1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
|
-- -*- coding: utf-8 -*-
-- Binomials.m2
--
-- Copyright (C) 2009-2014 Thomas Kahle <thomas.kahle@jpberlin.de>
--
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
--
-- This program is free software; you can redistribute it and/or modify
-- it under the terms of the GNU General Public License as published by
-- the Free Software Foundation; either version 2 of the License, or (at
-- your option) any later version.
--
-- This program is distributed in the hope that it will be useful, but
-- WITHOUT ANY WARRANTY; without even the implied warranty of
-- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
-- General Public License for more details.
--
-- You should have received a copy of the GNU General Public License along
-- with this program; if not, write to the Free Software Foundation, Inc.,
-- 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
--
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
newPackage(
"Binomials",
Version => "1.2.1",
Date => "January 2018",
Authors => {{
Name => "Thomas Kahle",
Email => "thomas.kahle@jpberlin.de",
HomePage => "http://www.thomas-kahle.de"}},
Headline => "specialized routines for binomial ideals",
Keywords => {"Commutative Algebra"},
PackageImports => {"FourTiTwo", "Cyclotomic", "LLLBases", "MinimalPrimes", "Elimination"},
Certification => {
"journal name" => "The Journal of Software for Algebra and Geometry: Macaulay2",
"journal URI" => "http://j-sag.org/",
"article title" => "Decompositions of binomial ideals",
"acceptance date" => "2012-02-06",
"published article URI" => "http://j-sag.org/Volume4/jsag-1-2012.pdf",
"published code URI" => "http://j-sag.org/Volume4/Binomials.m2",
"repository code URI" => "https://github.com/Macaulay2/M2/blob/master/M2/Macaulay2/packages/Binomials.m2",
"release at publication" => "6c927c4f11724e29840c889e5ac7a426b17685ab",
"version at publication" => "1.0",
"volume number" => "4",
"volume URI" => "http://j-sag.org/Volume4/"
}
)
export {
-- 'Official' functions
"binomialPrimaryDecomposition",
"binomialCellularDecomposition",
"binomialUnmixedDecomposition",
"binomialRadical",
"binomialMinimalPrimes",
"binomialAssociatedPrimes",
"binomialSolve",
-- tests
"binomialIsPrime",
"binomialIsPrimary",
"cellularBinomialIsPrimary",
"isCellular",
"isBinomial",
"isUnital",
-- input related
"makeBinomial",
"latticeBasisIdeal",
-- cellular stuff:
"cellularBinomialAssociatedPrimes",
"cellularBinomialUnmixedDecomposition",
-- "cellularAssociatedLattices",
"cellularBinomialPrimaryDecomposition",
"cellularBinomialRadical",
-- simple wrappers:
"BPD",
"BCD",
"BUD",
-- auxiliary functions:
"partialCharacter",
"idealFromCharacter", -- should be renamed to ideal once M2 supports this
"randomBinomialIdeal",
"extractInclusionMinimalIdeals",
-- Not in the interface:
-- "axisSaturate",
-- "cellVars",
-- "cellularEmbeddedLatticeWitnesses",
-- "Lsat",
-- "saturatePChar",
-- "satIdeals",
-- "nonCellstdm",
-- "maxNonCellstdm",
-- "minimalPrimaryComponent",
-- "binomialFrobeniusPower",
-- Options
"CellVariables", -- for partialCharacter
"ReturnPrimes", -- for cellularBinomialIsPrimary
"ReturnPChars", -- for cellularBinomialIsPrimary
"ReturnCellVars", -- for binomialCellularDecomposition
--Types
"PartialCharacter"--HashTable
}
axisSaturate = (I,i) -> (
-- By Ignacio Ojeda and Mike Stillman
-- For computing saturations w.r.t. a single variable:
R := ring I;
I1 := ideal(1_R);
s := 0;
f := R_i;
while not(I1 == I) do (
s = s + 1;
I1 = I;
I = ideal syz gb(matrix{{f}}|gens I,
SyzygyRows=>1,Syzygies=>true););
{s-1, I}
)
-- Cellular decomposition of binomial ideals:
binomialCellularDecomposition = method (Options => {ReturnCellVars => false, Verbose=>false})
binomialCellularDecomposition Ideal := Ideal => o -> I -> (
-- based on code by Ignacio Ojeda and Mike Stillman
R := ring I;
if I == ideal (1_R) then return {};
n := numgens R;
Answer := {};
L := null;
IntersectAnswer := ideal(1_R);
ToDo := {{{1_R},toList(0..n-1),I}};
-- Each entry of the ToDoList is a triple:
-- #0 contains list of variables with respect to which is already saturated
-- #1 contains variables to be considered for cell variables
-- #2 is the ideal to decompose
compo := 0;
next := () -> (
if #ToDo === 0 then false
else (
L = ToDo#0;
ToDo = drop(ToDo,1);
if gens IntersectAnswer % L#2 == 0 then (
if o#Verbose then (
<< "redundant component" << endl;
)
)
-- if its not redundant:
else if #(L#1) === 0 then ( -- #(L#1) counts 'remaining variables to check'
-- no variables remain to check :
-- We have an answer
compo = compo + 1;
newone := trim L#2;
if o#Verbose then (
<< "cellular components found: " << compo << endl;);
if o#ReturnCellVars then Answer = append(Answer,{newone, delete(1_R,L#0)})
else Answer = append (Answer,newone);
IntersectAnswer = intersect(IntersectAnswer,newone);
-- if we have enough, stop after this iteration
if IntersectAnswer == I then ToDo = {})
else ( -- So, there are remaining variables #(L#1) is not zero
i := L#1#0; -- i is a variable under consideration
newL1 := drop(L#1,1); -- gets removed from the list
result := axisSaturate(L#2, i); -- compute saturation wrt i
J := result#1; -- Ideal
k := result#0; -- Saturation Exponent
if k > 0 then ( -- If a division was needed:
-- We add the monomial i^k to ideal under consideration
J2 := L#2 + ideal(R_i^k);
-- And remove L#0 components from variables that we already
-- considered before
J2 = saturate(J2, product L#0);
if J2 != ideal(1_R) then
-- If something is left after removing we have more to decompose J2
ToDo = prepend({L#0, newL1, J2},ToDo));
-- Continue with the next variable and add i to L#0
if J != ideal(1_R) then ToDo = prepend({L#0|{R_i}, newL1, J},ToDo);
);
true));
while next() do ();
Answer
)
-- This function saturates an integer lattice. It expects
-- the matrix A, whose image is the lattice.
Lsat = A -> LLL syz transpose LLL syz transpose A;
isCellular = method (Options => {ReturnCellVars => false})
isCellular Ideal := Ideal => o -> I -> (
-- This function checks if a binomial ideal is cellular
-- In the affirmative case it can return the cellular (regular) variables.
R := ring I;
cv := cellVars I;
if cv == {} then prod := 1_R else prod = product cv;
if I == saturate (I, prod) then (
-- I is cellular
if o#ReturnCellVars then return cv
else return true;
)
else false)
cellVars = method (Options => {CellVariables => null})
cellVars Ideal := Ideal => o -> I -> (
-- This function computes the cell variables for a cellular ideal if necessary.
if o#CellVariables === null then (
cv := {};
for i in gens ring I do if saturate (I,i) != substitute(ideal(1), ring I) then cv=cv|{i};
return cv;
)
else o#CellVariables)
-- Setting up the PartialCharacter Type
PartialCharacter = new Type of HashTable;
partialCharacter = method (Options => {CellVariables => null})
partialCharacter Ideal := Ideal => o -> I -> (
-- Will compute the partial character associated to a cellular binomial ideal.
