1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999
|
--------------------------------------------------------------------------------
-- Copyright 2021-2022 Federico Galetto
--
-- This program is free software: you can redistribute it and/or modify it under
-- the terms of the GNU General Public License as published by the Free Software
-- Foundation, either version 3 of the License, or (at your option) any later
-- version.
--
-- This program is distributed in the hope that it will be useful, but WITHOUT
-- ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
-- FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
-- details.
--
-- You should have received a copy of the GNU General Public License along with
-- this program. If not, see <http://www.gnu.org/licenses/>.
--------------------------------------------------------------------------------
newPackage(
"BettiCharacters",
Version => "2.0",
Date => "July 26, 2022",
AuxiliaryFiles => false,
Authors => {{Name => "Federico Galetto",
Email => "galetto.federico@gmail.com",
HomePage => "http://math.galetto.org"}},
Headline => "finite group characters on free resolutions and graded modules",
PackageImports => {"SimpleDoc"},
DebuggingMode => false
)
export {
"action",
"Action",
"ActionOnComplex",
"ActionOnGradedModule",
"actors",
"character",
"characterTable",
"Character",
"CharacterDecomposition",
"CharacterTable",
"decomposeCharacter",
"inverseRingActors",
"labels",
"Labels",
"numActors",
"ringActors",
"Sub",
"symmetricGroupActors",
"symmetricGroupTable"
}
----------------------------------------------------------------------
-- Types
----------------------------------------------------------------------
Character = new Type of HashTable
CharacterTable = new Type of HashTable
CharacterDecomposition = new Type of HashTable
Action = new Type of HashTable
ActionOnComplex = new Type of Action
ActionOnGradedModule = new Type of Action
----------------------------------------------------------------------
-- Characters and character tables -----------------------------------
----------------------------------------------------------------------
-- method for returning characters of various action types
character = method(TypicalValue=>Character)
-- construct a finite dimensional character by hand
-- INPUT:
-- 1) polynomial ring (dictates coefficients and degrees)
-- 2) integer: character length (or number of actors)
-- 3) hash table for raw character: (homdeg,deg) => character matrix
character(PolynomialRing,ZZ,HashTable) := Character => (R,cl,H) -> (
-- check first argument is a polynomial ring over a field
if not isField coefficientRing R then (
error "character: expected polynomial ring over a field";
);
-- check keys are in the right format
k := keys H;
if any(k, i -> class i =!= Sequence or #i != 2 or
class i#0 =!= ZZ or class i#1 =!= List) then (
error "character: expected keys of the form (ZZ,List)";
);
-- check degree vectors are allowed
dl := degreeLength R;
degs := apply(k,last);
if any(degs, i -> #i != dl or any(i, j -> class j =!= ZZ)) then (
error "character: expected integer degree vectors of length "
| toString(dl);
);
-- check character vectors are allowed
v := values H;
if any(v, i -> numColumns i != cl or class i =!= Matrix) then (
error "character: expected characters to be one-row matrices with "
| toString(cl) | " columns";
);
-- move character values into given ring
H2 := try applyValues(H, v -> promote(v,R)) else (
error "character: could not promote characters to given ring";
);
new Character from {
cache => new CacheTable,
(symbol ring) => R,
(symbol numActors) => cl,
(symbol characters) => H2,
}
)
-- direct sum of characters
-- modeled after code in Macaulay2/Core/matrix.m2
Character ++ Character := Character => directSum
directSum Character := c -> Character.directSum (1 : c)
Character.directSum = args -> (
-- check ring is the same for all summands
R := (args#0).ring;
if any(args, c -> c.ring =!= R)
then error "directSum: expected characters all over the same ring";
-- check character length is the same for all summands
cl := (args#0).numActors;
if any(args, c -> c.numActors != cl)
then error "directSum: expected characters all of the same length";
new Character from {
cache => new CacheTable,
(symbol ring) => R,
(symbol numActors) => cl,
-- add raw characters
(symbol characters) => fold( (c1,c2) -> merge(c1,c2,plus),
apply(args, c -> c.characters) ),
}
)
-- tensor product of characters (auxiliary functions)
-- function to add sequences (homological,internal) degrees
addDegrees = (d1,d2) -> apply(d1,d2,plus)
-- function to multiply character matrices (Hadamard product)
multiplyCharacters = (c1,c2) -> (
e1 := flatten entries c1;
e2 := flatten entries c2;
m := apply(e1,e2,times);
matrix{m}
)
-- tensor product of characters
-- modeled after directSum, but only works for two characters
Character ** Character := Character => tensor
tensor(Character,Character) := Character => {} >> opts -> (c1,c2) -> (
-- check ring is the same for all factors
R := c1.ring;
if (c2.ring =!= R)
then error "tensor: expected characters all over the same ring";
-- check character length is the same for all summands
cl := c1.numActors;
if (c2.numActors != cl)
then error "tensor: expected characters all of the same length";
new Character from {
cache => new CacheTable,
(symbol ring) => R,
(symbol numActors) => cl,
-- multiply raw characters
(symbol characters) => combine(c1.characters,c2.characters,
addDegrees,multiplyCharacters,plus)
}
)
-- shift homological degree of characters
Character Array := Character => (C,A) -> (
if # A =!= 1 then error "Character Array: expected array of length 1";
n := A#0;
if not instance(n,ZZ) then error "Character Array: expected an integer";
new Character from {
cache => new CacheTable,
(symbol ring) => C.ring,
(symbol numActors) => C.numActors,
-- homological shift raw characters
(symbol characters) => applyKeys(C.characters,
k -> (k#0 - n, k#1))
}
)
-- character dual
-- borrowing default options from alexander dual method
alexopts = {Strategy=>0};
-- character of dual/contragredient representation with conjugation
dual(Character,RingMap) := Character => alexopts >> o -> (c,phi) -> (
-- check characteristic
R := c.ring;
if char(R) != 0 then (
error "dual: use permutation constructor in positive characteristic";
);
-- check conjugation map
F := coefficientRing R;
if (source phi =!= F or target phi =!= F or phi^2 =!= id_F) then (
error "dual: expected an order 2 automorphism of the coefficient field";
);
-- error if characters cannot be lifted to coefficient field
H := try applyValues(c.characters, v -> lift(v,F)) else (
error "dual: could not lift characters to coefficient field";
);
-- conjugation map to the polynomial ring
Phi := map(R,F) * phi;
new Character from {
cache => new CacheTable,
(symbol ring) => R,
(symbol numActors) => c.numActors,
(symbol characters) => applyPairs(H,
(k,v) -> ( apply(k,minus), Phi v )
)
}
)
-- character of dual/contragredient representation without conjugation
dual(Character,List) := Character => alexopts >> o -> (c,perm) -> (
n := c.numActors;
if #perm != n then (
error "dual: expected permutation size to match character length";
);
-- check permutation has the right entries
if set perm =!= set(1..n) then (
error "dual: expected a permutation of {1,..," | toString(n) | "}";
);
new Character from {
cache => new CacheTable,
(symbol ring) => c.ring,
(symbol numActors) => n,
(symbol characters) => applyPairs(c.characters,
(k,v) -> ( apply(k,minus), v_(apply(perm, i -> i-1)) )
)
}
)
-- method to construct character tables
characterTable = method(TypicalValue=>CharacterTable,Options=>{Labels => {}});
-- character table constructor using conjugation
-- INPUT:
-- 1) list of conjugacy class sizes
-- 2) matrix of irreducible character values
-- 3) ring over which to construct the table
-- 4) ring map, conjugation of coefficients
-- OPTIONAL: list of labels for irreducible characters
characterTable(List,Matrix,PolynomialRing,RingMap) := CharacterTable =>
o -> (conjSize,charTable,R,phi) -> (
-- check characteristic
if char(R) != 0 then (
error "characterTable: use permutation constructor in positive characteristic";
);
n := #conjSize;
-- check all arguments have the right size
if numRows charTable != n or numColumns charTable != n then (
error "characterTable: expected matrix size to match number of conjugacy classes";
);
-- promote character matrix to R
X := try promote(charTable,R) else (
error "characterTable: could not promote character table to given ring";
);
-- check conjugation map
F := coefficientRing R;
if (source phi =!= F or target phi =!= F or phi^2 =!= id_F) then (
error "characterTable: expected an order 2 automorphism of the coefficient ring";
);
-- check orthogonality relations
ordG := sum conjSize;
C := diagonalMatrix(R,conjSize);
Phi := map(R,F) * phi;
m := C*transpose(Phi charTable);
-- if x is a character in a one-row matrix, then x*m is the one-row matrix
-- containing the inner products of x with the irreducible characters
if X*m != ordG*map(R^n) then (
error "characterTable: orthogonality relations not satisfied";
);
-- check user labels or create default ones
if o.Labels == {} then (
l := for i to n-1 list "X"|toString(i);
) else (
if #o.Labels != n then (
error "characterTable: expected " | toString(n) | " labels";
);
if any(o.Labels, i -> class i =!= String and class i =!= Net) then (
error "characterTable: expected labels to be strings (or nets)";
);
l = o.Labels;
);
new CharacterTable from {
(symbol numActors) => #conjSize,
(symbol size) => conjSize,
(symbol table) => X,
(symbol ring) => R,
(symbol matrix) => m,
(symbol labels) => l,
}
)
-- character table constructor without conjugation
-- INPUT:
-- 1) list of conjugacy class sizes
-- 2) matrix of irreducible character values
-- 3) ring over which to construct the table
-- 4) list, permutation of conjugacy class inverses
-- OPTIONAL: list of labels for irreducible characters
characterTable(List,Matrix,PolynomialRing,List) := CharacterTable =>
o -> (conjSize,charTable,R,perm) -> (
n := #conjSize;
-- check all arguments have the right size
if numRows charTable != n or numColumns charTable != n then (
error "characterTable: expected matrix size to match number of conjugacy classes";
);
if #perm != n then (
error "characterTable: expected permutation size to match number of conjugacy classes";
);
-- promote character matrix to R
X := try promote(charTable,R) else (
error "characterTable: could not promote character table to given ring";
);
-- check permutation has the right entries
if set perm =!= set(1..n) then (
error "characterTable: expected a permutation of {1,..," | toString(n) | "}";
);
-- check characteristic
ordG := sum conjSize;
if ordG % char(R) == 0 then (
error "characterTable: characteristic divides order of the group";
);
-- check orthogonality relations
C := diagonalMatrix(R,conjSize);
P := map(R^n)_(apply(perm, i -> i-1));
m := C*transpose(X*P);
-- if x is a character in a one-row matrix, then x*m is the one-row matrix
-- containing the inner products of x with the irreducible characters
if X*m != ordG*map(R^n) then (
error "characterTable: orthogonality relations not satisfied";
);
-- check user labels or create default ones
if o.Labels == {} then (
l := for i to n-1 list "X"|toString(i);
) else (
if #o.Labels != n then (
error "characterTable: expected " | toString(n) | " labels";
);
if any(o.Labels, i -> class i =!= String and class i =!= Net) then (
error "characterTable: expected labels to be strings (or nets)";
);
l = o.Labels;
);
new CharacterTable from {
(symbol numActors) => #conjSize,
