subquotient(matrix {{x,y},{y,x}},matrix {{x^2},{y^2}})))
assert(isVectorField(matrix mutableMatrix(R,2,0)));
assert(isVectorField(image matrix mutableMatrix(R,2,0)));
///
-- applyVectorField
TEST ///
R=QQ[x,y,z];
V=matrix {{y^3},{x*z},{3}};
assert(applyVectorField(V,x)===y^3);
assert(applyVectorField(V,y)===x*z);
assert(applyVectorField(V,z)===3_R);
f=y*(y^3)+x*z*x;
assert(applyVectorField(V ,x*y)===f);
assert(applyVectorField(V_0 ,x*y)===f);
assert(applyVectorField(image V ,x*y)===ideal (f));
-- This should NOT work:
--assert(applyVectorField((image V)_0,x*y)===f);
f=9*z^2;
assert(applyVectorField(V ,z^3)===f);
assert(applyVectorField(V_0 ,z^3)===f);
assert(applyVectorField(image V ,z^3)===ideal (f));
-- This should NOT work:
--assert(applyVectorField((image V)_0,z^3)===f);
-- list of functions
ans={y^3,x*z,3_R};
assert(applyVectorField(V,{x,y,z})===ans);
assert(applyVectorField(V_0,{x,y,z})===ans);
assert(applyVectorField(image V,ideal(x,y,z))==ideal (ans));
ans2={y^3,y^3,x*z,x*z,3_R,3_R};
assert(applyVectorField(V|V,{x,y,z})===ans2);
assert(applyVectorField(V|V,{x,y,z,x,y,z})===ans2|ans2);
assert(applyVectorField(V_0,{x,y,z,x,y,z})===ans|ans);
assert(applyVectorField(image (V|V),ideal (x,y,z))==ideal (ans2));
///
-- homogeneousVectorFieldDegree
TEST ///
R=QQ[x];
m=matrix {{0_R,4_R,x,x^67,x^3+x}};
ans={-infinity,{-1},{0},{66},false};
assert(homogeneousVectorFieldDegree(m)===ans);
assert(homogeneousVectorFieldDegree(image(m))===ans);
assert(homogeneousVectorFieldDegree(matrix mutableMatrix(R,1,0))==={});
assert(homogeneousVectorFieldDegree(image matrix mutableMatrix(R,1,0))==={});
-- Test with a non-standard multidegree, too...
R=QQ[x,y,Degrees=>{{3},{1}}];
m=matrix {{x^2,1,0,x^2,x*y},
{y^2,0,0,y^4,y^2}}
ans={false,{-3},-infinity,{3},{1}};
assert(homogeneousVectorFieldDegree(m)===ans);
assert(homogeneousVectorFieldDegree(image(m))===ans);
R=QQ[x,y,Degrees=>{{3,1},{1,1}}];
m=matrix {{x^2,1,0,x^2,x*y},
{y^2,0,0,y^4,y^2}}
ans={false,{-3,-1},-infinity,false,{1,1}};
assert(homogeneousVectorFieldDegree(m)===ans);
assert(homogeneousVectorFieldDegree(image(m))===ans);
///
-- isHomogeneousVectorField
TEST ///
R=QQ[x];
m=matrix {{0_R,4_R,x,x^67,x^3+x}};
assert(not isHomogeneousVectorField(transpose m));
--ans={-infinity,{-1},{0},{66},false};
assert(isHomogeneousVectorField(m_{0,1,2}));
assert(isHomogeneousVectorField(m_{0}));
assert(isHomogeneousVectorField(m_{1}));
assert(isHomogeneousVectorField(m_{2}));
assert(isHomogeneousVectorField(m_{3}));
assert(not isHomogeneousVectorField(m_{4}));
assert(isHomogeneousVectorField(image m_{0,1,2}));
assert(isHomogeneousVectorField(image m_{0}));
assert(isHomogeneousVectorField(image m_{1}));
assert(isHomogeneousVectorField(image m_{2}));
assert(isHomogeneousVectorField(image m_{3}));
assert(not isHomogeneousVectorField(image m_{4}));
-- List
assert(not isHomogeneousVectorField(m_{0,1,2},{{0},{-1}}));
assert(not isHomogeneousVectorField(m_{0,1,2},{{0},-infinity}));
assert(isHomogeneousVectorField(m_{0,1,2},{{0},{-1},-infinity}));
assert(not isHomogeneousVectorField(image m_{0,1,2},{{0},{-1}}));
assert(not isHomogeneousVectorField(image m_{0,1,2},{{0},-infinity}));