-- If the cell variables are known they can be given as an optional argument.
vs := {}; -- This will hold the lattice generators
vsmat := matrix "0"; -- Holds the matrix whose image is L
cl := {}; -- This will hold the coefficients
R := ring I;
CoeffR := coefficientRing R; -- needed to form terms below
II := ideal;
-- The input should be a cellular ideal
cv := cellVars(I, CellVariables=>o#CellVariables);
ncv := toList (set gens R - cv);
-- If there are no cellular variables,
-- the ideal is monomial and the partial character is zero:
if cv == {} then (
return new PartialCharacter from {"J"=>{}, "L"=>matrix "0", "c"=>{1}};
);
-- We need to construct this ring to properly extract coefficients below
S := CoeffR(monoid [cv]);
-- intersect I with the ring k[cv] and map to S
if #ncv != 0 then (
II = sub(eliminate (ncv, I),S);
)
else (
-- S = R, stick with original def!
II = I;
);
-- The partial character of the zero ideal is on the zero lattice.
if ( II == 0 ) then (
for i in cv do vs = vs | { 0_ZZ };
cl = {1_ZZ};
return new PartialCharacter from {"J"=>cv, "L"=>transpose matrix {vs}, "c"=>cl};
);
-- So, II is not zero:
-- Let ts be the list of minimal generators, this uses that II\subset S !
ts := entries mingens II;
-- for each term, find the exponent vector
oldmat := matrix "0";
oldvs := {};
for t in ts#0 do (
-- Want to check if we already have this generator included
-- Save the old values
oldmat = vsmat;
oldvs = vs;
-- compute new ones
vs = vs | {((exponents t)#0 - (exponents t)#1)};
vsmat = transpose matrix vs;
-- Do we need the new generator ?
if image oldmat == image vsmat then (
-- Undo changes:
vsmat = oldmat;
vs = oldvs;
)
else (
-- So we have a new generator : update coefficient list
coeffs := entries ((coefficients(t))#1);
F := coefficientRing ring coeffs#1#0;
coe := for c in coeffs list lift(c#0,F);
cl = cl | { sub ( -coe#1 / coe#0, CoeffR) };
);
);
return (new PartialCharacter from {"J"=>cv, "L"=> transpose matrix vs , "c"=>cl});
)
randomBinomialIdeal = (R,numge,maxdeg, maxwidth, homog) -> (
-- Generate 'random' ideals for testing purposes. The distribution is completely heuristic and designed to serve
-- internal purposes
-- Inputs: a ring R, the number of generators numgen, the maximal degree of each variable maxdeg,
-- the maximal number of variables appearing in binomial, whether the output should be homogeneous
-- Caveat: The result might simply be not homogeneous or of the given degree
-- due to deps between the random generators
-- Output: a 'random' binomial ideal.
Rge := gens R;
ng := #Rge;
ge := {};
ra := 0; split := 0;
va := {}; m := {};
z := for i in 0..ng-maxwidth-1 list 0;
if homog then (
if odd maxwidth then maxwidth = maxwidth + 1;
for i in 0..numge do (
-- m will be a list of nonzero random exponents
m = for j in 0..(maxwidth//2)-1 list (
ra = (random (2*maxdeg)) +1 ;
if ra > maxdeg then ra = -ra // 2;
ra
);
m = m | for j in 0..(maxwidth//2)-1 list (
ra = (random (2*maxdeg)) +1 ;
if ra > maxdeg then ra = -ra // 2;
-ra
);
-- filling with zeros
m = random (m |z);
ge = ge | {makeBinomial (R,m,1)};
);
)
else (
for i in 0..numge do (
-- m will be a list of nonzero random exponents
m = for j in 0..maxwidth-1 list (
ra = (random (2*maxdeg)) +1 ;
if ra > maxdeg then ra = -ra // 2;
ra
);
-- filling with zeros
m = random (m |z);
ge = ge | {makeBinomial (R,m,1)};
);
);
ideal (mingens ideal(ge)))
isBinomial = I -> (
-- Checking binomiality with a reduced gb.
ge := flatten entries gens gb I;
for g in ge do (
if #(terms g) > 2 then return false;
);
true)
isUnital = I -> (
-- A unital ideal is generated by unital binomials and monomials.
ge := flatten entries gens gb I;
for g in ge do (
coeffs := sort flatten entries (coefficients g)#1;
if coeffs == {1} then continue;
if coeffs == { -1} then continue;
if coeffs == { -1 , 1} then continue;
return false;
);
true)
nonCellstdm = {CellVariables=>null} >> o -> I -> (
-- extracts the (finite) set of nilpotent monomials
-- modulo a cellular binomial ideal.
R := ring I;
cv := set cellVars(I, CellVariables=>o#CellVariables);
-- Extracting the monomials in the non-Cell variables.
-- Problem: They may not live in R because R was extended on the way.
-- This use of baseName is intended to fix a problem where the variables in cv
-- are actual variables of a ring over a field extension.
ncv := value \ toList (set (baseName \ (gens R)) - baseName \ cv);
-- We map I to the subring: kk[ncv]
CoeffR := coefficientRing R;
S := CoeffR(monoid [ncv]);
J := kernel map (R/I,S);
basis (S/J))
maxNonCellstdm = {CellVariables=>null} >> o -> I -> (
-- Computes the maximal monomials in the nilpotent variables
cv := cellVars(I, CellVariables=>o#CellVariables);
nm := flatten entries nonCellstdm (I,CellVariables=>cv);
-- The following code extracts the maximal elements in a list of monomials
result := {};
maxel := 0;
while nm != {} do (
maxel = max nm;
-- Add maxel to the result
result = result | {maxel};
-- Delete everyone who is dividing maxel
nm = for m in nm list (if maxel // m != 0 then continue; m);
);
result)
makeBinomial = (R,m,c) -> (
-- constructs the binomial associated to
-- exponent vector m and coefficient c in R
var := gens R;
posmon :=1_R;
negmon :=1_R;
for i in 0..#m-1 do (
if m#i > 0 then (
posmon = posmon * var#i^(m#i)
)
else (
negmon = negmon * var#i^(-m#i)
);
);
posmon - c*negmon)
idealFromCharacter = method();
idealFromCharacter (Ring, PartialCharacter) := Ideal => (R, pc) -> (
-- Constructs the lattice Ideal I_+(c) in R
-- R is a ring in which the ideal is returned
-- The columns of A should contain exponent vectors of generators
-- The vector c contains the corresponding coefficients which must lie
-- in the coefficient ring of R.
var := gens R;
if pc#"L" == 0 then return ideal 0_R;
cols := null;
binomials := null;
c := null;
k := ring pc#"c"#0;
idmat := matrix mutableIdentity(ZZ,#var);
if pc#"L" == idmat then (
-- If A is the unit matrix we are lucky,
-- no saturation is needed.