(symbol size) => conjSize,
(symbol table) => X,
(symbol ring) => R,
(symbol matrix) => m,
(symbol labels) => l,
}
)
-- new method for character decomposition
decomposeCharacter = method(TypicalValue=>CharacterDecomposition);
-- decompose a character against a character table
decomposeCharacter(Character,CharacterTable) :=
CharacterDecomposition => (C,T) -> (
-- check character and table are over same ring
R := C.ring;
if T.ring =!= R then (
error "decomposeCharacter: expected character and table over the same ring";
);
-- check number of actors is the same
if C.numActors != T.numActors then (
error "decomposeCharacter: character length does not match table";
);
ord := sum T.size;
-- create decomposition hash table
D := applyValues(C.characters, char -> 1/ord*char*T.matrix);
-- find non zero columns of table for printing
M := matrix apply(values D, m -> flatten entries m);
p := positions(toList(0..numColumns M - 1), i -> M_i != 0*M_0);
new CharacterDecomposition from {
(symbol numActors) => C.numActors,
(symbol ring) => R,
(symbol labels) => T.labels,
(symbol decompose) => D,
(symbol positions) => p
}
)
-- shortcut for character decomposition
Character / CharacterTable := CharacterDecomposition => decomposeCharacter
-- recreate a character from decomposition
character(CharacterDecomposition,CharacterTable) :=
Character => (D,T) -> (
new Character from {
cache => new CacheTable,
(symbol ring) => D.ring,
(symbol numActors) => D.numActors,
(symbol characters) => applyValues(D.decompose, i -> i*T.table),
}
)
-- shortcut to recreate character from decomposition
CharacterDecomposition * CharacterTable := Character => character
----------------------------------------------------------------------
-- Actions on complexes and characters of complexes ------------------
----------------------------------------------------------------------
-- constructor for action on resolutions and modules
-- optional argument Sub=>true means ring actors are passed
-- as one-row matrices of substitutions, Sub=>false means
-- ring actors are passed as matrices
action = method(TypicalValue=>Action,Options=>{Sub=>true})
-- constructor for action on resolutions
-- INPUT:
-- 1) a resolution
-- 2) a list of actors on the ring variables
-- 3) a list of actors on the i-th module of the resolution
-- 4) homological index i
action(ChainComplex,List,List,ZZ):=ActionOnComplex=>op->(C,l,l0,i) -> (
--check C is a homogeneous min free res over a poly ring over a field
R := ring C;
if not isPolynomialRing R then (
error "action: expected a complex over a polynomial ring";
);
if not isField coefficientRing R then (
error "action: expected coefficients in a field";
);
if not all(length C,i -> isFreeModule C_(i+min(C))) then (
error "action: expected a complex of free modules";
);
if not isHomogeneous C then (
error "action: complex is not homogeneous";
);
--if user passes handcrafted complex give warning message
if not C.?Resolution then (
print "";
print "Warning: complex is not a resolution computed by M2.";
print "This could lead to errors or meaningless results.";
);
--check the matrix of the action on the variables has right size
n := dim R;
if not all(l,g->numColumns(g)==n) then (
error "action: ring actor matrix has wrong number of columns";
);
if op.Sub then (
if not all(l,g->numRows(g)==1) then (
error "action: expected ring actor matrix to be a one-row substitution matrix";
);
--convert variable substitutions to matrices
l=apply(l,g->(vars R)\\lift(g,R));
) else (
--if ring actors are matrices they must be square
if not all(l,g->numRows(g)==n) then (
error "action: ring actor matrix has wrong number of rows";
);
--lift action matrices to R for uniformity with
--input as substitutions
l=apply(l,g->promote(g,R));
);
--check list of group elements has same length
if #l != #l0 then (
error "action: lists of actors must have equal length";
);
--check size of module actors matches rank of starting module
r := rank C_i;
if not all(l0,g->numColumns(g)==r and numRows(g)==r) then (
error "action: module actor matrix has wrong number of rows or columns";
);
--store everything into a hash table
new ActionOnComplex from {
cache => new CacheTable from {
(symbol actors,i) => apply(l0,g->map(C_i,C_i,g))
},
(symbol ring) => R,
(symbol target) => C,
(symbol numActors) => #l,
(symbol ringActors) => l,
(symbol inverseRingActors) => apply(l,inverse),
(symbol actors) => apply(l0,g->map(C_i,C_i,g)),
}
)
-- shortcut constructor for resolutions of quotient rings
-- actors on generator are assumed to be trivial
action(ChainComplex,List) := ActionOnComplex => op -> (C,l) -> (
R := ring C;
l0 := toList(#l:(id_(R^1)));
action(C,l,l0,min C,Sub=>op.Sub)
)
-- returns number of actors
numActors = method(TypicalValue=>ZZ)
numActors(Action) := ZZ => A -> A.numActors
-- returns action on ring variables
-- Sub=>true returns one-row substitution matrices
-- Sub=>false returns square matrices
ringActors = method(TypicalValue=>List,Options=>{Sub=>true})
ringActors(Action) := List => op -> A -> (
if op.Sub then apply(A.ringActors,g->(vars ring A)*g)
else A.ringActors
)
-- returns the inverses of the actors on ring variables
-- same options as ringActors
inverseRingActors = method(TypicalValue=>List,Options=>{Sub=>true})
inverseRingActors(Action) := List => op -> A -> (
if op.Sub then apply(A.inverseRingActors,g->(vars ring A)*g)
else A.inverseRingActors
)
-- returns various group actors
actors = method(TypicalValue=>List)
-- returns actors passed by user when constructing the action
actors(Action) := List => A -> A.actors
-- returns actors on resolution in a given homological degree
-- if homological degree is not the one passed by user,
-- the actors are computed and stored
actors(ActionOnComplex,ZZ) := List => (A,i) -> (
-- homological degrees where action is already cached
places := apply(keys A.cache, k -> k#1);
C := target A;
if zero(C_i) then return toList(numActors(A):map(C_i));
if i > max places then (
-- function for actors of A in hom degree i
f := A -> apply(inverseRingActors A,actors(A,i-1),
-- given a map of free modules C.dd_i : F <-- F',
-- the inverse group action on the ring (as substitution)
-- and the group action on F, computes the group action on F'
(gInv,g0) -> sub(C.dd_i,gInv)\\(g0*C.dd_i)
);
-- make cache function from f and run it on A
((cacheValue (symbol actors,i)) f) A
) else (
-- function for actors of A in hom degree i
f = A -> apply(inverseRingActors A,actors(A,i+1), (gInv,g0) ->
-- given a map of free modules C.dd_i : F <-- F',
-- the inverse group action on the ring (as substitution)
-- and the group action on F', computes the group action on F
-- it is necessary to transpose because we need a left factorization
-- but M2's command // always produces a right factorization
transpose(transpose(C.dd_(i+1))\\transpose(sub(C.dd_(i+1),gInv)*g0))
);
-- make cache function from f and run it on A
((cacheValue (symbol actors,i)) f) A
)
)
-- return the character of one free module of a resolution
-- in a given homological degree
character(ActionOnComplex,ZZ) := Character => (A,i) -> (
-- if complex is zero in hom degree i, return empty character
if zero (target A)_i then (
return new Character from {
cache => new CacheTable,
(symbol ring) => ring A,
(symbol numActors) => numActors A,
(symbol characters) => hashTable {},
};
);
-- function for character of A in hom degree i
f := A -> (
-- separate degrees of i-th free module
degs := hashTable apply(unique degrees (target A)_i, d ->
(d,positions(degrees (target A)_i,i->i==d))
);
-- create raw character from actors
H := applyPairs(degs,
(d,indx) -> ((i,d),
matrix{apply(actors(A,i), g -> trace g_indx^indx)}
)
);
new Character from {
cache => new CacheTable,
(symbol ring) => ring A,
(symbol numActors) => numActors A,
(symbol characters) => H,
}
);
-- make cache function from f and run it on A
((cacheValue (symbol character,i)) f) A
)
-- return characters of all free modules in a resolution
-- by repeatedly using previous function
character ActionOnComplex := Character => A -> (
C := target A;
directSum for i from min(C) to min(C)+length(C) list character(A,i)
)
----------------------------------------------------------------------
-- Actions on modules and characters of modules ----------------------
----------------------------------------------------------------------
-- constructor for action on various kinds of graded modules
-- INPUT:
-- 1) a graded module (polynomial ring or quotient, module, ideal)
-- 2) a list of actors on the ring variables
-- 3) a list of actors on the generators of the ambient free module
action(PolynomialRing,List,List) :=
action(QuotientRing,List,List) :=
action(Ideal,List,List) :=
action(Module,List,List):=ActionOnGradedModule=>op->(M,l,l0) -> (
-- check M is graded over a poly ring over a field
-- the way to get the ring depends on the class of M
if instance(M,Ring) then (
R := ambient M;
) else (
R = ring M;
);
if not isPolynomialRing R then (
error "action: expected a module/ideal/quotient over a polynomial ring";
);
if not isField coefficientRing R then (
error "action: expected coefficients in a field";
);
if not isHomogeneous M then (
error "action: module/ideal/quotient is not graded";
);
--check matrix of action on variables has right size
n := dim R;
if not all(l,g->numColumns(g)==n) then (
error "action: ring actor matrix has wrong number of columns";
);
if op.Sub then (
if not all(l,g->numRows(g)==1) then (
error "action: expected ring actor matrix to be a one-row substitution matrix";
);
--convert variable substitutions to matrices
l=apply(l,g->(vars R)\\lift(g,R));
) else (
--if ring actors are matrices they must be square
if not all(l,g->numRows(g)==n) then (
error "action: ring actor matrix has wrong number of rows";
);
--lift action matrices to R for uniformity with
--input as substitutions
l=apply(l,g->promote(g,R));
);
--check list of group elements has same length
if #l != #l0 then (
error "action: lists of actors must have equal length";
);
--check size of module actors matches rank of ambient module
if instance(M,Module) then (
F := ambient M;
) else ( F = R^1; );
r := rank F;
if not all(l0,g->numColumns(g)==r and numRows(g)==r) then (
error "action: module actor matrix has wrong number of rows or columns";
);
--turn input object into a module M'
if instance(M,QuotientRing) then (
M' := coker presentation M;
) else if instance(M,Module) then (
M' = M;
) else (
M' = module M;
);
--store everything into a hash table
new ActionOnGradedModule from {
cache => new CacheTable,
(symbol ring) => R,
(symbol target) => M,
(symbol numActors) => #l,
(symbol ringActors) => l,
(symbol inverseRingActors) => apply(l,inverse),
(symbol actors) => apply(l0,g->map(F,F,g)),
(symbol module) => M',
(symbol relations) => image relations M',
}
)
-- shortcut constructor when actors on generator are trivial
action(PolynomialRing,List) :=
action(QuotientRing,List) :=
action(Ideal,List) :=
action(Module,List) := ActionOnGradedModule => op -> (M,l) -> (
if instance(M,Module) then (
l0 := toList(#l:(id_(ambient M)));
) else if instance(M,Ideal) then (
l0 = toList(#l:(id_(ambient module M)));
) else (
l0 = toList(#l:(id_(module ambient M)));
);
action(M,l,l0,Sub=>op.Sub)
)
-- returns actors on component of given multidegree
-- the actors are computed and stored
actors(ActionOnGradedModule,List) := List => (A,d) -> (
M := A.module;
-- get basis in degree d as map of free modules
-- how to get this depends on the class of M
b := ambient basis(d,M);
if zero b then return toList(numActors(A):map(source b));
-- function for actors of A in degree d
f := A -> apply(ringActors A,actors A, (g,g0) -> (