assert(isHomogeneousVectorField(image m_{0,1,2},{{0},{-1},-infinity}));
-- Set
assert(not isHomogeneousVectorField(m_{0,1,2},set {{0},{-1}}));
assert(not isHomogeneousVectorField(m_{0,1,2},set {{0},-infinity}));
assert(isHomogeneousVectorField(m_{0,1,2},set {{0},{-1},-infinity}));
assert(not isHomogeneousVectorField(image m_{0,1,2},set {{0},{-1}}));
assert(not isHomogeneousVectorField(image m_{0,1,2},set {{0},-infinity}));
assert(isHomogeneousVectorField(image m_{0,1,2},set {{0},{-1},-infinity}));
-- depends on generators
assert(not isHomogeneousVectorField(image matrix {{x,x^3+x}}));
assert(isHomogeneousVectorField(trim image matrix {{x,x^3+x}}));
-- zero parameter
assert(isHomogeneousVectorField(matrix mutableMatrix(R,1,0)));
assert(isHomogeneousVectorField(image matrix mutableMatrix(R,1,0)));
-- Test with a non-standard multidegree, too...
R=QQ[x,y,Degrees=>{{3},{1}}];
m=matrix {{x^2,1,0,x^2,x*y},
{y^2,0,0,y^4,y^2}}
--ans={false,{-3},-infinity,{3},{1}}
assert(not isHomogeneousVectorField(m_{0,1,2}));
assert(not isHomogeneousVectorField(m_{0}));
assert(isHomogeneousVectorField(m_{1}));
assert(isHomogeneousVectorField(m_{2}));
assert(isHomogeneousVectorField(m_{3}));
assert(not isHomogeneousVectorField(image m_{0,1,2}));
assert(not isHomogeneousVectorField(image m_{0}));
assert(isHomogeneousVectorField(image m_{1}));
assert(isHomogeneousVectorField(image m_{2}));
assert(isHomogeneousVectorField(image m_{3}));
assert(isHomogeneousVectorField(m_{1,2,3},{{-3},{3},-infinity}));
assert(not isHomogeneousVectorField(m_{1,2,3},{{-3},{3}}));
assert(not isHomogeneousVectorField(m_{1,2,3},{{-3},-infinity}));
assert(isHomogeneousVectorField(image m_{1,2,3},{{-3},{3},-infinity}));
assert(not isHomogeneousVectorField(image m_{1,2,3},{{-3},{3}}));
assert(not isHomogeneousVectorField(image m_{1,2,3},{{-3},-infinity}));
///
-- bracketing
-- Generate random, complicated vfs and check the bracket calc
TEST ///
bracketTest = (vf1,vf2) -> (
stdio<<"bracketTest: testing "<<toExternalString(vf1)<<" and "<<toExternalString(vf2)<<endl;
br:=bracket(vf1,vf2);
for x in flatten entries vars(ring(vf1)) do (
assert(
applyVectorField(vf1,applyVectorField(vf2,x))-applyVectorField(vf2,applyVectorField(vf1,x))===
applyVectorField(br,x) );
);
);
-- Try a bunch of random vfs
R=QQ[x,y,z];
M=random(R^3,R^{10:-3});
for i from 0 when i<numColumns(M) do (
for j from 0 when j<numColumns(M) do (
bracketTest(M_{i},M_{j});
);
);
///
-- Also do some brackets "by hand"
TEST ///
R=QQ[x,y];
px=matrix {{1_R},{0_R}};
py=matrix {{0_R},{1_R}};
-- generators commute
D=derlog(ideal (x));
-- generators commute
E=derlog(ideal (x*y));
-- generators commute, except [deg 0,deg 1]=deg 1
F=derlog(ideal (x*y*(x-y)));
I=ideal (x,y);
-- Test bracket(Matrix,Matrix)
assert(bracket( px, px)=== 0*px+0*py);
assert(bracket( px, py)=== 0*px+0*py);
assert(bracket( px,0*px)=== 0*px+0*py);
assert(bracket( px,x*px)=== 1*px+0*py);
assert(bracket( px,x*py)=== 0*px+1*py);
assert(bracket( px,y*px)=== 0*px+0*py);
assert(bracket( px,y*py)=== 0*px+0*py);
assert(bracket( py, px)=== 0*px+0*py);
assert(bracket( py, py)=== 0*px+0*py);
assert(bracket( py,0*px)=== 0*px+0*py);