-- We coerce the coefficients to R:
c = apply (pc#"c", a -> (sub (a,R)));
cols = entries transpose pc#"L";
binomials = for i in 0..numcols(pc#"L")-1 list makeBinomial (R,cols#i, c#i);
return ideal binomials
)
else if set pc#"c" === set {1_k} then (
-- all coefficients are one, we can use 4ti2.
return toricMarkov (transpose pc#"L", R, InputType => "lattice");
)
else (
-- The general case, fall back to saturation in M2:
c = apply (pc#"c", a -> (sub (a,R)));
cols = entries transpose pc#"L";
binomials = for i in 0..numcols(pc#"L")-1 list makeBinomial (R,cols#i, c#i);
return saturate (ideal binomials, product var);
);
)
latticeBasisIdeal = (R,L) -> (
-- Constructs the lattice basis ideal (whose saturation is the lattice ideal)
-- Convention is that L's columns generate the lattice.
var := gens R;
if L == 0 then return ideal 0_R;
cols := null;
binomials :=null;
cols = entries transpose L;
binomials = for i in 0..numcols L-1 list makeBinomial (R,cols#i, 1);
ideal binomials)
saturatePChar = (pc) -> (
-- This function saturates a partial character and returns the result
-- as a list, even if the input was saturated.
-- If the lattice is saturated, the character is saturated
-- Note that this shortcircuits all problems with c being non-constant.
if image Lsat pc#"L" == image pc#"L" then (
return {pc};
);
-- The saturated lattice
S := Lsat(pc#"L");
-- The coefficient matrix :
K := pc#"L" // S;
-- print K;
-- Now we find the (binomial) equations for the saturated character:
numvars := numrows K;
varlist := for i in 0..numvars-1 list value ("m"|i);
Q := QQ(monoid [varlist]);
eqs := idealFromCharacter (Q, (new PartialCharacter from {"J"=>gens Q, "L"=>K, "c"=>pc#"c"}));
result := binomialSolve eqs;
r := #result;
i := 0;
return(for i from 0 to r-1 list(
new PartialCharacter from {"J" => pc#"J", "L" => S, "c" => result#i}));
)
satIdeals = (pc) -> (
-- Computes all the ideals belonging to saturations of
-- a given partial character.
satpc := saturatePChar(pc);
-- The following is the smallest ring containing all new
-- coefficients but not smaller than QQ
F := ring satpc#0#"c"#0;
if F === ZZ then F = QQ;
Q := F(monoid [satpc#0#"J"]);
for s in satpc list idealFromCharacter (Q, s))
binomialRadical = I -> (
cv := isCellular (I, ReturnCellVars=>true);
if not cv === false then (
return cellularBinomialRadical (I,CellVariables=>cv)
);
-- In the general case
print "Input not cellular, computing minimal primes ...";
mp := binomialMinimalPrimes I;
ideal mingens intersect mp)
cellularBinomialRadical = method (Options => {CellVariables => null})
cellularBinomialRadical Ideal := Ideal => o -> I -> (
-- Computes the radical of a cellular binomial ideal
R := ring I;
cv := cellVars(I, CellVariables=>o#CellVariables);
-- Get the non-cellular variables
noncellvars := toList(set (gens R) - cv);
M := sub (ideal (noncellvars),R);
I + M)
binomialIsPrimary = I -> (
-- Check if an arbitrary binomial ideal is primary
-- first check for cellularity, then run the specialized check if the ideal is cellular.
cv := isCellular (I, ReturnCellVars=>true);
-- Can't check with logical comparison because the return value could be a list
if cv === false then return false
else cellularBinomialIsPrimary (I, CellVariables=>cv))
cellularBinomialIsPrimary = method (Options => {ReturnPrimes => false , ReturnPChars => false, CellVariables=> null})
cellularBinomialIsPrimary Ideal := Ideal => o -> I -> (
-- Implements Alg. 9.4 in [ES96]
-- I must be a cellular ideal, CellVariables can be given for speedup
-- Returns the radical of I and whether I is primary
-- if the option ReturnPrimes is true, then it will return
-- the radical in the affirmative case and two distinct associated primes
-- otherwise
-- if the option ReturnPChars is true then it will return partial Characters
-- of the primes instead.
-- If both are true then it will return characters.
R := ring I;
-- Only proper ideals are considered primary
if I == ideal(1_R) then return false;
-- Handling of cell variables
cv := cellVars(I, CellVariables=>o#CellVariables);
-- Get the partial character of I
pc := partialCharacter(I, CellVariables=>cv);
noncellvars := toList(set gens R - cv);
M := sub (ideal (noncellvars),R);
-- the radical:
rad := I + M;
-- If the partial character is not saturated, the radical is not prime
if image Lsat pc#"L" != image pc#"L" then (
print "The radical is not prime, as the character is not saturated";
satpc := saturatePChar pc;
if o#ReturnPChars then (
-- This one is the fastest, so check it first
return {{satpc#0#"J",satpc#0#"L",satpc#0#"c"}, {satpc#0#"J",satpc#0#"L",satpc#1#"c"}}
);
if o#ReturnPrimes then (
F := ring satpc#0#"c"#0;
S := F(monoid [satpc#0#"J"]);
M = sub(M,S);
ap1 := idealFromCharacter (S,satpc#0) + M;
ap2 := idealFromCharacter (S,satpc#1) + M;
-- Return two distinct associated primes:
return {ap1,ap2};
)
else return false;
);
-- If the radical is prime, then there still might be embedded
-- primes that properly contain the radical. The remaining part
-- finds such primes by examining quotients w.r.t (maximal)
-- standard monomials.
-- The list of maximally standard monomials:
maxlist := maxNonCellstdm (I,CellVariables=>cv);
-- need to map to R to do colons with I
f := map (R, ring maxlist#0);
maxstdmon := maxlist / f;
for m in maxstdmon do (
q := I:m;
-- Mapping down to k[E]:
-- q2 := eliminate (noncellvars,q);
q2 := q + M;
-- I_+(sigma) was called prerad above:
if not isSubset(q2, rad) then (
-- creating some local names:
satqchar := saturatePChar partialCharacter (q,CellVariables=>cv);
if o#ReturnPChars then(
return {pc, {satqchar#0#"J",satqchar#0#"L",satqchar#0#"c"}}
);
if o#ReturnPrimes then (
F := ring satqchar#0#"c"#0;
S := F(monoid [satqchar#0#"J"]);
M = sub(M,S);
ap2 := idealFromCharacter (S, satqchar);
return {rad, ap2 + M};
)
else return false;
);
);
if o#ReturnPChars then return {pc};
if o#ReturnPrimes then return {rad};
true)
binomialIsPrime = method (Options => {CellVariables=>null})
binomialIsPrime Ideal := Ideal => o -> I -> (
-- A binomial ideal is prime if it is cellular and all its
-- monomial generators have power one and the associated partial
-- character is saturated. (Corollary 2.6 in ES96 )
-- Input: A Binomial Ideal and the cell variables if the ideal is cellular.