--g0*b acts on the basis of the ambient module
--sub(-,g) acts on the polynomial coefficients
--result must be reduced against module relations
--then factored by original basis to get action matrix
(sub(g0*b,g) % A.relations) // b
)
);
-- make cache function from f and run it on A
((cacheValue (symbol actors,d)) f) A
)
-- returns actors on component of given degree
actors(ActionOnGradedModule,ZZ) := List => (A,d) -> actors(A,{d})
-- return character of component of given multidegree
character(ActionOnGradedModule,List) := Character => (A,d) -> (
acts := actors(A,d);
if all(acts,zero) then (
return new Character from {
cache => new CacheTable,
(symbol ring) => ring A,
(symbol numActors) => numActors A,
(symbol characters) => hashTable {},
};
);
-- function for character of A in degree d
f := A -> (
new Character from {
cache => new CacheTable,
(symbol ring) => ring A,
(symbol numActors) => numActors A,
(symbol characters) => hashTable {(0,d) => matrix{apply(acts, trace)}},
}
);
-- make cache function from f and run it on A
((cacheValue (symbol character,d)) f) A
)
-- return character of component of given degree
character(ActionOnGradedModule,ZZ) := Character => (A,d) -> (
character(A,{d})
)
-- return character of components in a range of degrees
character(ActionOnGradedModule,ZZ,ZZ) := Character => (A,lo,hi) -> (
if not all(gens ring A, v->(degree v)=={1}) then (
error "character: expected a ZZ-graded polynomial ring";
);
directSum for d from lo to hi list character(A,d)
)
---------------------------------------------------------------------
-- Specialized functions for symmetric groups -----------------------
---------------------------------------------------------------------
-- take r boxes from partition mu along border
-- unexported auxiliary function for Murnaghan-Nakayama
strip := (mu,r) -> (
-- if one row, strip r boxes
if #mu == 1 then return {mu_0 - r};
-- if possible, strip r boxes in 1st row
d := mu_0 - mu_1;
if d >= r then (
return {mu_0 - r} | drop(mu,1);
);
-- else, remove d+1 boxes and iterate
{mu_0-d-1} | strip(drop(mu,1),r-d-1)
)
-- irreducible Sn character chi^lambda
-- evaluated at conjugacy class of cycle type rho
-- unexported
murnaghanNakayama := (lambda,rho) -> (
-- if both empty, character is 1
if lambda == {} and rho == {} then return 1;
r := rho#0;
-- check if border strip fits ending at each row
borderStrips := select(
-- for all c remove first c parts, check if strip fits in the rest
for c to #lambda-1 list (take(lambda,c) | strip(drop(lambda,c),r)),
-- function that checks if list is a partition (0 allowed)
mu -> (
-- check no negative parts
if any(mu, i -> i<0) then return false;
-- check non increasing
for i to #mu-2 do (
if mu_i < mu_(i+1) then return false;
);
true
)
);
-- find border strip height
heights := apply(borderStrips,
bs -> number(lambda - bs, i -> i>0) - 1);
-- recursive computation
rho' := drop(rho,1);
sum(borderStrips,heights, (bs,h) ->
(-1)^h * murnaghanNakayama(delete(0,bs),rho')
)
)
-- speed up computation by caching values
murnaghanNakayama = memoize murnaghanNakayama
-- symmetric group character table
symmetricGroupTable = method(TypicalValue=>CharacterTable);
symmetricGroupTable PolynomialRing := R -> (
-- check argument is a polynomial ring over a field
if not isField coefficientRing R then (
error "symmetricGroupTable: expected polynomial ring over a field";
);
-- check number of variables
n := dim R;
if n < 1 then (
error "symmetricGroupTable: expected a positive number of variables";
);
-- check characteristic
if n! % (char R) == 0 then (
error ("symmetricGroupTable: expected characteristic not dividing " | toString(n) | "!");
);
-- list partitions
P := apply(partitions n, toList);
-- compute table using Murnaghan-Nakayama
-- uses murnaghanNakayama unexported function with
-- code in BettiCharacters.m2 immediately before this method
X := matrix(R, table(P,P,murnaghanNakayama));
-- compute size of conjugacy classes
conjSize := apply(P/tally,
t -> n! / product apply(pairs t, (k,v) -> k^v*v! )
);
-- matrix for inner product
m := diagonalMatrix(R,conjSize)*transpose(X);
new CharacterTable from {
(symbol numActors) => #P,
(symbol size) => conjSize,
(symbol table) => X,
(symbol ring) => R,
(symbol matrix) => m,
-- compact partition notation used for symmetric group labels
(symbol labels) => apply(P, p -> (
t := tally toList p;
pows := apply(rsort keys t, k -> net Power(k,t#k));
commas := #pows-1:net(",");
net("(")|horizontalJoin mingle(pows,commas)|net(")")
)
)
}
)
-- symmetric group variable permutation action
symmetricGroupActors = method();
symmetricGroupActors PolynomialRing := R -> (
-- check argument is a polynomial ring over a field
if not isField coefficientRing R then (
error "symmetricGroupActors: expected polynomial ring over a field";
);
-- check number of variables
n := dim R;
if n < 1 then (
error "symmetricGroupActors: expected a positive number of variables";
);
for p in partitions(n) list (
L := gens R;
g := for u in p list (
l := take(L,u);
L = drop(L,u);
rotate(1,l)
);
matrix { flatten g }
)
)
----------------------------------------------------------------------
-- Overloaded Methods
----------------------------------------------------------------------
-- get object acted upon
target(Action) := A -> A.target
-- get polynomial ring acted upon
ring Action := PolynomialRing => A -> A.ring
---------------------------------------------------------------------
-- Pretty printing of new types -------------------------------------
---------------------------------------------------------------------
-- printing for characters
net Character := c -> (
if c.characters =!= hashTable {} then (
bottom := stack(" ",
stack (horizontalJoin \ apply(sort pairs c.characters,
(k,v) -> (net k, " => ", net v)))
)
) else bottom = null;
stack("Character over "|(net c.ring), bottom)
)
-- printing for character tables
net CharacterTable := T -> (
-- top row of character table
a := {{""} | T.size};
-- body of character table
b := apply(pack(1,T.labels),entries T.table,(i,j)->i|j);
stack("Character table over "|(net T.ring)," ",
netList(a|b,BaseRow=>1,Alignment=>Right,Boxes=>{{1},{1}},HorizontalSpace=>2)
)
)
-- printing character decompositions
net CharacterDecomposition := D -> (
p := D.positions;
-- top row of decomposition table
a := {{""} | D.labels_p };
-- body of decomposition table
b := apply(sort pairs D.decompose,(k,v) -> {k} | (flatten entries v)_p );
stack("Decomposition table"," ",
netList(a|b,BaseRow=>1,Alignment=>Right,Boxes=>{{1},{1}},HorizontalSpace=>2)
)
)
-- printing for Action type
net Action := A -> (
(net class target A)|" with "|(net numActors A)|" actors"
)
----------------------------------------------------------------------
-- Documentation
----------------------------------------------------------------------
beginDocumentation()
doc ///
Node
Key
BettiCharacters
Headline
finite group characters on free resolutions and graded modules
Description
Text
This package contains functions for computing characters
of free resolutions and graded modules equipped with
the action of a finite group.
Let $R$ be a positively graded polynomial ring over a
field $\Bbbk$, and $M$ a finitely generated graded
$R$-module. Suppose $G$ is a finite group whose order
is not divisible by the characteristic of $\Bbbk$.
Assume $G$ acts $\Bbbk$-linearly on $R$ and $M$
by preserving degrees, and distributing over
$R$-multiplication.
If $F_\bullet$ is a minimal free resolution of $M$, and
$\mathfrak{m}$ denotes the maximal ideal generated by the variables
of $R$, then each $F_i / \mathfrak{m}F_i$ is a graded
$G$-representation. We call the
characters of the representations $F_i / \mathfrak{m}F_i$
the {\bf Betti characters} of $M$, since
evaluating them at the identity element of $G$ returns
the usual Betti numbers of $M$.
Moreover, the graded
components of $M$ are also $G$-representations.
This package provides functions to
compute the Betti characters and the characters of
graded components of $M$
based on the algorithms in @HREF("https://doi.org/10.1016/j.jsc.2022.02.001","F. Galetto - Finite group characters on free resolutions")@.
The package is designed to
be independent of the group; the user provides matrices for
the group actions and character tables (to decompose
characters into irreducibles).
See the menu below for using this package
to compute some examples from the literature.
@HEADER4 "Version history:"@
@UL {(BOLD "1.0: ", "Initial version. Includes computation of
actions and Betti characters.") ,
(BOLD "2.0: ", "Introduces character tables, decompositions,
and other methods for characters.")
}@
Subnodes
:Defining and computing actions
action
actors
:Characters and related operations
character
"Character operations"
:Character tables and decompositions
characterTable
decomposeCharacter
:Symmetric group actions
symmetricGroupActors
symmetricGroupTable
:Examples from the literature
"BettiCharacters Example 1"
"BettiCharacters Example 2"
"BettiCharacters Example 3"
Node
Key
"Character operations"
Headline
shift, direct sum, dual, and tensor product
Description
Text
The @TO BettiCharacters@ package contains
several functions for working with characters.
See links below for more details.
SeeAlso
(symbol SPACE,Character,Array)
(directSum,Character)
(dual,Character,RingMap)
(tensor,Character,Character)
Node
Key
"BettiCharacters Example 1"
Headline
Specht ideals / subspace arrangements
Description
Text
In this example, we identify the Betti characters of the
Specht ideal associated with the partition (5,2).
The action of the symmetric group on the resolution of
this ideal is described in
@arXiv("2010.06522",
"K. Shibata, K. Yanagawa - Minimal free resolutions of the Specht ideals of shapes (n−2,2) and (d,d,1)")@.
The same ideal is also the ideal of the 6-equals
subspace arrangement in a 7-dimensional affine space.
This point of view is explored in
@HREF("https://doi.org/10.1007/s00220-014-2010-4",
"C. Berkesch, S. Griffeth, S. Sam - Jack polynomials as fractional quantum Hall states and the Betti numbers of the (k+1)-equals ideal")@
where the action of the symmetric group on the resolution
is also described.
We begin by constructing the ideal explicitly.
As an alternative, the ideal can be obtained using the
function @TT "spechtPolynomials"@
provided by the package @TT "SpechtModule"@.
We compute a minimal free resolution and its Betti table.
Example
R=QQ[x_1..x_7]
I1=ideal apply({4,5,6,7}, i -> (x_1-x_2)*(x_3-x_i));
I2=ideal apply(subsets({3,4,5,6,7},2), s -> (x_1-x_(s#0))*(x_2-x_(s#1)));
I=I1+I2
RI=res I
betti RI
Text
Next we set up the group action on the resolution.
The group is the symmetric group on 7 elements.
Its conjugacy classes are determined by cycle types,
which are in bijection with partitions of 7.
Representatives for the conjugacy classes of the symmetric
group acting on a polynomial ring by permuting the
variables can be obtained via @TO symmetricGroupActors@.
Once the action is set up, we compute the Betti characters.
Example
S7 = symmetricGroupActors R
A = action(RI,S7)
elapsedTime c = character A
Text
To make sense of these characters we decompose them
against the character table of the symmetric group,
which can be computed using the function
@TO "symmetricGroupTable"@. The irreducible characters
are indexed by the partitions of 7, which are written
using a compact notation (the exponents indicate how
many times a part is repeated).
Example
T = symmetricGroupTable R
decomposeCharacter(c,T)
Text
As expected from the general theory, we find a single
irreducible representation in each homological degree.