assert(bracket( py,x*px)=== 0*px+0*py);
assert(bracket( py,x*py)=== 0*px+0*py);
assert(bracket( py,y*px)=== 1*px+0*py);
assert(bracket( py,y*py)=== 0*px+1*py);
assert(bracket(x*px,x*px)=== 0*px+0*py);
assert(bracket(x*px,x*py)=== 0*px+x*py);
assert(bracket(x*px,y*px)===-y*px+0*py);
assert(bracket(x*px,y*py)=== 0*px+0*py);
assert(bracket(x*py,x*px)=== 0*px-x*py);
assert(bracket(x*py,x*py)=== 0*px+0*py);
assert(bracket(x*py,y*px)=== x*px-y*py);
assert(bracket(x*py,y*py)=== 0*px+x*py);
assert(bracket(y*px,x*px)=== y*px+0*py);
assert(bracket(y*px,x*py)===-x*px+y*py);
assert(bracket(y*px,y*px)=== 0*px+0*py);
assert(bracket(y*px,y*py)===-y*px+0*py);
assert(bracket(y*py,x*px)=== 0*px+0*py);
assert(bracket(y*py,x*py)=== 0*px-x*py);
assert(bracket(y*py,y*px)=== y*px+0*py);
assert(bracket(y*py,y*py)=== 0*px+0*py);
m1=px|x*py;
m2=x*px|y*py;
assert(bracket(m1,m2)===px|0*px|(-x*py)|x*py);
assert(image bracket(gens D,gens E)==image (matrix {{0_R},{1_R}}));
assert(image bracket(gens D,gens F)==image (matrix {{0_R},{1_R}}));
assert(image bracket(gens E,gens F)==image (matrix {{0_R,0},{x*y,-y^2}}));
-- Test bracket(Matrix,Matrix,List)
assert(bracket(m1,m2,{(0,1),(1,0)})===(0*px)|(-x*py));
assert(bracket(m1,m2,{(1,0)})===-x*py);
assert(bracket(m1,m2,{{1,0}})===-x*py);
assert(bracket(m1,m2,{})===matrix mutableMatrix(R,2,0));
-- test bracket(Vector,Vector)
assert(bracket((y*py)_0,(x*px)_0)==(map(R^2,R^1,{{0},{0}}))_0);
assert(bracket((y*py)_0,(x*py)_0)==(map(R^2,R^1,{{0},{(-x)}}))_0);
assert(bracket((y*py)_0,(y*px)_0)==(map(R^2,R^1,{{y},{0}}))_0);
assert(bracket((y*py)_0,(y*py)_0)==(map(R^2,R^1,{{0},{0}}))_0);
-- Also test bracket(Module,Module)
-- Note that we must use == here, not ===
px=image px;
py=image py;
whatIsExpected = (a,b) -> image bracket(
(gens a)|(gens ((ideal (x,y))*a))|(gens ((ideal (x^2,x*y,y^2))*a)),
(gens b)|(gens ((ideal (x,y))*b))|(gens ((ideal (x^2,x*y,y^2))*b)));
testBracketModule = (a,b) -> bracket(a,b)==whatIsExpected(a,b);
assert(testBracketModule( px, px));
assert(testBracketModule( px, py));
assert(testBracketModule( px,0*px));
assert(testBracketModule( px,x*px));
assert(testBracketModule( px,x*py));
assert(testBracketModule( px,y*px));
assert(testBracketModule( px,y*py));
assert(testBracketModule( py, px));
assert(testBracketModule( py, py));
assert(testBracketModule( py,0*px));
assert(testBracketModule( py,x*px));
assert(testBracketModule( py,x*py));
assert(testBracketModule( py,y*px));
assert(testBracketModule( py,y*py));
assert(testBracketModule(x*px,x*px));
assert(testBracketModule(x*px,x*py));
assert(testBracketModule(x*px,y*px));
assert(testBracketModule(x*px,y*py));
assert(testBracketModule(x*py,x*px));
assert(testBracketModule(x*py,x*py));
assert(testBracketModule(x*py,y*px));
assert(testBracketModule(x*py,y*py));
assert(testBracketModule(y*px,x*px));
assert(testBracketModule(y*px,x*py));
assert(testBracketModule(y*px,y*px));
assert(testBracketModule(y*px,y*py));
assert(testBracketModule(y*py,x*px));
assert(testBracketModule(y*py,x*py));
assert(testBracketModule(y*py,y*px));
assert(testBracketModule(y*py,y*py));
-- calc
assert(bracket(D,E)==D);
assert(bracket(D,F)==D);
-- brute-force it.