-- Output: true if the ideal is a prime ideal, false otherwise
-- test for cellularity:
-- if cellular variables are given then we believe that I is cellular
cv := null;
if o#CellVariables === null then (
cv = isCellular (I, ReturnCellVars=>true);
if cv === false then return false)
else cv = o#CellVariables;
-- Check if non-cellular variables are all contained:
R := ring I;
ncv := toList(set (gens R) - cv); -- nilpotent variables x \notin E
if not isSubset(promote(ideal ncv, R), I) then return false;
-- Test if the partial character saturated:
pc := partialCharacter (I, CellVariables=>cv);
if image Lsat pc#"L" != image pc#"L" then return false;
true)
binomialMinimalPrimes = method (Options => {Verbose=>false})
binomialMinimalPrimes Ideal := Ideal => o -> I -> (
-- Algorithm from "Decompositions of Binomial Ideals" (AISM),
-- based on computing a cellular decomposition of the radical of I.
if not isBinomial I then error "Input was not binomial";
R := ring I;
if I == ideal (1_R) then return {};
ge := gens R;
n := numgens R;
Answer := {};
L := null;
IntersectAnswer := ideal(1_R);
ToDo := {{{1_R},toList(0..n-1),I}};
compo := 0;
next := () -> (
if #ToDo === 0 then false
else (
L = ToDo#0;
ToDo = drop(ToDo,1);
if gens IntersectAnswer % L#2 == 0 then (
if o#Verbose then (
<< "redundant component" << endl;
);
)
else if #(L#1) === 0 then ( -- #(L#1) counts 'remaining variables to check'
compo = compo + 1;
newone := trim L#2;
if o#Verbose then (
<< "components found so far: " << compo << endl;);
Answer = append(Answer,{newone, delete(1_R,L#0)});
IntersectAnswer = intersect(IntersectAnswer,newone);
if IntersectAnswer == I then ToDo = {})
else ( -- So, there are remaining variables #(L#1) is not zero
i := L#1#0; -- i is a variable under consideration
newL1 := drop(L#1,1); -- gets removed from the list
result := axisSaturate(L#2, i); -- compute saturation wrt i
J := result#1; -- Ideal
k := result#0; -- Saturation Exponent
if k > 0 then ( -- If a division was needed:
J2 := L#2 + ideal(R_i);
J2 = saturate(J2, product L#0);
if J2 != ideal(1_R) then
ToDo = prepend({L#0, newL1, J2},ToDo));
if J != ideal(1_R) then (
ToDo = prepend({L#0|{R_i}, newL1, J},ToDo);
);
);
true));
while next() do ();
-- print Answer;
if o#Verbose then print "Decomposition done.";
ncv := {};
i := 0;
j := #Answer;
ME :=ideal; -* pc = {}; *- si := ideal; mp := {}; F := null; S:= null;
for a in Answer do (
i = i+1;
if o#Verbose then (
print ("Finding minimal primes of cellular component: " | toString i | " of " | toString j));
ME := ideal(toList(set (gens R) - a#1));
pc := partialCharacter (a#0, CellVariables=>a#1);
-- Check whether we have a radical ideal already:
if image Lsat pc#"L" == image pc#"L" then (
si = {a#0};
)
else (
si = satIdeals pc
);
F = coefficientRing ring si#0;
if F === QQ then S = R else S = F(monoid [ge]);
ME = sub (ME, S);
si = for i in si list sub(i,S);
si = si / (i -> trim (i + ME)); -- Adding monomials;
mp = mp | si;
);
extractInclusionMinimalIdeals (joinCyclotomic mp, Verbose=>o#Verbose))
isBetween = (a,b,c) -> (
-- Checks if a lies between b and c in divisibility order.
-- b and c need not be comparable, or sorted.
if (b%c == 0) then (
-- c divides b
if ( (a%c==0) and (b%a==0)) then return true;
)
else if (c%b == 0) then (
if ( (a%b==0) and (c%a==0)) then return true;
);
-- b and c are not comparable
false)
cellularBinomialAssociatedPrimes = method (Options => {CellVariables => null, Verbose=>false})
cellularBinomialAssociatedPrimes Ideal := Ideal => o -> I -> (
-- Computes the associated primes of cellular binomial ideal
-- It returns them in a polynomial ring with the same variables as ring I,
-- but potentially extended coefficient ring.
R := ring I;
cv := cellVars(I, CellVariables=>o#CellVariables);
primes := {}; -- This will hold the list of primes
ncv := toList(set (gens R) - cv); -- nilpotent variables x \notin E
stdm := nonCellstdm(I,CellVariables=>cv); -- List of std monomials in ncv
-- mapping to R:
f := map (R, ring stdm);
ml := flatten entries f stdm;
if o#Verbose then(
if #ml == 1 then << "1 monomial to consider for this cellular component " << endl
else << #ml << " monomials to consider for this cellular component" << endl;
);
-- For a given partialCharacter, this hash table saves a witness monomial,
-- and the corresponding lattice ideal. The ideal is saved to potentially
-- skip the ideal saturation further down.
seenpc := new MutableHashTable;
-- A dummy ideal and partial Characters:
Im := ideal;
pC := {}; sat := {};
-- save 1 as the bottom witness
seenpc#(partialCharacter (I, CellVariables=>cv))=({1_R}, I);
todolist := delete(1_R, ml);
-- While we have monomials to check
while #todolist > 0 do (
-- print ("On todolist: " | toString (#todolist));
-- sample a random monomial:
i := random(0, #todolist-1);
m := todolist#i;
Im = I:m;
pC = partialCharacter(Im, CellVariables=>cv);
if seenpc#?pC then (
-- We have seen this lattice: Time to prune the todolist
-- print ("Todolist items before: " | toString (#todolist));
for n in seenpc#pC#0 do (
todolist = select (todolist , (mm -> not isBetween (mm, n, m))
));
-- print ("Todolist items after: " | toString (#todolist));
-- add m to the pruning list
todolist = delete(m, todolist);
addmon := true;
for mmm in seenpc#pC#0 do if m%mmm==0 then (addmon = false; break);
if addmon then seenpc#pC = (seenpc#pC#0 | {m}, seenpc#pC#1);
-- print (#(seenpc#pC));
)
else (
-- a new associated lattice
seenpc#pC = ({m} , Im);
todolist = delete(m, todolist);
)
);
-- print ("Todolist items: " | toString (#todolist));
for pc in keys seenpc do (
-- If the lattice of pc is saturated, then we can skip the saturation (which would compute
-- a Markov basis (slow))
if image pc#"L" == image Lsat pc#"L" then (
primes = primes | {cellularBinomialRadical (seenpc#pc#1, CellVariables=>pc#"J")}
)
else (
-- need to actually saturate and potentially extend coefficients
sat = satIdeals pc;
-- If the coefficientRing is QQ, we map back to R
F := coefficientRing ring sat#0;
if F === QQ then (
f = map (R, ring sat#0);
sat = sat / f ;
)
else (
-- otherwise to the extended ring
-- this is necessary since satIdeals does not know about the nilpotent variables
S := F monoid R;
f = map (S, ring sat#0);
sat = sat / f;
);
primes = primes | sat;
)
);
-- We need to remove duplicate elements and join all associated primes in an appropriate new ring that contains all
-- their coefficients.