Finally, we can observe the Gorenstein duality of the
resolution and its character. We construct the character
of the sign representation concentrated in homological
degree 0, internal degree 7. Then we dualize the character
of the resolution previously computed, shift its homological
degree by the length of the resolution, and twist it by
the sign character just constructed: the result is the
same as the character of the resolution.
Example
sign = character(R,15,hashTable {(0,{7}) =>
matrix{{1,-1,-1,1,-1,1,-1,1,1,-1,1,-1,1,-1,1}}})
dual(c,id_QQ)[-5] ** sign === c
Text
The second argument in the @TT "dual"@ command is the
restriction of complex conjugation to the field of
definition of the characters.
For more information, see @TO (dual,Character,RingMap)@.
Node
Key
"BettiCharacters Example 2"
Headline
Symbolic powers of star configurations
Description
Text
In this example, we identify the Betti characters of the
third symbolic power of a monomial star configuration.
The action of the symmetric group on the resolution of
this ideal is described in Example 6.5 of
@HREF("https://doi.org/10.1016/j.jalgebra.2020.04.037",
"J. Biermann, H. De Alba, F. Galetto, S. Murai, U. Nagel, A. O'Keefe, T. Römer, A. Seceleanu - Betti numbers of symmetric shifted ideals")@,
and belongs to the larger class of symmetric shifted
ideals.
First, we construct the ideal
and compute its minimal free resolution and Betti table.
Example
R=QQ[x_1..x_6]
I=intersect(apply(subsets(gens R,4),x->(ideal x)^3))
RI=res I
betti RI
Text
Next, we set up the group action on the resolution.
The group is the symmetric group on 6 elements.
Its conjugacy classes are determined by cycle types,
which are in bijection with partitions of 6.
Representatives for the conjugacy classes of the symmetric
group acting on a polynomial ring by permuting the
variables can be obtained via @TO symmetricGroupActors@.
After setting up the action, we compute the Betti characters.
Example
S6 = symmetricGroupActors R
A=action(RI,S6)
elapsedTime c=character A
Text
Next, we decompose the characters
against the character table of the symmetric group,
which can be computed using the function
@TO "symmetricGroupTable"@. The irreducible characters
are indexed by the partitions of 6, which are written
using a compact notation (the exponents indicate how
many times a part is repeated).
Example
T = symmetricGroupTable R
decomposeCharacter(c,T)
Text
The description provided in
@HREF("https://doi.org/10.1016/j.jalgebra.2020.04.037",
"J. Biermann, H. De Alba, F. Galetto, S. Murai, U. Nagel, A. O'Keefe, T. Römer, A. Seceleanu - Betti numbers of symmetric shifted ideals")@
uses representations induced from products of smaller
symmetric groups. To compare that description with the results
obtained here, one may use the Littlewood-Richardson rule
to decompose induced representations into a direct sum
of irreducibles.
Node
Key
"BettiCharacters Example 3"
Headline
Klein configuration of points
Description
Text
In this example, we identify the Betti characters of the
defining ideal of the Klein configuration of points in the
projective plane and its square.
The defining ideal of the Klein configuration is
explicitly constructed in Proposition 7.3 of
@HREF("https://doi.org/10.1093/imrn/rnx329",
"T. Bauer, S. Di Rocco, B. Harbourne, J. Huizenga, A. Seceleanu, T. Szemberg - Negative Curves on Symmetric Blowups of the Projective Plane, Resurgences, and Waldschmidt Constants")@.
We start by constructing the ideal, its square, and both
their resolutions and Betti tables. In order to later use
characters, we work over the cyclotomic field obtained by
adjoining a primitive 7th root of unity to $\mathbb{Q}$.
Example
kk = toField(QQ[a]/ideal(sum apply(7,i->a^i)))
R = kk[x,y,z]
f4 = x^3*y+y^3*z+z^3*x
H = jacobian transpose jacobian f4
f6 = -1/54*det(H)
I = minors(2,jacobian matrix{{f4,f6}})
RI = res I
betti RI
I2 = I^2;
RI2 = res I2
betti RI2
Text
The unique simple group of order 168 acts as described
in §2.2 of @HREF("https://doi.org/10.1093/imrn/rnx329",
"BDHHSS")@. In particular, the group is generated by the
elements @TT "g"@ of order 7, @TT "h"@ of order 3, and
@TT "i"@ of order 2, and is minimally defined over the
7th cyclotomic field. In addition, we consider the identity,
the inverse of @TT "g"@,
and another element @TT "j"@ of order 4 as representatives
of the conjugacy classes of the group.
The action of the group on the resolution of
both ideals is described in the second proof of
Proposition 8.1.
Example
g = matrix{{a^4,0,0},{0,a^2,0},{0,0,a}}
h = matrix{{0,1,0},{0,0,1},{1,0,0}}
i = (2*a^4+2*a^2+2*a+1)/7 * matrix{
{a-a^6,a^2-a^5,a^4-a^3},
{a^2-a^5,a^4-a^3,a-a^6},
{a^4-a^3,a-a^6,a^2-a^5}
}
j = -1/(2*a^4+2*a^2+2*a+1) * matrix{
{a^5-a^4,1-a^5,1-a^3},
{1-a^5,a^6-a^2,1-a^6},
{1-a^3,1-a^6,a^3-a}
}
G = {id_(R^3),i,h,j,g,inverse g};
Text
We compute the action of this group
on the two resolutions above.
Notice how the group action is passed as a list of square
matrices (instead of one-row substitution matrices as in
@TO "BettiCharacters Example 1"@ and
@TO "BettiCharacters Example 2"@); to enable this,
we set the option @TO Sub@ to @TT "false"@.
Example
A1 = action(RI,G,Sub=>false)
A2 = action(RI2,G,Sub=>false)
elapsedTime a1 = character A1
elapsedTime a2 = character A2
Text
Next we set up the character table of the group
and decompose the Betti characters of the resolutions.
The arguments are: a list with the cardinality of the
conjugacy classes, a matrix with the values of the irreducible
characters, the base polynomial ring, and the complex
conjugation map restricted to the field of coefficients.
See @TO characterTable@ for more details.
Example
s = {1,21,56,42,24,24}
m = matrix{{1,1,1,1,1,1},
{3,-1,0,1,a^4+a^2+a,-a^4-a^2-a-1},
{3,-1,0,1,-a^4-a^2-a-1,a^4+a^2+a},
{6,2,0,0,-1,-1},
{7,-1,1,-1,0,0},
{8,0,-1,0,1,1}};
conj = map(kk,kk,{a^6})
T = characterTable(s,m,R,conj)
a1/T
a2/T
Text
Since @TT "X0"@ is the trivial character,
this computation shows that the
free module in homological degree two in the resolution of the
defining ideal of the Klein configuration is a direct sum
of two trivial representations, one in degree 11 and one in
degree 13. It follows that its second
exterior power is a trivial representation concentrated in
degree 24. As observed in the second
proof of Proposition 8.1 in @HREF("https://doi.org/10.1093/imrn/rnx329",
"BDHHSS")@, the free module in homological degree 3 in the
resolution of the square of the ideal is exactly this
second exterior power (and a trivial representation).
Alternatively, we can compute the symbolic square of the
ideal modulo the ordinary square. The component of degree
21 of this quotient matches the generators of the last
module in the resolution of the ordinary square in degree
24 (by local duality); in
particular, it is a trivial representation. We can verify
this directly.
Example
needsPackage "SymbolicPowers"
Is2 = symbolicPower(I,2);
M = Is2 / I2;
B = action(M,G,Sub=>false)
elapsedTime b = character(B,21)
b/T
Node
Key
Action
Headline
the class of all finite group actions
Description
Text
This class is provided by the package
@TO BettiCharacters@.
Subnodes
ActionOnComplex
ActionOnGradedModule
(net,Action)
(ring,Action)
ringActors
(target,Action)
Node
Key
ActionOnComplex
Headline
the class of all finite group actions on complexes
Description
Text
This class is provided by the package
@TO BettiCharacters@.
Node
Key
ActionOnGradedModule
Headline
the class of all finite group actions on graded modules
Description
Text
This class is provided by the package
@TO BettiCharacters@.
Node
Key
Character
Headline
the class of all characters of finite group representations
Description
Text
This class is provided by the package
@TO BettiCharacters@.
Subnodes
(symbol SPACE,Character,Array)
(directSum,Character)
(dual,Character,RingMap)
(net,Character)
(tensor,Character,Character)
Node
Key
(symbol SPACE,Character,Array)
Headline
homological shift
Description
Text
Shift the homological degrees of a character.
Example
R = QQ[x,y,z]
I = ideal(x*y,x*z,y*z)
RI = res I
S3 = symmetricGroupActors R
A = action(RI,S3)
a = character A
a[-10]
Node
Key
CharacterTable
Headline
the class of all character tables of finite groups
Description
Text
This class is provided by the package
@TO BettiCharacters@.
Subnodes
(net,CharacterTable)
Node
Key
CharacterDecomposition
Headline
the class of all finite group character decompositions
Description
Text
This class is provided by the package
@TO BettiCharacters@.
Subnodes
(net,CharacterDecomposition)
Node
Key
action
Headline
define finite group action
Description
Text
This function is provided by the package
@TO BettiCharacters@.
Use this function to set up a finite group action on
a minimal free resolution or graded module.
See the specific use cases for more details.
Subnodes
Action
(action,ChainComplex,List,List,ZZ)
(action,Module,List,List)
Sub
Node
Key
(action,ChainComplex,List,List,ZZ)
(action,ChainComplex,List)
Headline
define finite group action on a resolution
Usage
A=action(C,G)
A=action(C,G,G',i)
Inputs
C:ChainComplex
a minimal free resolution over a polynomial ring @TT "R"@
G:List
of group elements acting on the variables of @TT "R"@
G':List
of group elements acting on a basis of @TT "C_i"@
i:ZZ
a homological degree
Outputs
A:ActionOnComplex
Description
Text
This function is provided by the package
@TO BettiCharacters@.
Use this function to define the action of a finite group
on the minimal free resolution of a module over a
polynomial ring with coefficients in a field.
After setting up the action, use the function
@TO character@ to compute the Betti characters.
The input @TT "G"@ is a @TO List@ of group elements
acting on the vector space spanned by the variables
of the ring @TT "R"@. By default, these elements are
passed as one-row substitution matrices as those
accepted by @TO substitute@. One may pass these elements
as square matrices by setting the optional input @TO Sub@
to @TT "false"@. The list @TT "G"@ can contain
arbitrary group elements however, to
obtain a complete representation theoretic description
of the characters, @TT "G"@ should be a list of
representatives of the conjugacy classes of the group.
The example below sets up the action of a symmetric
group on the resolution of a monomial ideal.
The symmetric group acts by permuting the four
variables of the ring. The conjugacy classes of
permutations are determined by their cycle types,
which are in bijection with partitions. In this case,
we consider five permutations with cycle types,
in order: 4, 31, 22, 211, 1111.
Example
R = QQ[x_1..x_4]
I = ideal apply(subsets(gens R,2),product)
RI = res I
G = {matrix{{x_2,x_3,x_4,x_1}},
matrix{{x_2,x_3,x_1,x_4}},
matrix{{x_2,x_1,x_4,x_3}},
matrix{{x_2,x_1,x_3,x_4}},
matrix{{x_1,x_2,x_3,x_4}} }
A = action(RI,G)
Text
The group elements acting on the ring can be recovered
using @TO ringActors@, while their inverses can be
recovered using @TO inverseRingActors@.
To recover just the number of group elements,
use @TO numActors@.
Example
ringActors A
inverseRingActors A
numActors A
Text
The simplified version of this function suffices when
dealing with resolutions of quotients of the ring
@TT "R"@ by an ideal as in the previous example.