assert(bracket(E,F)==bracket(E+I*E+I^2*E,F+I*F+I^2*F));
assert(bracket(E,F)==I*E);
-- test bracket(...involving something with zero columns...)
Z=matrix mutableMatrix(R,2,0);
assert(bracket(matrix {{x},{0}},Z)==Z);
assert(bracket(Z,matrix {{x},{0}})==Z);
assert(bracket(Z,Z)==Z);
assert(bracket(x*px,image Z)==image Z);
assert(bracket(image Z,x*px)==image Z);
assert(bracket(image Z,image Z)==image Z);
assert(bracket(D,image Z)==image Z);
assert(bracket(image Z,E)==image Z);
///
-- commutator
TEST ///
R=QQ[x,y];
-- generators commute
D=derlog(ideal (x));
-- generators commute
E=derlog(ideal (x*y));
-- generators commute, except [deg 0,deg 1]=deg 1
F=derlog(ideal (x*y*(x-y)));
I=ideal (x,y);
Z=image matrix mutableMatrix(R,2,0);
assert(image commutator(gens D)==Z);
assert(image commutator(gens E)==Z);
assert(image commutator(gens F)==image matrix {{0},{x*y-y^2}});
assert(commutator(D)==D);
assert(commutator(E)==I*E);
assert(commutator(F)==(image matrix {{0},{x*y-y^2}})+I*F);
-- zero columns
assert(image commutator(gens Z)==Z);
assert(commutator(Z)==Z);
-- commutator of gl_2 is sl_2
R=QQ[a,b,c,d];
E11=matrix {{a},{b},{0},{0}};
E12=matrix {{c},{d},{0},{0}};
E21=matrix {{0},{0},{a},{b}};
E22=matrix {{0},{0},{c},{d}};
assert(image commutator(E11|E12|E21|E22)==image ((E11-E22)|E12|E21));
assert(commutator(image (E11|E12|E21|E22))==
(image ((E11-E22)|E12|E21))
+(ideal (a,b,c,d))*(image (E11|E12|E21|E22)));
///
-- isLieAlgebra
TEST ///
R=QQ[a,b,c,d];
E11=matrix {{a},{b},{0},{0}};
E12=matrix {{c},{d},{0},{0}};
E21=matrix {{0},{0},{a},{b}};
E22=matrix {{0},{0},{c},{d}};
assert(isLieAlgebra(image (E11|E12|E21|E22)))
assert(isLieAlgebra(image (E11-E22|E12|E21)))
assert(isLieAlgebra(image (E11|E12|E22)))
assert(isLieAlgebra(image (E11|E21|E22)))
assert(isLieAlgebra(image (E11|E22)))
assert(isLieAlgebra(image (E11|E12)))
assert(isLieAlgebra(image (E11-E22)))
assert(not isLieAlgebra(image (E12|E21)))
assert(not isLieAlgebra(image (E11|E12|E21)))
assert(isLieAlgebra(image (E11|E12|E21|E22)))
-- gen by nothing
Z=matrix mutableMatrix(R,4,0);
assert(isLieAlgebra(image Z));
///
-- derivedSeries
TEST ///
R=QQ[a,b,c];
D=derlog(a*c-b^2);
I=ideal (a,b,c);
-- D is generated by a set of linear vfs, a rep of gl_2
-- Matrix version
L=derivedSeries(2,gens D);
assert(length(L)===3);
assert(image (L#0)==D);
assert(image (L#1)==image bracket(L#0,L#0));
assert(image (L#2)==image bracket(L#1,L#1));
-- Module version
L=derivedSeries(2,D);
assert(length(L)===3);
assert(L#0==D);