primes = joinCyclotomic primes;
M := sub (ideal ncv, ring primes#0);
primes = primes / (I -> I + M);
-- Computation of mingens is necessary as unique or toList + set combi won't do without
unique (ideal \ mingens \ primes))
binomialAssociatedPrimes = I -> (
if not isBinomial I then error "Input not binomial";
cv := isCellular (I,ReturnCellVars=>true);
if cv === false then (
print "Not yet implemented";
print "I will compute a primary decomposition and take radicals!";
bpd := BPD I;
print "Primary Decomposition found, taking radicals now:";
return binomialRadical \ bpd;
)
else cellularBinomialAssociatedPrimes (I, CellVariables=>cv))
cellularAssociatedLattices = method (Options => {CellVariables => null})
cellularAssociatedLattices Ideal := Ideal => o -> I -> (
-- Computes the associated lattices of a cellular binomial ideal
-- WARNING: The definition might differ from the final definition in [KM11]
R := ring I;
cv := cellVars(I, CellVariables=>o#CellVariables);
lats := {}; -- This will hold the list of lattices
coeffs := {}; -- This will hold the values of the characters
ncv := toList(set (gens R) - cv); -- nilpotent variables x \notin E
-- print "Noncellvars"; print ncv;
ml := flatten entries nonCellstdm(I,CellVariables=>cv); -- List of std monomials in ncv
-- Coercing to R:
f := map (R, ring ml#0);
ml = ml/f;
-- A dummy ideal and partial Characters:
Im := ideal;
pc := {};
redundant := true;
-- For each monomial, check if I:m shows an unseen lattice.
for m in ml do (
-- print m;
Im = I:m;
-- We already know the cell variables in the following computation
pc = partialCharacter(Im, CellVariables=>cv);
if #lats == 0 then (
lats = {pc#"L"};
coeffs = {pc#"c"};
continue;
)
else (
redundant = false;
scan (lats, (l -> (if image l == image pc#"L" then redundant = true)))
);
if redundant then continue
else (
lats = lats | {pc#"L"};
coeffs = coeffs | {pc#"c"};
);
); -- for m in ml
{cv, lats, coeffs}) -- CellularAssociatedLattices
cellularEmbeddedLatticeWitnesses = method (Options => {CellVariables => null})
cellularEmbeddedLatticeWitnesses Ideal := Ideal => o -> I -> (
-- Given a cellular binomial ideal whose radical is prime this
-- function will produce witness monomials for embedded
-- lattices. Throw in these monomials to get rid of
-- additional associated primes, i.e. compute Hull.
R := ring I;
cv := cellVars(I, CellVariables=>o#CellVariables);
witnesses := {};
lats := {}; -- This will hold the list of lattices
ncv := toList(set (gens R) - cv); -- nilpotent variables x \notin E
ml := flatten entries nonCellstdm(I,CellVariables=>cv); -- List of std monomials in ncv
-- Coercing to R:
f := map (R, ring ml#0);
ml = ml / f;
-- A dummy ideal and partial Characters:
Im := ideal;
pc := {};
redundant := true;
bottomlattice := partialCharacter (I, CellVariables=>cv);
-- For each monomial, check if I:m has a different lattice:
todolist := ml;
-- print ("Number of monomials to consider : " | toString (#todolist));
while (#todolist > 0) do (
i := random(0, #todolist-1); -- a random monomial
m := todolist#i;
-- Now two possibilities:
-- if m witnesses an embedded lattice: Remove everything that is above m;
Im = I:m;
pc = partialCharacter(Im, CellVariables=>cv);
if (image pc#"L" == image bottomlattice#"L") then (
-- m is the same like 1. Remove everything between them
todolist = select (todolist, (mm) -> not isBetween(mm, 1,m))
)
else (
-- found a witness
witnesses = witnesses | {m};
todolist = for t in todolist list if t%m==0 then continue else t
);
-- print ("Number of monomials to consider : " | toString (#todolist));
); -- while
witnesses) -- cellularEmbeddedLatticeWitnesses
minimalPrimaryComponent = method (Options => {CellVariables => null})
minimalPrimaryComponent Ideal := Ideal => o -> I -> (
-- Input a cellular binomial ideal whose radical is prime.
-- Output, generators for Hull(I)
cv := cellVars(I, CellVariables=>o#CellVariables);
if cv === false then error "Input to minimalPrimaryComponent was not cellular!";
I + ideal (cellularEmbeddedLatticeWitnesses (I, CellVariables=>cv)))
binomialFrobeniusPower = (b,e) -> (
-- returns the e-th Frobenius power of the binomial b
-- i.e. (b_1)^e - (b_2)^e
((terms b)#0)^e - (- (terms b)#1)^e)
BCD = I -> binomialCellularDecomposition I
BPD = I -> binomialPrimaryDecomposition I
BUD = I -> binomialUnmixedDecomposition I
binomialUnmixedDecomposition = method (Options => {Verbose=>false})
binomialUnmixedDecomposition Ideal := Ideal => o -> I -> (
if not isBinomial I then error "Input was not binomial !";
vbopt := o#Verbose;
if vbopt then print "Running cellular decomposition:";
cd := binomialCellularDecomposition (I, ReturnCellVars => true, Verbose=>vbopt);
counter := 1;
cdc := #cd;
bud := {};
if vbopt then print "Decomposing cellular components:";
scan (cd , ( (i) -> (
if vbopt then (
print ("Decomposing cellular component: " | toString counter | " of " | toString cdc);
counter = counter +1;);
bud = bud | cellularBinomialUnmixedDecomposition (i#0, CellVariables => i#1,Verbose=>vbopt);
if vbopt then (
print "done";
);
) -- right hand side of lambda term
) -- lambda term
); -- scan
if vbopt then print "Removing some redundant components...";
-- In principle this does not make the intersection irredundant,
-- but we don't want to run an exponential algorithm at this
-- point.
extractInclusionMinimalIdeals (bud, Verbose=>vbopt))
binomialPrimaryDecomposition = method (Options => {Verbose=>false})
binomialPrimaryDecomposition Ideal := Ideal => o -> I -> (
-- The full binomial primary decomposition
-- starting from a not necessarily cellular binomial ideal
if not isBinomial I then error "Input was not binomial !";
if I == ideal (1_(ring I)) then return {};
vbopt := o#Verbose;
if vbopt then print "Running cellular decomposition:";
cd := binomialCellularDecomposition (I, ReturnCellVars => true, Verbose=>vbopt);
counter := 1;
cdc := #cd;
bpd := {};
if vbopt then print "Decomposing cellular components:";
scan (cd , ( (i) -> (
if vbopt then (
print ("Decomposing cellular component: " | toString counter | " of " | toString cdc);
counter = counter +1;);
bpd = bpd | cellularBinomialPrimaryDecomposition (i#0, CellVariables => i#1,Verbose=>vbopt);
if vbopt then (
print "done";
);
) -- right hand side of lambda term
) -- lambda term
); -- scan
bpd = joinCyclotomic bpd;
if vbopt then print "Removing some redundant components...";
-- In principle this does not make the intersection irredundant,
-- but we don't want to run an exponential algorithm at this
-- point.
extractInclusionMinimalIdeals (bpd, Verbose=>vbopt))
cellularBinomialUnmixedDecomposition = method (Options => {CellVariables => null, Verbose=>false})
cellularBinomialUnmixedDecomposition Ideal := Ideal => o -> I -> (
-- computes the unmixed decomposition of a cellular ideal
-- as defined in Ojeda/Sanchez
vbopt := o#Verbose;
cv := cellVars(I, CellVariables=>o#CellVariables);
ncv := toList (set gens ring I - cv);
-- Get the associated lattices (or better characters)
aldata := cellularAssociatedLattices (I, CellVariables=>cv);
-- We generate a list of pairs representing characters for the lattices:
al := for i in 0..#(aldata#1)-1 list (aldata#1#i, aldata#2#i);
-- if there is only one lattice, then I was unmixed
if #al == 1 then return {I};
R := ring I;
CoeffR := coefficientRing R;
-- Now find a chain among the associated lattices
-- but finite index containment is not sufficient.