In this case, the first module in the resolution is
@TT "R"@ and it is assumed that the group acts
trivially on the generator of this first module.
When resolving modules or when more flexibility is
needed, one may use the general version of the function.
In this case, it is necessary to specify a homological
degree @TT "i"@ and a list of group elements acting on
the module @TT "C_i"@. The group elements are passed
as a @TO List@ @TT "G'"@ of matrices written with
respect to the basis of @TT "C_i"@ used by Macaulay2.
Moreover, the group elements in @TT "G'"@ must match
(in number and order) the elements in @TT "G"@.
To illustrate, we set up the action on the resolution
of the ideal in the previous example considered as a
module (as opposed to the resolution of the quotient
by the ideal). In this case, the elements of @TT "G'"@
are the permutation matrices obtained by acting with
elements of @TT "G"@ on the span of the minimal
generators of the ideal. For simplicity, we construct
these matrices by permuting columns of the identity.
Example
M = module I
RM = res M
G' = { (id_(R^6))_{2,4,5,0,1,3},
(id_(R^6))_{2,0,1,4,5,3},
(id_(R^6))_{0,4,3,2,1,5},
(id_(R^6))_{0,2,1,4,3,5},
id_(R^6) }
action(RM,G,G',0)
Text
By changing the last argument, it is possible to
specify the action of the group on any module of the
resolution. For example, suppose we wish to construct
the action of the symmetric group on the resolution
of the canonical module of the quotient in the first
example. In this case, it will be more convenient to
declare a trivial action on the last module of the
resolution rather than figuring out the action on the
first module (i.e., the generators of the canonical
module). This can be achieved as follows.
Example
E = Ext^3(R^1/I,R^{-4})
RE = res E
G'' = toList(5:id_(R^1))
action(RE,G,G'',3)
Caveat
This function determines if the complex @TT "C"@ is a free
resolution computed by Macaulay2. If this is not the case,
then the function produces a warning to inform the user that
later computations (i.e., Betti characters) may fail or
return meaningless results.
Node
Key
(action,Module,List,List)
(action,Module,List)
(action,Ideal,List,List)
(action,Ideal,List)
(action,PolynomialRing,List,List)
(action,PolynomialRing,List)
(action,QuotientRing,List,List)
(action,QuotientRing,List)
Headline
define finite group action on a graded module
Usage
A=action(M,G)
A=action(M,G,G')
Inputs
M:Module
a graded module/ideal/quotient over a polynomial ring @TT "R"@
G:List
of group elements acting on the variables of @TT "R"@
G':List
of group elements acting on the ambient module of @TT "M"@
Outputs
A:ActionOnGradedModule
Description
Text
This function is provided by the package
@TO BettiCharacters@.
Use this function to define the action of a finite group
on a graded module over a polynomial ring
with coefficients in a field. This includes also an
ideal in the polynomial ring, a quotient of the
polynomial ring, and the polynomial ring itself.
After setting up the action, use the function
@TO character@ to compute the characters of graded
components.
The input @TT "G"@ is a @TO List@ of group elements
acting on the vector space spanned by the variables
of the ring @TT "R"@. By default, these elements are
passed as one-row substitution matrices as those
accepted by @TO substitute@. One may pass these elements
as square matrices by setting the optional input @TO Sub@
to @TT "false"@. The list @TT "G"@ can contain
arbitrary group elements however, to
obtain a complete representation theoretic description
of the characters, @TT "G"@ should be a list of
representatives of the conjugacy classes of the group.
The example below sets up the action of a symmetric
group on a polynomial ring, a monomial ideal,
and the corresponding quotient.
The symmetric group acts by permuting the four
variables of the ring. The conjugacy classes of
permutations are determined by their cycle types,
which are in bijection with partitions. In this case,
we consider five permutations with cycle types,
in order: 4, 31, 22, 211, 1111.
Example
R = QQ[x_1..x_4]
G = {matrix{{x_2,x_3,x_4,x_1}},
matrix{{x_2,x_3,x_1,x_4}},
matrix{{x_2,x_1,x_4,x_3}},
matrix{{x_2,x_1,x_3,x_4}},
matrix{{x_1,x_2,x_3,x_4}} }
action(R,G)
I = ideal apply(subsets(gens R,2),product)
action(I,G)
Q = R/I
A = action(Q,G)
Text
The group elements acting on the ring can be recovered
using @TO ringActors@.
To recover just the number of group elements,
use @TO numActors@.
Example
ringActors A
numActors A
Text
The simplified version of this function assumes that
the group acts trivially on the generator of the
polynomial ring.
When working with a module @TT "M"@, one needs to
declare the action of the group on a basis of the free
ambient module of @TT "M"@.
Unless this action is trivial, it can be specified
using the third argument, a list @TT "G'"@ of matrices
written with respect to the basis of the free ambient
module of @TT "M"@ used by Macaulay2.
Moreover, the group elements in @TT "G'"@ must match
(in number and order) the elements in @TT "G"@.
To illustrate, we set up the action on the canonical
module of the quotient in the previous example.
We obtain the list of group elements @TT "G'"@ for the
canonical module by computing the action on its
resolution.
Example
E = Ext^3(R^1/I,R^{-4})
RE = res E
G'' = toList(5:id_(R^1))
B = action(RE,G,G'',3)
G' = actors(B,0)
action(E,G,G')
Node
Key
actors
(actors,Action)
Headline
group elements of an action
Description
Text
This function is provided by the package
@TO BettiCharacters@.
When called (without additional arguments) on an object
of type @TO Action@,
this function returns the list of group elements
originally provided by the user to act on
a module or in a given homological
degree of a resolution. Note that these group elements
are assumed to trivial, unless otherwise indicated
when constructing the action.
The user may specify additional arguments to obtain
elements of the group acting in other degrees.
See the specific use cases for more details.
Example
R = QQ[x_1..x_4]
I = ideal apply(subsets(gens R,2),product)
M = module I
RM = res M
G = {matrix{{x_2,x_3,x_4,x_1}},
matrix{{x_2,x_3,x_1,x_4}},
matrix{{x_2,x_1,x_4,x_3}},
matrix{{x_2,x_1,x_3,x_4}},
matrix{{x_1,x_2,x_3,x_4}} }
G' = { (id_(R^6))_{2,4,5,0,1,3},
(id_(R^6))_{2,0,1,4,5,3},
(id_(R^6))_{0,4,3,2,1,5},
(id_(R^6))_{0,2,1,4,3,5},
id_(R^6) }
A = action(RM,G,G',0)
actors(A)
B = action(M,G)
actors(B)
SeeAlso
action
Subnodes
(actors,ActionOnComplex,ZZ)
(actors,ActionOnGradedModule,List)
inverseRingActors
numActors
Node
Key
(actors,ActionOnComplex,ZZ)
Headline
group elements of action on resolution
Usage
actors(A,i)
Inputs
A:ActionOnComplex
a finite group action on a minimal free resolution
i:ZZ
a homological degree
Outputs
:List
of group elements acting in homological degree @TT "i"@
Description
Text
This function is provided by the package
@TO BettiCharacters@.
This function returns matrices describing elements of a
finite group acting on a minimal free resolution in a
given homological degree. If the homological degree is
the one where the user originally defined the action,
then the user provided elements are returned.
Otherwise, suitable elements are computed as indicated
in @HREF("https://doi.org/10.1016/j.jsc.2022.02.001","F. Galetto - Finite group characters on free resolutions")@.
To illustrate, we compute the action of a
symmetric group on the resolution of a monomial ideal.
The ideal is generated by
all squarefree monomials of degree two in four variables.
The symmetric group acts by permuting the four
variables of the ring. We only consider five
permutations with cycle types,
in order: 4, 31, 22, 211, 1111 (since these are enough
to determine the characters of the action).
Example
R = QQ[x_1..x_4]
I = ideal apply(subsets(gens R,2),product)
RI = res I
G = {matrix{{x_2,x_3,x_4,x_1}},
matrix{{x_2,x_3,x_1,x_4}},
matrix{{x_2,x_1,x_4,x_3}},
matrix{{x_2,x_1,x_3,x_4}},
matrix{{x_1,x_2,x_3,x_4}} }
A = action(RI,G)
actors(A,0)
actors(A,1)
actors(A,2)
actors(A,3)
Caveat
When applied to a minimal free resolution $F_\bullet$,
this function returns matrices that induce the action of
group elements on the representations $F_i/\mathfrak{m}F_i$, where
$\mathfrak{m}$ is the maximal ideal generated by the variables of the
polynomial ring.
While these matrices often represent the action of the
same group elements on the modules $F_i$ of the resolution,
this is in general not a guarantee.
SeeAlso
action
Node
Key
(actors,ActionOnGradedModule,List)
(actors,ActionOnGradedModule,ZZ)
Headline
group elements acting on components of a module
Usage
actors(A,d)
Inputs
A:ActionOnGradedModule
a finite group action on a graded module
d:List
a (multi)degree
Outputs
:List
of group elements acting in the given (multi)degree
Description
Text
This function is provided by the package
@TO BettiCharacters@.
This function returns matrices describing elements of a
finite group acting on the graded component of
(multi)degree @TT "d"@ of a module.
To illustrate, we compute the action of a
symmetric group on the components of a monomial ideal.
The symmetric group acts by permuting the four
variables of the ring. We only consider five
permutations with cycle types,
in order: 4, 31, 22, 211, 1111 (since these are enough
to determine the characters of the action).
Example
R = QQ[x_1..x_4]
I = ideal apply(subsets(gens R,2),product)
G = {matrix{{x_2,x_3,x_4,x_1}},
matrix{{x_2,x_3,x_1,x_4}},
matrix{{x_2,x_1,x_4,x_3}},
matrix{{x_2,x_1,x_3,x_4}},
matrix{{x_1,x_2,x_3,x_4}} }
A = action(I,G)
actors(A,1)
actors(A,2)
actors(A,3)
Text
The degree argument can be an integer (in the case of
single graded modules) or a list of integers (in
the case of a multigraded module).
SeeAlso
action
Node
Key
character
Headline
compute characters of finite group action
Description
Text
This function is provided by the package
@TO BettiCharacters@.
Use this method to compute the Betti characters
of a finite group action on a minimal free resolution
or the characters of a finite group action on the
components of a graded module.
See the specific use cases for more details.
All characters are bigraded by homological degree and
internal degree (inherited from the complex or module
they are computed from). Modules are considered to
be concentrated in homological degree zero.
Characters may also be constructed by hand using
@TO (character,PolynomialRing,ZZ,HashTable)@.
Subnodes
Character
(character,ActionOnComplex)
(character,ActionOnComplex,ZZ)
(character,ActionOnGradedModule,List)
(character,PolynomialRing,ZZ,HashTable)
(character,CharacterDecomposition,CharacterTable)
Node
Key
(character,ActionOnComplex)
Headline
compute all Betti characters of minimal free resolution
Usage
character(A)
Inputs
A:ActionOnComplex
a finite group action on a minimal free resolution
Outputs
:Character
Betti characters of the resolution
Description
Text
This function is provided by the package
@TO BettiCharacters@.
Use this function to compute all nonzero Betti
characters of a finite group action on a minimal free
resolution.
This function calls @TO (character,ActionOnComplex,ZZ)@
on all nonzero homological degrees and then assembles
the outputs in a hash table indexed by homological
degree.
To illustrate, we compute the Betti characters of a
symmetric group on the resolution of a monomial ideal.