assert(L#1==bracket(D,D));
assert(L#2==L#1);
-- zeroth central series
L=derivedSeries(0,D);
assert(length(L)===1);
assert(L#0==D);
L=derivedSeries(0,gens D);
assert(length(L)===1);
assert(L#0==gens D);
-- zero gens
Z=matrix mutableMatrix(R,3,0);
L=derivedSeries(2,Z);
assert(length(L)===3);
assert(L#0==Z);
assert(L#1==Z);
assert(L#2==Z);
L=derivedSeries(2,image Z);
assert(length(L)===3);
assert(L#0==image Z);
assert(L#1==image Z);
assert(L#2==image Z);
///;
-- lowerCentralSeries
TEST ///
R=QQ[a,b,c];
D=derlog(a*c-b^2);
I=ideal (a,b,c);
E=image matrix {{2*b,a,0},{c,0,a},{0,-c,2*b}};
F=image matrix {{0},{b},{2*c}};
assert(D==E+F);
-- D is generated by a set of linear vfs, a rep of gl_2
-- Matrix version
L=derivedSeries(2,gens D);
assert(length(L)===3);
assert(image (L#0)==D);
assert(image (L#1)==image bracket(gens(D),L#0));
assert(image (L#2)==image bracket(gens(D),L#1));
-- Module version
L=lowerCentralSeries(2,D);
assert(length(L)===3);
assert(L#0==D);
assert(L#1==E+I*F);
assert(L#2==L#1);
-- 0th central series
L=lowerCentralSeries(0,D);
assert(length(L)===1);
assert(L#0==D);
L=lowerCentralSeries(0,gens D);
assert(length(L)===1);
assert(L#0==gens D);
-- zero gens
Z=matrix mutableMatrix(R,3,0);
L=lowerCentralSeries(2,Z);
assert(length(L)===3);
assert(L#0==Z);
assert(L#1==Z);
assert(L#2==Z);
L=lowerCentralSeries(2,image Z);
assert(length(L)===3);
assert(L#0==image Z);
assert(L#1==image Z);
assert(L#2==image Z);
///
-- logarithmic vector fields
-- der, derlog{,V,H}
TEST ///
R=QQ[x,y,z];
I=ideal (x*y);
K=ideal (0_R);
L=ideal (1_R);
dI=gens derlog(I);
m=matrix {{x,0,0},{0,y,0},{0,0,1}};
assert(image dI==der(I,I));
assert(image dI==image m);
assert(image dI==derlog(x*y));
dK=gens derlog(K);
m=matrix {{1_R,0,0},{0,1,0},{0,0,1}};
assert(image dK==der(K,K));
assert(image dK==image m);
assert(image dK==derlog(0_R));
assert(image dK==der(L,L));
assert(image dK==image m);
assert(image dK==derlog(1_R));
kI=gens derlogH(flatten entries gens I);
m=matrix {{-x,0},{y,0},{0,1}};
assert(image kI==der({x*y},K));
assert(image kI==image m);
assert(image kI==derlogH(x*y));
assert(image (0*m)==der(I,K));
-- some additional tests for der that are not of the form der(I,I)
I=ideal (x*y);
J=ideal (y*z);
M=der(I,J);
-- should vanish on z, can ignore x? and tangent to V(y)
m=matrix {{z,0,0},{0,z*y,0},{0,0,z}};
assert(M==image m);
I=ideal (x);
J=ideal (x^2);
M=der(I,J);
m=matrix {{x^2,0,0},{0,x,0},{0,0,x}};
assert(M==image m);
M=der(J,I);
m=matrix {{1_R,0,0},{0,1,0},{0,0,1}};