-- We only need to check pairwise containments.
pair := null;
for l1 in al do (
-- break out if the inner loop assigned a pair:
if pair === null then break;
for l2 in delete(l1,al) do (
if (isSubset (image l1#0, image l2#0)) and (rank image l1#0 < rank image l2#0) then (
-- found a comparable pair and thus embedded primes:
pair = (l1,l2);
-- break the inner loop.
break)));
-- If no pair was found, then I is unmixed an we are done
if pair === null then return {I};
l1 := pair#0;
l2 := pair#1;
-- Identify a lattice vector in l2, but not l1
L2cols := entries transpose l2#0;
i := 0; -- Counter to identify a generator
for col in L2cols do (
imc := image transpose matrix {col};
if rank intersect {imc, image l1#0} < 1 then (
-- found a vector
break;
);
-- Else keep going.
i = i+1;
);
-- now i contains a suitable index
b := sub(makeBinomial(CoeffR(monoid [cv]), L2cols#i, l2#1#i), R);
-- We can't follow Section 4.1 of Ojeda/Sanchez because there is no
-- effective criterion to decide that mb^[e] will never lie in I, no
-- matter how divisible e is.
-- We take the approach of computing e_b by actually coloning.
-- Stop condition: Find a binomial b^[e] such that I:b^[e] = I:b^[e]^\infty
-- and this ideal is binomial.
e :=1;
Itest := I:b;
while not ((isBinomial Itest) and ( Itest: binomialFrobeniusPower(b,e) == Itest)) do(
e = e + 1;
Itest = I:binomialFrobeniusPower (b,e);
);
-- Now we have the right quotient and the right Frobenius power.
-- So we start the recursion:
flatten {
cellularBinomialUnmixedDecomposition (Itest, CellVariables=>cv),
cellularBinomialUnmixedDecomposition (I + ideal binomialFrobeniusPower (b,e), CellVariables=>cv)
})
cellularBinomialPrimaryDecomposition = method (Options => {CellVariables => null, Verbose=>false})
cellularBinomialPrimaryDecomposition Ideal := Ideal => o -> I -> (
-- computes the binomial primary decomposition of a cellular ideal
-- I needs to be cellular. Cell variables can be given to speed up
-- Implements algorithm 9.7 in ES96, respectively A5 in OS97
vbopt := o#Verbose;
cv := cellVars(I, CellVariables=>o#CellVariables);
ncv := toList (set gens ring I - cv);
ap := cellularBinomialAssociatedPrimes (I, CellVariables => cv,Verbose=>vbopt);
-- If cv coincides with gens R, then the associated primes are their own minimal primary
-- components (since in characteristic zero lattice ideals are radical):
if #ncv == 0 then return ap
else (
-- Remove monomials from associated primes to get the lattice ideals
f := map (ring ap#0, ring ncv#0);
proj := (II) -> eliminate (f \ ncv,II);
ap = ap / proj
);
R := ring ap#0; -- All associated primes live in a common ring
J := sub (I,R); -- get I over there to compute sums
-- Here, contrary to what is stated in ES'96, we can not assume that J+ap#i is cellular.
-- However, since Hull only wants the minimal primary component we can cellularize.
-- Saturate product cv or saturate variable by variable?
-- It seems to depend on the example which one is faster :(
-- cvsaturate := (p) -> (
-- todo := cv;
-- resu := p;
-- while #todo > 0 do (
-- resu = saturate (resu, sub(todo#0, R));
-- todo = drop(todo,1)
-- );
-- resu);
cvsaturate := (p) -> saturate (p, sub (product cv, R));
ap / ( (P) -> minimalPrimaryComponent ( cvsaturate (P + J), CellVariables=>cv)))
extractInclusionMinimalIdeals = method (Options => {Verbose=>false})
extractInclusionMinimalIdeals List := List => o -> l -> (
-- Computes the inclusion minimal elements in a list of ideals
-- (like the minimal primes) Algorithm: For each ideal in the
-- list, remove all ideals above it. Note: This does not make an
-- arbitrary intersection of ideals irredundant. For example it
-- would not reduce <x-y> \cap <x,y^2> \cap <x^2,y> where each of
-- the last two components is redundant given the other two.
if #l == 0 then return {};
-- List to store the result, the flag marks elements that have been treated.
result := for i in l list (i,false);
-- While we have previously unconsidered elements:
unconsidered := #l;
while unconsidered > 0 do (
if o#Verbose then << unconsidered << " Ideals to check" << endl;
p := (select(1, result, p -> p#1==false))#0 ; -- select returns list
result = for f in result list (
-- Check if p is contained in f which makes f redundant
if isSubset (p#0,f#0) then continue
else f);
-- insert p again (flagged true) since it was removed before.
result = append (result,(p#0,true));
unconsidered = #(select (result, pp -> pp#1==false)));
if o#Verbose then << #l-#result << " redundant ideals removed. Computing mingens of result.";
for i in result list ideal mingens i#0)
-- The remaining code implements the solver for zero-dimensional unital
-- binomial ideals . We solve unital binomial equations using
-- modulo 1 arithmetic. The basic task is to solve a^n = 1^{k/m},
-- whose solutions are the equivalence classes of: k/nm, 1/n +
-- k/m, 2/n + k/nm,... , (n-1)/n + k/nm
-- The following function implements this:
Rooter = (n,q) -> (
-- INPUT:
-- n an integer
-- q a rational number between zero and one representing k/m
-- OUTPUT:
-- The list of root-exponents:
-- k/nm, 1/n + k/m, 2/n + k/nm,... , (n-1)/n + k/nm
k := 0/1;
m := 1;
if q != 0 then (
m = denominator sub(q,QQ);
k = numerator sub(q,QQ);
);
val := 0;
roots := for i in 0..n-1 list (
val = i/n + k/(n*m);
if val > 1 then val = val - floor val;
val
);
roots)
SolveMore = (binom,psol) -> (
-- This function extends a partial solution further
-- INPUT: A partial solution and a binomial which after plugging
-- in the partial solutions is univariate
-- OUTPUT: An extended partial solution
-- Since Lex is a global order the true monomial comes first.
mon := (terms binom)#0; -- The monomial in the new variable.