The ideal is the symbolic square of the ideal generated by
all squarefree monomials of degree three in four variables.
The symmetric group acts by permuting the four
variables of the ring. The characters are determined
by five permutations with cycle types,
in order: 4, 31, 22, 211, 1111.
Example
R = QQ[x_1..x_4]
J = intersect(apply(subsets(gens R,3),x->(ideal x)^2))
RJ = res J
G = { matrix{{x_2,x_3,x_4,x_1}},
matrix{{x_2,x_3,x_1,x_4}},
matrix{{x_2,x_1,x_4,x_3}},
matrix{{x_2,x_1,x_3,x_4}},
matrix{{x_1,x_2,x_3,x_4}} }
A = action(RJ,G)
character(A)
Text
See @TO (character,ActionOnComplex,ZZ)@
for more details on this example.
SeeAlso
action
(character,ActionOnComplex,ZZ)
Node
Key
(character,ActionOnComplex,ZZ)
Headline
compute Betti characters of minimal free resolution
Usage
character(A,i)
Inputs
A:ActionOnComplex
a finite group action on a minimal free resolution
i:ZZ
a homological degree
Outputs
:Character
the @TT "i"@-th Betti character of the resolution
Description
Text
This function is provided by the package
@TO BettiCharacters@.
Use this function to compute the Betti characters of a
finite group action on a minimal free resolution
in a given homological degree.
More explicitly, let $F_\bullet$ be a minimal free
resolution of a module $M$ over a polynomial ring $R$,
with a compatible action of a finite group $G$.
If $\mathfrak{m}$ denotes the maximal ideal generated by the
variables of $R$, then $F_i/\mathfrak{m}F_i$ is a graded
representation of $G$. We refer to its character as
the $i$-th {\bf Betti character} of $M$ (or a minimal free
resolution of $M$).
Betti characters are computed using Algorithm 1 in
@HREF("https://doi.org/10.1016/j.jsc.2022.02.001","F. Galetto - Finite group characters on free resolutions")@.
To illustrate, we compute the Betti characters of a
symmetric group on the resolution of a monomial ideal.
The ideal is the symbolic square of the ideal generated by
all squarefree monomials of degree three in four variables.
The symmetric group acts by permuting the four
variables of the ring. The characters are determined
by five permutations with cycle types,
in order: 4, 31, 22, 211, 1111.
Example
R = QQ[x_1..x_4]
J = intersect(apply(subsets(gens R,3),x->(ideal x)^2))
RJ = res J
G = { matrix{{x_2,x_3,x_4,x_1}},
matrix{{x_2,x_3,x_1,x_4}},
matrix{{x_2,x_1,x_4,x_3}},
matrix{{x_2,x_1,x_3,x_4}},
matrix{{x_1,x_2,x_3,x_4}} }
A = action(RJ,G)
character(A,0)
Text
By construction, the character in homological degree
0 is concentrated in degree 0 and trivial.
Example
character(A,1)
Text
The character in homological degree 1 has two
components. The component of degree 3 is the permutation
representation spanned by the squarefree monomials of
degree 3 (which can be identified with the natural
representation of the symmetric group).
The component of degree 4 is the permutation representation
spanned by the squares of the squarefree monomials of degree
2.
Example
character(A,2)
Text
In homological degree 2, there is a component of degree
4 which is isomorphic to the irreducible standard
representation of the symmetric group.
In degree 5, we find the permutation representation of
the symmetric group on the set of ordered pairs of
distinct elements from 1 to 4.
Example
character(A,3)
Text
Finally, the character in homological degree 3 is
concentrated in degree 6 and corresponds to the direct
sum of the standard representation and the tensor
product of the standard representation and the sign
representation (i.e., the direct sum of the two
irreducible representations of dimension 3).
SeeAlso
action
Node
Key
(character,ActionOnGradedModule,List)
(character,ActionOnGradedModule,ZZ)
(character,ActionOnGradedModule,ZZ,ZZ)
Headline
compute characters of graded components of a module
Usage
character(A,d)
character(A,lo,hi)
Inputs
A:ActionOnGradedModule
a finite group action on a graded module
d:List
a (multi)degree
Outputs
:Character
the character of the components of a module in given degrees
Description
Text
This function is provided by the package
@TO BettiCharacters@.
Use this function to compute the characters of the
finite group action on the graded components of a
module. The second argument is the (multi)degree of
the desired component. For $\mathbb{Z}$-graded rings,
one may compute characters in a range of degrees by
providing the lowest and highest degrees in the range.
To illustrate, we compute the Betti characters of a
symmetric group on the graded components of a polynomial
ring, a monomial ideal, and their quotient.
The characters are determined
by five permutations with cycle types,
in order: 4, 31, 22, 211, 1111.
Example
R = QQ[x_1..x_4]
I = ideal apply(subsets(gens R,2),product)
G = {matrix{{x_2,x_3,x_4,x_1}},
matrix{{x_2,x_3,x_1,x_4}},
matrix{{x_2,x_1,x_4,x_3}},
matrix{{x_2,x_1,x_3,x_4}},
matrix{{x_1,x_2,x_3,x_4}} }
Q = R/I
A = action(R,G)
B = action(I,G)
C = action(Q,G)
character(A,0,5)
character(B,0,5)
character(C,0,5)
character(C,6)
SeeAlso
action
Node
Key
(character,PolynomialRing,ZZ,HashTable)
Headline
construct a character
Usage
character(R,l,H)
Inputs
R:PolynomialRing
over a field
l:ZZ
character length
H:HashTable
raw character data
Outputs
:Character
Description
Text
This function is provided by the package
@TO BettiCharacters@.
The @TO character@ method is mainly designed to compute
characters of finite group actions defined via @TO action@.
The user who wishes to define characters by hand
may do so with this particular application of the method.
The first argument is the polynomial ring the character
values will live in; this makes it possible to compare or
combine the hand-constructed character with other
characters over the same ring. The second argument is
the length of the character, i.e., the number of conjugacy
classes of the group whose representations the character
is coming from. The third argument is a hash table
containing the "raw" character data. The hash table
entries are in the format @TT "(i,d) => c"@, where @TT "i"@
is an integer representing homological degree, @TT "d"@
is a list representing the internal (multi)degree, and
@TT "c"@ is a list containing the values of the character
in the given degrees. Note that the values of the character
are elements in the ring given as the first argument.
Example
R = QQ[x_1..x_3]
regRep = character(R,3, hashTable {
(0,{0}) => matrix{{1,1,1}},
(0,{1}) => matrix{{-1,0,2}},
(0,{2}) => matrix{{-1,0,2}},
(0,{3}) => matrix{{1,-1,1}},
})
I = ideal(x_1+x_2+x_3,x_1*x_2+x_1*x_3+x_2*x_3,x_1*x_2*x_3)
S3 = {matrix{{x_2,x_3,x_1}},
matrix{{x_2,x_1,x_3}},
matrix{{x_1,x_2,x_3}} }
Q = R/I
A = action(Q,S3)
character(A,0,3) === regRep
Caveat
This constructor implements basic consistency checks, but
it is still be possible to construct objects that are not
actually characters (not even virtual).
SeeAlso
character
Node
Key
(character,CharacterDecomposition,CharacterTable)
(symbol *,CharacterDecomposition,CharacterTable)
Headline
recover character from decomposition
Usage
character(d,T)
d*T
Inputs
d:CharacterDecomposition
T:CharacterTable
Outputs
:Character
Description
Text
This function is provided by the package
@TO BettiCharacters@.
Use this function to recover a character from its decomposition
into a linear combination of the irreducible characters
in a character table. The shortcut @TT "d*T"@
is equivalent to the command @TT "character(d,T)"@.
As an example, we construct the character table of the
symmetric group on 3 elements, then use it to decompose
the character of the action of the same symmetric group
permuting the variables of a standard graded polynomial ring.
Example
s = {2,3,1}
M = matrix{{1,1,1},{-1,0,2},{1,-1,1}}
R = QQ[x_1..x_3]
P = {1,2,3}
T = characterTable(s,M,R,P)
acts = {matrix{{x_2,x_3,x_1}},matrix{{x_2,x_1,x_3}},matrix{{x_1,x_2,x_3}}}
A = action(R,acts)
c = character(A,0,10)
d = c/T
c === d*T
SeeAlso
characterTable
decomposeCharacter
Node
Key
characterTable
(characterTable,List,Matrix,PolynomialRing,RingMap)
(characterTable,List,Matrix,PolynomialRing,List)
Headline
construct a character table
Usage
T = characterTable(s,M,R,conj)
T = characterTable(s,M,R,perm)
Inputs
s:List
of conjugacy class sizes
M:Matrix
with character table entries
R:PolynomialRing
over a field
conj:RingMap
conjugation in coefficient field
perm:List
permutation of conjugacy classes
Outputs
T:CharacterTable
Description
Text
This function is provided by the package
@TO BettiCharacters@.
Use the @TO characterTable@ method to construct
the character table of a finite group.
The first argument is a list containing the cardinalities
of the conjugacy classes of the group.
The second argument is a square matrix whose entry in
row $i$ and column $j$ is the value of the $i$-th
irreducible character of the group at an element
of the $j$-th conjugacy class.
The third argument is a polynomial ring over a field,
the same ring over which the modules and resolutions
are defined whose characters are to be decomposed
against the character table. Note that the matrix in
the second argument must be liftable to this ring.
Assuming the polynomial ring in the third argument
has a coefficient field @TT "F"@ which is a subfield of the
complex numbers, then the fourth argument is the
restriction of complex conjugation to @TT "F"@.
For example, we construct the character table of the
alternating group $A_4$ considered as a subgroup of the
symmetric group $S_4$. The conjugacy classes are
represented by the identity, and the permutations
$(12)(34)$, $(123)$, and $(132)$, in cycle notation.
These conjugacy classes have cardinalities: 1, 3, 4, 4.
The irreducible characters can be constructed over the
field $\mathbb{Q}[w]$, where $w$ is a primitive third
root of unity. Complex conjugation restricts to
$\mathbb{Q}[w]$ by sending $w$ to $w^2$.
Example
F = toField(QQ[w]/ideal(1+w+w^2))
s = {1,3,4,4}
M = matrix{{1,1,1,1},{1,1,w,w^2},{1,1,w^2,w},{3,-1,0,0}}
R = F[x_1..x_4]
conj = map(F,F,{w^2})
T = characterTable(s,M,R,conj)
Text
By default, irreducible characters in a character table
are labeled as @TT "X0, X1, ..."@, etc.
The user may pass custom labels in a list using
the option @TO Labels@.
When working over a splitting field for a finite group
$G$ in the non modular case, the irreducible characters
of $G$ form an orthonormal basis for the space of class
functions on $G$ with the scalar product given by
$$\langle \chi_1, \chi_2 \rangle = \frac{1}{|G|}
\sum_{g\in G} \chi_1 (g) \chi_2 (g^{-1}).$$
Over the complex numbers, the second factor in the summation
is equal to $\overline{\chi_2 (g)}$. Thus the scalar
product can be computed using the conjugation function
provided by the user.
If working over coefficient fields of positive characteristic
or if one wishes to avoid defining conjugation, one may replace
the fourth argument by a list containing a permutation
$\pi$ of the integers $1,\dots,r$, where
$r$ is the number of conjugacy classes of the group.
The permutation $\pi$ is defined as follows:
if $g$ is an element of the $j$-th conjugacy class,
then $g^{-1}$ is an element of the $\pi (j)$-th class.
In the case of $A_4$, the identity and $(12)(34)$ are
their own inverses, while $(123)^{-1} = (132)$.