assert(M==image m);
-- some tests for der(list,ideal)
M=der({},ideal (x));
m=matrix {{1_R,0,0},{0,1,0},{0,0,1}};
assert(M==image m);
M=der({x},ideal (x));
m=matrix {{x,0,0},{0,1,0},{0,0,1}};
assert(M==image m);
M=der({x},ideal (y));
m=matrix {{y,0,0},{0,1,0},{0,0,1}};
assert(M==image m);
M=der({x*y},ideal (y));
m=matrix {{1_R,0,0},{0,y,0},{0,0,1}};
assert(M==image m);
M=der({x,y},ideal (y));
m=matrix {{y,0,0},{0,y,0},{0,0,1}};
-- Can have an ideal with zero generators
I=ideal matrix mutableMatrix(R,1,0);
J=ideal (0_R);
assert(der(J,J)==der(I,I));
assert(der(J,J)==der(I,J));
assert(der(J,J)==der(J,I));
assert(derlog(J)==derlog(I));
assert(der(I,ideal(x))==der(J,J));
///
-- isLogarithmic
TEST ///
R=QQ[x,y,z];
f=x*z-y^2;
I=ideal (f);
M=gens derlog(I);
assert(isLogarithmic(M,I));
assert(isLogarithmic(M_{0,1},I));
assert(isLogarithmic(M_0,I));
assert(isLogarithmic(M_1,I));
assert(isLogarithmic(image M,I));
assert(not isLogarithmic(matrix {{2*z},{0},{x}},I));
assert(not isLogarithmic(image matrix {{2*z},{0},{x}},I));
I=ideal (x,y);
assert(isLogarithmic(matrix {{x},{y},{z}},I));
M=matrix {{x,0,0},{0,y,0},{0,0,z}};
assert(isLogarithmic(M_{0},I));
assert(isLogarithmic(M_{2},I));
assert(isLogarithmic(M_0,I));
assert(isLogarithmic(M_2,I));
assert(isLogarithmic(M,I));
assert(isLogarithmic(image M,I));
assert(not isLogarithmic(matrix {{z},{0},{0}},I));
assert(not isLogarithmic(matrix {{0},{z},{0}},I));
assert(not isLogarithmic(image matrix {{z},{0},{0}},I));
assert(not isLogarithmic(image matrix {{0},{z},{0}},I));
-- zero generators
Z=matrix mutableMatrix(R,3,0);
assert(isLogarithmic(Z,I));
assert(isLogarithmic(image Z,I));
///
-- Free divisors
-- isFreeDivisor
TEST ///
R=QQ[a,b,c];
runatest = (f,a)->(
assert(isFreeDivisor(f)===a);
M:=gens derlog(ideal (f));
assert(isFreeDivisor(M)===a);
assert(isFreeDivisor(image M)===a);
);
runatest(a*c-b^2,false);
runatest(a*(a*c-b^2),true);
runatest(a,true);
runatest(a*b,true);
runatest(1_R,true);
runatest(0_R,true);
M=matrix {{a,0,0},{0,a,0},{0,0,a}};
D=gens derlog(ideal (a));
assert(isFreeDivisor(M)===false);
assert(isFreeDivisor(D)===true);
assert(isFreeDivisor(M|D)===false);
assert(isFreeDivisor(image M)===false);
assert(isFreeDivisor(image D)===true);
assert(isFreeDivisor(image (M|D))===false);
assert(isFreeDivisor(trim image (M|D))===true);
assert(isFreeDivisor(gens trim image (M|D))===true);
-- We need the closure of the Lie bracket.
-- Here, image(M) is not a Lie algebra, but det(M) is reduced.