-- we need the index of the variable that we will solve now
-- <incomprehensable hack>
ind := index (flatten entries gens radical monomialIdeal mon)#0;
var := (flatten entries gens radical monomialIdeal mon)#0;
-- </incomprehensable hack>
rhs := (terms binom)#1; -- The right hand side which is a power
-- of a root of unity
erhs := flatten exponents rhs;
newsols := {}; -- A list accumulating extended solutions
-- If the binomial contains a common variable in both of its
-- monomials then zero is a solution for this variable We are
-- looking at erhs at position ind to determine this case
roots := {};
rhsvarpow := erhs#ind;
if rhsvarpow > 0 then (
-- zero is a solution for variable ind
-- We fork of a new solution with entry "n" and divide by
-- the offending variable
roots = {"n"};
mon = lift(mon / var^rhsvarpow, ring mon);
rhs = lift(rhs / var^rhsvarpow, ring rhs);
erhs = flatten exponents rhs;
);
emon := flatten exponents mon;
-- one element list containing the exponent
n := (toList (set emon - set {0}))#0;
-- This needs to be done for each entry in psol:
for onesol in psol do (
roots = {};
-- now determine the right hand side exponent from the
-- partial solutions.
zeroflag := false;
q := for v in 0..#erhs-1 list (
-- First case: variable does not appear -> exponent 0
if (erhs#v == 0) then 0
else if onesol#v === "n" then (
-- if erhs > 0 and onesol has a "n", then the rhs is zero!
zeroflag = true;
break
)
-- otherwise exponent times old exponent
else erhs#v * onesol#v
);
if zeroflag and #roots == 0 then (
roots = roots | {"n"};
)
else (
if not zeroflag then q = sum q;
);
-- now everything is set for the Rooter:
roots = roots | Rooter (n,q);
extensions := for r in roots list (
for i in 0..#onesol-1 list if i==ind then r else onesol#i
);
newsols = newsols | extensions;
);
newsols)
binomialSolve = I -> (
-- solver for zero-dim'l unital difference Binomial
-- Ideals INPUT: I, the ideal
-- OUTPUT: The list of solutions in QQ(some root of unity)
-- Note: Solutions will be returned with multiplicities.
if not isUnital I then (
error "Sorry, only implemented for unital binomial ideals";
);
R := ring I;
cd := binomialCellularDecomposition (I,ReturnCellVars=>true,Verbose=>false);
exponentsols := flatten for c in cd list cellularBinomialExponentSolve (c#0,c#1);
-- determine the least common denominator, ignoring nulls
denoms := for i in flatten exponentsols list if i =!= null then denominator i else continue;
-- If there are no denominators, the ideal was monomial
-- and we return only (0,0,...,0) many times:
if denoms === {} then (
zerosol:={for i in gens R list 0_R};
return for i in 1..#exponentsols list zerosol;
);
lcd := lcm denoms;
-- This is our standard. Coefficients are rational?
C := QQ;
if lcd > 2 then (
-- print "Adjoining roots of unity is needed";
C = cyclotomicField lcd;
);
expo := q -> (
-- This auxiliary function maps a quotient from QQ to its
-- element in S
if q === null then return 0_C;
if q == 0 or q == 1 then return 1_C;
if q == (1/2) then return -1_C;
k := numerator sub(q,QQ);
m := denominator sub(q,QQ);
if m != lcd then k = k * sub(lcd / m,ZZ);
return sub((C_0)^k,C);
);
sols := flatten exponentsols;
sols = expo \ sols;
pack (#(gens ring I),sols))
cellularBinomialExponentSolve = (I,cv) -> (
-- Solves a zero dimensional cellular unital binomial ideal
-- by constructing the appropriate cyclotomic field
-- Input: a unital zero-dim'l binomial ideal and its list of
-- cell variables
-- Output: A list of solutions of the ideal
R := ring I;
varlist := flatten entries vars R;
RLex := newRing(R,MonomialOrder => Lex);
if not dim I == 0 then error "Ideal to solve is not zero dimensional";
-- First we need a Lex Groebner Basis of our ideal.
groeb := flatten entries gens gb sub(I,RLex);
-- The data structure for a partial solution is as follows: It is
-- a list of n-tuples where n is the number of variables. These
-- tuples contain either rational numbers at already solved
-- positions or the symbol '*' indicating that this position is
-- unsolved and the special symbol null indicating that the
-- solution(not exponent) is zero
-- For each variable we check if it is a nilpotent variable, i.e.
-- each solution of the ideal has coordinate zero there
-- We also check how often we have to duplicate each solution in the
-- end to account for monomials of higher order
dupnum := 1;
psols := {};
for v in varlist do(
if isSubset (set {v},set cv) then(
-- Put side effects here:
-- Filling the list
psols = psols | {"*"};
)
else (
-- Put side effects here:
resu := axisSaturate(I, index v);
dupnum = dupnum * resu#0;
-- Filling the list
psols = psols | {null};
);
);
-- If there are no cell variables: We are done
if delete(null,psols) === {} then return for i in 0..(degree I)-1 list psols;
-- The old solution for reference:
-- print "The following should coincide if no double sols";
-- print for v in varlist list if saturate(I,v) != I then null else "*";
-- print psols;
-- make it a proper list of solutions
psols = {psols};
-- We solve on a log-scale for the exponents
while #groeb > 0 do (
-- check if the current term is a binomial
if #(exponents groeb#0) > 1 then (
psols = SolveMore(groeb#0, psols);
);
groeb = drop(groeb, 1);
);
-- Now we duplicate:
if dupnum > 1 then psols = for i in 1..dupnum list psols;
flatten psols)
-- End of source code ---
beginDocumentation()
document {
Key => Binomials,
Headline => "a package for binomial ideals",
EM "Binomials", " is a package for binomial ideals with a particular
focus on intersection decompositions and associated primes. For
instance, if the input is a unital binomial ideal (that is generated
by monomials and differences of monomials) then the function",
TO binomialPrimaryDecomposition, "computes a primary decomposition into
binomial ideals. To this end a cyclotomic field extension of the
coefficient field may be necessary which is automatically constructed
using the package ",TO Cyclotomic, ".", EM " Binomials", " also
implements the data type ", TO partialCharacter, " (see [ES96]) and
several convenience functions to transform binomials into exponent
vectors and vice versa. Those may be useful for manual inspection of
binomial ideals.", "There is no special datatype for binomial ideals
implemented, one just uses ", TO ideal, "s.",
BR{},BR{},
BOLD "Literature \n",
UL {
LI {"[ES96] ", EM "Binomial ideals ", "(D. Eisenbud, B.Sturmfels, 1996).\n"},
LI {"[DMM10] ", EM "Combinatorics of binomial primary decomposition ", "(A. Dickenstein, L. Matusevich, E.Miller, 2010)\n"},
LI {"[OS00] ", EM "Cellular Binomial Ideals. Primary Decomposition of Binomial Ideals ", "(I. Ojeda, R. Piedra-Sanchez, 2000)\n"},
LI {"[Alt00] ", EM "The chain property for the associated primes of A-graded ideals ", "(K. Altmann, 2000)\n"},
LI {"[KM11] ", EM "Decompositions of commutative monoid congruences and binomial ideals ", "(T. Kahle, E. Miller, 2011)"}}}
document {
Key => {binomialPrimaryDecomposition,
(binomialPrimaryDecomposition, Ideal)},
Headline => "Binomial Primary Decomposition",
Usage => "binomialPrimaryDecomposition I",
Inputs => {
"I" => { "a binomial ideal"} },
Outputs => {
{"a list of binomial primary components of I"} },
"This routine returns a primary decomposition of I into binomial ideals.",
EXAMPLE {
"R = QQ[x,y,z]",
"I = ideal (x*y-z, x*z-y^2)",
"bpd = binomialPrimaryDecomposition I",
"intersect bpd == I"
},
"A synonym for this function is ", TO BPD, ".",
Caveat => {"Currently it can not be guaranteed that the decomposition is irredundant, although serious attempts are made to reduce redundancy."},
SeeAlso => BPD}
document {
Key => {binomialUnmixedDecomposition,
(binomialUnmixedDecomposition, Ideal)},
Headline => "Binomial Unmixed Decomposition",
Usage => "binomialUnmixedDecomposition I",
Inputs => {
"I" => { "a binomial ideal"} },
Outputs => {
{"a list of unmixed components of I"} },
"This routine returns an unmixed decomposition of a binomial ideal into binomial ideals.