Therefore the permutation $\pi$ is the transposition
exchanging 3 and 4. Hence the character table of $A_4$
may also be constructed as follows, with $\pi$
represented in one-line notation by a list passed
as the fourth argument.
Example
perm = {1,2,4,3}
T' = characterTable(s,M,R,perm)
T' === T
Caveat
This constructor checks orthonormality of the table
matrix under the standard scalar product of characters.
However, it may still be possible to construct a table
that is not an actual character table. Note also that
there are no further checks when using a character table
to decompose characters.
SeeAlso
decomposeCharacter
Subnodes
CharacterTable
labels
Node
Key
decomposeCharacter
(decomposeCharacter,Character,CharacterTable)
(symbol /,Character,CharacterTable)
Headline
decompose a character into irreducible characters
Usage
decomposeCharacter(c,T)
c/T
Inputs
c:Character
of a finite group
T:CharacterTable
of the same finite group
Outputs
:CharacterDecomposition
Description
Text
This function is provided by the package
@TO BettiCharacters@.
Use the @TO decomposeCharacter@ method to decompose
a character into a linear combination of irreducible
characters in a character table. The shortcut @TT "c/T"@
is equivalent to the command @TT "decomposeCharacter(c,T)"@.
As an example, we construct the character table of the
symmetric group on 3 elements, then use it to decompose
the character of the action of the same symmetric group
permuting the variables of a standard graded polynomial ring.
Example
s = {2,3,1}
M = matrix{{1,1,1},{-1,0,2},{1,-1,1}}
R = QQ[x_1..x_3]
P = {1,2,3}
T = characterTable(s,M,R,P)
acts = {matrix{{x_2,x_3,x_1}},matrix{{x_2,x_1,x_3}},matrix{{x_1,x_2,x_3}}}
A = action(R,acts)
c = character(A,0,10)
decomposeCharacter(c,T)
Text
The results are shown in a table whose rows are indexed
by pairs of homological and internal degrees, and whose
columns are labeled by the irreducible characters.
By default, irreducible characters in a character table
are labeled as @TT "X0, X1, ..."@, etc, and the same
labeling is inherited by the character decompsoition.
The user may pass custom labels in a list using
the option @TO Labels@ when constructing the character
table.
SeeAlso
characterTable
Subnodes
CharacterDecomposition
Node
Key
(directSum,Character)
(symbol ++,Character,Character)
Headline
direct sum of characters
Usage
character(c)
character(c1,c2,...)
Inputs
c:Character
or sequence of characters
Outputs
:Character
Description
Text
This function is provided by the package
@TO BettiCharacters@.
Returns the direct sum of the input characters.
The operator @TT "++"@ may be used for the same purpose.
Example
R = QQ[x_1..x_3]
I = ideal(x_1+x_2+x_3)
J = ideal(x_1-x_2,x_1-x_3)
S3 = {matrix{{x_2,x_3,x_1}},
matrix{{x_2,x_1,x_3}},
matrix{{x_1,x_2,x_3}} }
A = action(I,S3)
B = action(J,S3)
a = character(A,1)
b = character(B,1)
a ++ b
K = ideal(x_1,x_2,x_3)
C = action(K,S3)
c = character(C,1)
a ++ b === c
Node
Key
dual
(dual,Character,RingMap)
(dual,Character,List)
Headline
dual character
Usage
dual(c,conj)
dual(c,perm)
Inputs
c:Character
of a finite group action
conj:RingMap
conjugation in coefficient field
perm:List
permutation of conjugacy classes
Outputs
:Character
Description
Text
This function is provided by the package
@TO BettiCharacters@.
Returns the dual of a character, i.e., the character
of the dual or contragredient representation.
The first argument is the original character.
Assuming the polynomial ring over which the character
is defined has a coefficient field @TT "F"@ which is a subfield
of the complex numbers, then the second argument is the
restriction of complex conjugation to @TT "F"@.
As an example, we construct a character of the
alternating group $A_4$ considered as a subgroup of the
symmetric group $S_4$. The conjugacy classes are
represented by the identity, and the permutations
$(12)(34)$, $(123)$, and $(132)$, in cycle notation.
The character is constructed over the field $\mathbb{Q}[w]$,
where $w$ is a primitive third root of unity.
Complex conjugation restricts to $\mathbb{Q}[w]$
by sending $w$ to $w^2$. The character is concentrated
in homological degree 1, and internal degree 2.
Example
F = toField(QQ[w]/ideal(1+w+w^2))
R = F[x_1..x_4]
conj = map(F,F,{w^2})
X = character(R,4,hashTable {(1,{2}) => matrix{{1,1,w,w^2}}})
X' = dual(X,conj)
Text
If working over coefficient fields of positive characteristic
or if one wishes to avoid defining conjugation, one may replace
the second argument by a list containing a permutation
$\pi$ of the integers $1,\dots,r$, where
$r$ is the number of conjugacy classes of the group.
The permutation $\pi$ is defined as follows:
if $g$ is an element of the $j$-th conjugacy class,
then $g^{-1}$ is an element of the $\pi (j)$-th class.
In the case of $A_4$, the identity and $(12)(34)$ are
their own inverses, while $(123)^{-1} = (132)$.
Therefore the permutation $\pi$ is the transposition
exchanging 3 and 4. Hence the dual of the character in the
example above may also be constructed as follows,
with $\pi$ represented in one-line notation by a list passed
as the second argument.
Example
perm = {1,2,4,3}
dual(X,perm) === X'
Text
The page @TO characterTable@ contains some motivation
for using conjugation or permutations of conjugacy
classes when dealing with characters.
SeeAlso
characterTable
Node
Key
inverseRingActors
(inverseRingActors,Action)
Headline
get inverse of action on ring generators
Usage
inverseRingActors(A)
Inputs
A:Action
Outputs
G:List
of group elements
Description
Text
This function is provided by the package
@TO BettiCharacters@.
Returns a @TO List@ of group elements
acting on the vector space spanned by the variables
of the polynomial ring associated with the object
acted upon.
These are the inverses of the elements originally
defined by the user when constructing the action.
By default, these elements are
expressed as one-row substitution matrices as those
accepted by @TO substitute@. One may obtain these elements
as square matrices by setting the optional input @TO Sub@
to @TT "false"@.
SeeAlso
action
Node
Key
Labels
labels
[characterTable, Labels]
Headline
custom labels for irreducible characters
Description
Text
This optional input is used with the method
@TO characterTable@ provided by the package
@TO BettiCharacters@.
By default, irreducible characters in a character table
are labeled as @TT "X0, X1, ..."@, etc.
The user may pass custom labels in a list using
this option.
The next example sets up the character table of
the dihedral group $D_4$, generated by an order 4 rotation $r$
and an order 2 reflection $s$ with the relation $srs=r^3$.
The representatives of the conjugacy classes are, in order:
the identity, $r^2$, $r$, $s$, and $rs$.
Besides the trivial representation, $D_4$ has three irreducible
one-dimensional representations, corresponding to the three normal
subgroups of index two: $\langle r\rangle$, $\langle r^,,s\rangle$,
and $\langle r^2,rs\rangle$. The characters of these representations
send the elements of the corresponding subgroup to 1, and the other
elements to -1. We denote those characters @TT "rho1,rho2,rho3"@.
Finally, there is a unique irreducible representation of dimension 2.
Example
R = QQ[x,y]
D8 = { matrix{{x,y}},
matrix{{-x,-y}},
matrix{{-y,x}},
matrix{{x,-y}},
matrix{{y,x}} }
M = matrix {{1,1,1,1,1},
{1,1,1,-1,-1},
{1,1,-1,1,-1},
{1,1,-1,-1,1},
{2,-2,0,0,0}};
T = characterTable({1,1,2,2,2},M,R,{1,2,3,4,5},
Labels=>{"triv","rho1","rho2","rho3","dim2"})
Text
The same labels are automatically used when decomposing
characters against a labeled character table.
Example
A = action(R,D8)
c = character(A,0,8)
decomposeCharacter(c,T)
Text
The labels are stored in the character table under the
key @TT "labels"@.
SeeAlso
characterTable
decomposeCharacter
Node
Key
(net,Action)
Headline
format for printing, as a net
Description
Text
Format objects of type @TO Action@ for printing.
See @TO net@ for more information.
Node
Key
(net,Character)
Headline
format for printing, as a net
Description
Text
Format objects of type @TO Character@ for printing.
See @TO net@ for more information.
Node
Key
(net,CharacterTable)
Headline
format for printing, as a net
Description
Text
Format objects of type @TO CharacterTable@ for printing.
See @TO net@ for more information.
Node
Key
(net,CharacterDecomposition)
Headline
format for printing, as a net
Description
Text
Format objects of type @TO CharacterDecomposition@ for printing.
See @TO net@ for more information.
Node
Key
numActors
(numActors,Action)
Headline
number of acting elements
Usage
numActors(A)
Inputs
A:Action
Outputs
:ZZ
Description
Text
This function is provided by the package
@TO BettiCharacters@.
Returns the number of group elements passed by the user
when defining the given action.
This number is not necessarily the order of the acting
group because in order to compute characters it is
enough to work with a representative of each conjugacy
class of the group.
SeeAlso
action
Node
Key
(ring,Action)
Headline
get ring of object acted upon
Usage
ring(A)
Inputs
A:Action
Outputs
:PolynomialRing
associated with the object acted upon
Description
Text
This function is provided by the package
@TO BettiCharacters@.
Returns the polynomial ring associated with the object
being acted upon.
SeeAlso
action
Node
Key
ringActors
(ringActors,Action)
Headline
get action on ring generators
Usage
ringActors(A)
Inputs
A:Action
Outputs
G:List
of group elements
Description
Text
This function is provided by the package
@TO BettiCharacters@.
Returns a @TO List@ of group elements
acting on the vector space spanned by the variables
of the polynomial ring associated with the object
acted upon.
These are the same elements originally defined by
the user when constructing the action.
By default, these elements are
expressed as one-row substitution matrices as those
accepted by @TO substitute@. One may obtain these elements
as square matrices by setting the optional input @TO Sub@
to @TT "false"@.
SeeAlso
action
Node
Key
Sub
[action, Sub]
[ringActors, Sub]
[inverseRingActors, Sub]
Headline
format ring actors as one-row substitution matrices
Description
Text
This optional input is provided by the package
@TO BettiCharacters@.
By default, the group elements acting on a ring are
passed as one-row substitution matrices as those
accepted by @TO substitute@. Setting @TT "Sub=>false"@
allows the user to pass these elements as square
matrices.
The example below sets up the action of a symmetric
group on the resolution of a monomial ideal.
The symmetric group acts by permuting the four
variables of the ring. The conjugacy classes of
permutations are determined by their cycle types,
which are in bijection with partitions. In this case,
we consider five permutations with cycle types,
in order: 4, 31, 22, 211, 1111.
For simplicity, we construct these matrices
by permuting columns of the identity.
Example
R = QQ[x_1..x_4]
I = ideal apply(subsets(gens R,2),product)
RI = res I
G = { (id_(R^4))_{1,2,3,0},
(id_(R^4))_{1,2,0,3},
(id_(R^4))_{1,0,3,2},
(id_(R^4))_{1,0,2,3},
id_(R^4) }
A = action(RI,G,Sub=>false)
Text
Similarly, setting @TT "Sub=>false"@
causes @TO ringActors@ and @TO inverseRingActors@
to return the group elements acting on the ring as
square matrices. With the default setting
@TT "Sub=>true"@, the same elements are returned as
one-row substitution matrices.