M=matrix {{a,0,0},{0,b,0},{0,b,c}};
assert(isFreeDivisor(M)===false);
assert(isFreeDivisor(image M)===false);
///;
-- Stratifications
-- stratifyByRank
TEST ///
R=QQ[a,b,c];
D=matrix {{a,0,0},{0,b,0},{0,0,c}};
S=stratifyByRank(D);
assert(S#1==ideal (a,b,c));
assert(S#2==intersect({ideal (a,b),ideal (a,c),ideal (b,c)}));
assert(S#3==ideal (a*b*c));
S=stratifyByRank(image D);
assert(S#1==ideal (a,b,c));
assert(S#2==intersect({ideal (a,b),ideal (a,c),ideal (b,c)}));
assert(S#3==ideal (a*b*c));
D=matrix {{a,0},{0,b},{0,0}};
S=stratifyByRank(D);
assert(S#1==ideal (a,b));
assert(S#2==ideal (a*b));
assert(S#3==ideal (0_R));
D=matrix {{a,0,0},{0,b,0},{0,0,1}};
S=stratifyByRank(D);
assert(S#1==ideal (1_R));
assert(S#2==ideal (a,b));
assert(S#3==ideal (a*b));
Z=matrix mutableMatrix(R,3,0);
S=stratifyByRank(Z);
assert(S#1==ideal (0_R));
assert(S#2==ideal (0_R));
assert(S#3==ideal (0_R));
R=QQ[a,b,c,d];
D=gens derlog(ideal (a*d-b*c));
S=stratifyByRank(D);
assert(S#1==ideal (a,b,c,d));
assert(S#2==ideal (a,b,c,d));
assert(S#3==ideal (a,b,c,d));
assert(S#4==ideal (a*d-b*c));
///
-- isFiniteStratification
TEST ///
R=QQ[x,y]
-- For tests, we don't need these to be lie algebras
-- anything with <2 generators should fail
assert(not isFiniteStratification(stratifyByRank(matrix mutableMatrix(R,2,0))))
assert(not isFiniteStratification(stratifyByRank(matrix {{x},{y}})))
assert(not isFiniteStratification(stratifyByRank(matrix {{y},{-x}})))
assert(not isFiniteStratification(stratifyByRank(matrix {{1_R},{1}})))
-- normal crossings
assert(isFiniteStratification(stratifyByRank(matrix {{x,0},{0,y}})))
-- normal crossings + some other hyperplanes
assert(isFiniteStratification(stratifyByRank(matrix {{x*(x-1)*(x-2),0},{0,y}})))
-- a collection of central hyperplanes
assert(isFiniteStratification(stratifyByRank(derlog(ideal (x*y*(x-y)*(x+y))))))
-- rank 0 on x=0
assert(not isFiniteStratification(stratifyByRank(matrix {{x,0},{0,x*y}})))
R=QQ[x,y,z,w]
assert(isFiniteStratification(stratifyByRank(derlog(ideal (x*y*z*w)))))
assert(isFiniteStratification(stratifyByRank(derlog(ideal (x*y-z*w)))))
assert(isFiniteStratification(stratifyByRank(derlog(ideal (x*y-z^2)))))
-- These two have rank 0 on x=y=0
assert(not isFiniteStratification(stratifyByRank(derlog(ideal (x*y*(x-y)*(x-y*z))))))
assert(not isFiniteStratification(stratifyByRank(derlog(ideal (x*y*(x-y)*(x*w-y*z))))))
///
-- isHolonomic, isHHolonomic
TEST ///
R=QQ[a,b,c];
-- some special cases
assert(isHolonomic(0_R));
assert(isHHolonomic(0_R));
assert(isHolonomic(ideal (0_R)));
assert(isHolonomic(1_R));
assert(isHHolonomic(1_R));
assert(isHolonomic(ideal (1_R)));
-- Some easy singularities
assert(isHolonomic(a*c-b^2));
assert(isHolonomic(a*(a*c-b^2)));
assert(isHolonomic(a^2-b^2*c));
assert(isHolonomic(a*b*c));
assert(not isHolonomic(a*b*(a-b)*(a-b*c)));
assert(isHolonomic(ideal (a*c-b^2)));
assert(isHolonomic(ideal (a*(a*c-b^2))));
assert(isHolonomic(ideal (a^2-b^2*c)));
assert(isHolonomic(ideal (a*b*c)));
assert(not isHolonomic(ideal (a*b*(a-b)*(a-b*c))));
assert(isHHolonomic(a*c-b^2));
assert(isHHolonomic(a*(a*c-b^2)));
assert(isHHolonomic(a^2-b^2*c));
assert(isHHolonomic(a*b*c));
assert(not isHHolonomic(a*b*(a-b)*(a-b*c)));
-- More complicated examples from my dissertation
R=QQ[a,b,c,d,e,f];
m=matrix {{a,b,c},{b,d,e},{c,e,f}};
H=det(m);
Ha=sub(H,{a=>0_R});
Hf=sub(H,{f=>0_R});
--assert(isHolonomic(H));
--assert(isHolonomic(b*Ha));
assert(isHolonomic(c*Ha));
assert(not isHolonomic(b*c*Ha));
assert(isHolonomic(a*c*Hf));
assert(isHolonomic((a*d-b^2)*Hf));
assert(isHHolonomic(c*Ha));
assert(not isHHolonomic(b*c*Ha));
assert(isHHolonomic(a*c*Hf));
assert(isHHolonomic((a*d-b^2)*Hf));
///
end
|