Example
ringActors(A,Sub=>false)
inverseRingActors(A,Sub=>false)
ringActors(A)
inverseRingActors(A)
Node
Key
symmetricGroupActors
(symmetricGroupActors,PolynomialRing)
Headline
permutation action of the symmetric group
Usage
symmetricGroupActors(R)
Inputs
R:PolynomialRing
Outputs
:List
Description
Text
This function is provided by the package
@TO BettiCharacters@.
Returns a list of of matrices, each representing an
element of the symmetric group permuting the variables
of the polynomial ring in the input. This simplifies
the setup for symmetric group actions with the
@TO action@ command.
The output list
contains one element for each conjugacy class of
the symmetric group. The conjugacy classes are
determined by their cycle type and are in bijection
with the partitions of $n$, where $n$ is the
number of variables. Therefore the first element
of the list will always be a cycle of length $n$,
and the last element will be the identity.
Example
R=QQ[x_1..x_4]
symmetricGroupActors(R)
partitions 4
SeeAlso
"BettiCharacters Example 1"
"BettiCharacters Example 2"
Node
Key
symmetricGroupTable
(symmetricGroupTable,PolynomialRing)
Headline
character table of the symmetric group
Usage
symmetricGroupTable(R)
Inputs
R:PolynomialRing
Outputs
:CharacterTable
Description
Text
This function is provided by the package
@TO BettiCharacters@.
Returns the character table of the symmetric group
$S_n$, where $n$ is the number of variables of the
polynomial ring in the input. The irreducible
characters are indexed by the partitions of $n$ written
using a compact notation where an exponent indicates
how many times a part is repeated. The computation uses
the recursive Murnaghan-Nakayama formula.
Example
R=QQ[x_1..x_4]
symmetricGroupTable(R)
SeeAlso
"BettiCharacters Example 1"
"BettiCharacters Example 2"
Node
Key
(target,Action)
Headline
get object acted upon
Usage
target(A)
Inputs
A:Action
Description
Text
This function is provided by the package
@TO BettiCharacters@.
Returns the object being acted upon.
Depending on the action, this object may be a
@TO ChainComplex@, a @TO PolynomialRing@, a
@TO QuotientRing@, an @TO Ideal@, or a @TO Module@.
SeeAlso
action
Node
Key
(tensor,Character,Character)
(symbol **,Character,Character)
Headline
tensor product of characters
Usage
tensor(c1,c2)
Inputs
c1:Character
c2:Character
Outputs
:Character
Description
Text
This function is provided by the package
@TO BettiCharacters@.
Returns the tensor product of the input characters.
The operator @TT "**"@ may be used for the same purpose.
We construct the character of the coinvariant algebra
of the symmetric group on 3 variables.
Example
R = QQ[x,y,z]
I = ideal(x+y+z,x*y+x*z+y*z,x*y*z)
S3 = symmetricGroupActors R
A = action(R/I,S3)
a = character(A,0,3)
Text
The Gorenstein duality of this character may be
observed by tensoring with the character of the
sign representation concentrated in degree 3.
Example
sign = character(R,3, hashTable { (0,{3}) => matrix{{1,-1,1}} })
dual(a,{1,2,3}) ** sign === a
///
----------------------------------------------------------------------
-- Tests
----------------------------------------------------------------------
-- Test 0 (monomial ideal, symmetric group)
TEST ///
clearAll
R = QQ[x,y,z]
I = ideal(x*y,x*z,y*z)
RI = res I
S3 = {matrix{{y,z,x}},matrix{{y,x,z}},matrix{{x,y,z}}}
assert(S3 == symmetricGroupActors(R))
A = action(RI,S3)
a = character(R,3,hashTable {
((0,{0}), matrix{{1,1,1}}),
((1,{2}), matrix{{0,1,3}}),
((2,{3}), matrix{{-1,0,2}})
})
assert((character A) === a)
B = action(R,S3)
b = character(R,3,hashTable {
((0,{0}), matrix{{1,1,1}}),
((0,{1}), matrix{{0,1,3}}),
((0,{2}), matrix{{0,2,6}}),
((0,{3}), matrix{{1,2,10}})
})
assert(character(B,0,3) === b)
C = action(I,S3)
c = character(R,3,hashTable {
((0,{2}), matrix{{0,1,3}}),
((0,{3}), matrix{{1,1,7}})
})
assert(character(C,0,3) === c)
D = action(R/I,S3)
d = character(R,3,hashTable {
((0,{0}), matrix{{1,1,1}}),
((0,{1}), matrix{{0,1,3}}),
((0,{2}), matrix{{0,1,3}}),
((0,{3}), matrix{{0,1,3}})
})
assert(character(D,0,3) === d)
assert(b === c++d)
cS3 = symmetricGroupTable(R)
assert( cS3.table ==
matrix{{1_R,1,1},{-1,0,2},{1,-1,1}})
adec = a/cS3
assert( set keys adec.decompose ===
set {(0,{0}),(1,{2}),(2,{3})})
assert( adec.decompose#(0,{0}) == matrix{{1_R,0,0}})
assert( adec.decompose#(1,{2}) == matrix{{1_R,1,0}})
assert( adec.decompose#(2,{3}) == matrix{{0,1_R,0}})
ddec = d/cS3
assert( set keys ddec.decompose ===
set {(0,{0}),(0,{1}),(0,{2}),(0,{3})})
assert( ddec.decompose#(0,{0}) == matrix{{1_R,0,0}})
assert( ddec.decompose#(0,{1}) == matrix{{1_R,1,0}})
assert( ddec.decompose#(0,{2}) == matrix{{1_R,1,0}})
assert( ddec.decompose#(0,{3}) == matrix{{1_R,1,0}})
///
-- Test 1 (non-monomial ideal, symmetric group)
TEST ///
clearAll
R = QQ[x_1..x_5]
I = ideal(
(x_1-x_4)*(x_2-x_5),
(x_1-x_3)*(x_2-x_5),
(x_1-x_3)*(x_2-x_4),
(x_1-x_2)*(x_3-x_5),
(x_1-x_2)*(x_3-x_4)
)
RI = res I
S5 = for p in partitions(5) list (
L := gens R;
g := for u in p list (
l := take(L,u);
L = drop(L,u);
rotate(1,l)
);
matrix { flatten g }
)
assert(S5 == symmetricGroupActors(R))
A = action(RI,S5)
a = character(R,7,hashTable {
((0,{0}), matrix{{1,1,1,1,1,1,1}}),
((1,{2}), matrix{{0,-1,1,-1,1,1,5}}),
((2,{3}), matrix{{0,1,-1,-1,1,-1,5}}),
((3,{5}), matrix{{1,-1,-1,1,1,-1,1}})
})
assert((character A) === a)
B = action(R,S5)
b = character(R,7,hashTable {
((0,{0}), matrix{{1,1,1,1,1,1,1}}),
((0,{1}), matrix{{0,1,0,2,1,3,5}}),
((0,{2}), matrix{{0,1,1,3,3,7,15}}),
((0,{3}), matrix{{0,1,1,5,3,13,35}})
})
assert(character(B,0,3) === b)
C = action(I,S5)
c = character(R,7,hashTable {
((0,{2}), matrix{{0,-1,1,-1,1,1,5}}),
((0,{3}), matrix{{0,-2,1,-1,0,4,20}})
})
assert(character(C,0,3) === c)
D = action(R/I,S5)
d = character(R,7,hashTable {
((0,{0}), matrix{{1,1,1,1,1,1,1}}),
((0,{1}), matrix{{0,1,0,2,1,3,5}}),
((0,{2}), matrix{{0,2,0,4,2,6,10}}),
((0,{3}), matrix{{0,3,0,6,3,9,15}})
})
assert(character(D,0,3) === d)
assert(b === c++d)
cS5 = symmetricGroupTable(R)
assert( cS5.table ==
matrix{{1_R,1,1,1,1,1,1},
{-1,0,-1,1,0,2,4},
{0,-1,1,-1,1,1,5},
{1,0,0,0,-2,0,6},
{0,1,-1,-1,1,-1,5},
{-1,0,1,1,0,-2,4},
{1,-1,-1,1,1,-1,1}}
)
adec = a/cS5
assert( set keys adec.decompose ===
set {(0,{0}),(1,{2}),(2,{3}),(3,{5})})
assert( adec.decompose#(0,{0}) == matrix{{1_R,0,0,0,0,0,0}})
assert( adec.decompose#(1,{2}) == matrix{{0,0,1_R,0,0,0,0}})
assert( adec.decompose#(2,{3}) == matrix{{0,0,0,0,1_R,0,0}})
assert( adec.decompose#(3,{5}) == matrix{{0,0,0,0,0,0,1_R}})
ddec = d/cS5
assert( set keys ddec.decompose ===
set {(0,{0}),(0,{1}),(0,{2}),(0,{3})})
assert( ddec.decompose#(0,{0}) == matrix{{1_R,0,0,0,0,0,0}})
assert( ddec.decompose#(0,{1}) == matrix{{1_R,1,0,0,0,0,0}})
assert( ddec.decompose#(0,{2}) == matrix{{2_R,2,0,0,0,0,0}})
assert( ddec.decompose#(0,{3}) == matrix{{3_R,3,0,0,0,0,0}})
///
-- Test 3 (non symmetric group, tests actors)
TEST ///
clearAll
kk = toField(QQ[w]/ideal(sum apply(5,i->w^i)))
R = kk[x,y]
D5 = {
matrix{{x,y}},
matrix{{w*x,w^4*y}},
matrix{{w^2*x,w^3*y}},
matrix{{y,x}}
}
A = action(R,D5)
a = {
map(R^{4:-3},R^{4:-3},{{1,0,0,0},{0,1,0,0},{0,0,1,0},{0,0,0,1}}),
map(R^{4:-3},R^{4:-3},{{w^3,0,0,0},{0,w,0,0},{0,0,w^4,0},{0,0,0,w^2}}),
map(R^{4:-3},R^{4:-3},{{w,0,0,0},{0,w^2,0,0},{0,0,w^3,0},{0,0,0,w^4}}),
map(R^{4:-3},R^{4:-3},{{0,0,0,1},{0,0,1,0},{0,1,0,0},{1,0,0,0}})
}
assert(actors(A,3) === a)
ca = character(R,4, hashTable {((0,{3}), matrix{apply(a,trace)})})
assert(character(A,3) === ca)
d1=map(R^1,R^{4:-3},{{x^3,x^2*y,x*y^2,y^3}})
d2=map(R^{4:-3},R^{3:-4},{{-y,0,0},{x,-y,0},{0,x,-y},{0,0,x}})
Rm=chainComplex(d1,d2)
B = action(Rm,D5)
assert(actors(B,1) === a)
cb1 = character(R,4, hashTable {((1,{3}), matrix{apply(a,trace)})})
assert(character(B,1) === cb1)
b = {
map(R^{3:-4},R^{3:-4},{{1,0,0},{0,1,0},{0,0,1}}),
map(R^{3:-4},R^{3:-4},{{w^2,0,0},{0,1,0},{0,0,w^3}}),
map(R^{3:-4},R^{3:-4},{{w^4,0,0},{0,1,0},{0,0,w}}),
map(R^{3:-4},R^{3:-4},{{0,0,-1},{0,-1,0},{-1,0,0}})
}
assert(actors(B,2) === b)
cb2 = character(R,4, hashTable {((2,{4}), matrix{apply(b,trace)})})
assert(character(B,2) === cb2)
///
end
|