The implemented algorithm is a variant of Algorithm 4 in [OS00].",
EXAMPLE {
"R = QQ[x,y,z]",
"I = ideal (x^2, x*y, y^2, x*(z^3-1), y*(z^2-1))",
"bud = binomialUnmixedDecomposition I",
"intersect bud == I"
},
"A synonym for this function is ", TO BUD, ".",
Caveat=> "Apart from unmixedness, properties of the output decomposition are
defined only by the course of the algorithm, in particular it
is not mesoprimary decomposition of [KM11].",
SeeAlso => BUD}
document {
Key => BPD,
Headline => "Binomial Primary Decomposition",
"BPD is a synonym for ", TO binomialPrimaryDecomposition, "."}
document {
Key => BUD,
Headline => "Binomial Unmixed Decomposition",
"BUD is a synonym for ", TO binomialUnmixedDecomposition, "."}
document {
Key => {binomialCellularDecomposition,
(binomialCellularDecomposition,Ideal),
[binomialCellularDecomposition,ReturnCellVars]},
Headline => "Binomial Cellular Decomposition",
Usage => "binomialCellularDecomposition I",
Inputs => {
"I" => { "a binomial ideal"} },
Outputs => {
{"a list of cellular ideals whose intersection is I or
a list of pairs of these ideals and their cellular variables
if the option ReturnCellVars => true is used"} },
"A binomial ideal I is called cellular if modulo I every variable in
the polynomial ring is either a non-zerodivisor or nilpotent.
This routine returns a minimal cellular decomposition of a
binomial ideal.",
EXAMPLE {
"R = QQ[x,y,z]",
"I = ideal (x*y-z, x*z-y^2)",
"bcd = binomialCellularDecomposition I",
"intersect bcd == I",
"binomialCellularDecomposition (I, ReturnCellVars=>true, Verbose=>false)"
},
"A synonym for this function is ", TO BCD, ".",
"If the option ", TO Verbose, " is set (default), then output about the
number of components found so far will be generated.",
SeeAlso => BCD}
document {
Key => BCD,
Headline => "Binomial Cellular Decomposition",
"BCD is a synonym for ", TO binomialCellularDecomposition ,"."}
document {
Key => {binomialRadical},
Headline => "Radical of a binomial ideal",
Usage => "binomialRadical I",
Inputs => {
"I" => { "a binomial ideal"} },
Outputs => {
{"the radical of I"}},
"If the input is a cellular binomial ideal then a very fast algorithm is used.
If one knows this and also the cellular variables then ",
TO cellularBinomialRadical, " should be used.",
EXAMPLE {
"R = QQ[x,y]",
"I = ideal (y^2, x*y-y, x^2-1)",
"binomialRadical I"
},
SeeAlso => cellularBinomialRadical}
document {
Key => {cellularBinomialRadical,
(cellularBinomialRadical,Ideal)},
Headline => "Radical of a cellular binomial ideal",
Usage => "cellularBinomialRadical I",
Inputs => {
"I" => {"a cellular binomial ideal"} },
Outputs => {
{"the radical of I"} },
"The radical of a cellular binomial ideal can be determined very quickly. If the
cellular variables are known they can be given as a list via the option ", TO CellVariables, ".",
EXAMPLE {
"R = QQ[x,y,z]",
"I = ideal(y^3,y^2*z^2-x^3,x*y^2*z,x^3*z-x*y)",
"cv = isCellular (I,ReturnCellVars=>true)",
"cellularBinomialRadical (I,CellVariables=>cv)"
},
SeeAlso => binomialRadical}
document {
Key => {binomialMinimalPrimes,
(binomialMinimalPrimes,Ideal)},
Headline => "minimal primes of a binomial Ideal",
Usage => "binomialMinimalPrimes I",
Inputs => {
"I" => {"a binomial ideal"}},
Outputs => {
{"the list of minimal primes of I"} },
"The binomial minimal primes of a binomial ideal over QQ exist only in extension fields.",
EXAMPLE {
"R = QQ[x,y,z]",
"I = ideal(y^3,y^2*z^2-x^3,x*y^2*z,x^3*z-x*y)",
"binomialMinimalPrimes I",
},
"If the option ", TO Verbose, " is set (default), then output about the
number of components found so far will be generated.",
SeeAlso => binomialRadical}
document {
Key => {binomialAssociatedPrimes},
Headline => "Associated primes of a binomial ideal",
Usage => "binomialAssociatedPrimes I",
Inputs => {
"I" => {"a binomial ideal"} },
Outputs => {
{"the list of associated primes of I"} },
"First a cellular decomposition is run, then the associated primes of each cellular component are determined.",
EXAMPLE {
"R = QQ[x,y]",
"I = ideal(x^2-y,y^2-x)",
"binomialAssociatedPrimes I",
},
SeeAlso => {binomialMinimalPrimes,cellularBinomialAssociatedPrimes}}
document {
Key => {binomialIsPrime,
(binomialIsPrime,Ideal)},
Headline => "test for primeness of a binomial ideal",
Usage => "binomialIsPrime I",
Inputs => {
"I" => {"a binomial ideal"} },
Outputs => {
{"true or false, depending on whether I is a binomial prime ideal"} },
"A binomial ideal is prime only if it is cellular. If the cellular variables ",
"are known they can be given via the ", TO CellVariables, " option.",
EXAMPLE {
"R = QQ[x,y]",
"I = ideal(x^2-y,y^2-x)",
"binomialIsPrime I",
},
SeeAlso => {cellularBinomialIsPrimary, CellVariables}}
document {
Key => binomialIsPrimary,
Headline => "test for primary binomial ideals",
Usage => "binomialIsPrime I",
Inputs => {
"I" => {"a binomial ideal"}},
Outputs => {
{"true or false, depending on whether I is a primary binomial ideal"} },
"A binomial ideal is prime only if it is cellular. If the cellular variables ",
"are known, the function ", TO cellularBinomialIsPrimary, " should be used.",
EXAMPLE {
"R = QQ[x,y,z]",
"I = ideal(x-y,z^3)",
"binomialIsPrimary I",
},
SeeAlso => {cellularBinomialIsPrimary, CellVariables}}
document {
Key => {cellularBinomialIsPrimary,
(cellularBinomialIsPrimary,Ideal)},
Headline => "test for primaryness of a binomial ideal",
Usage => "cellularBinomialIsPrimary I",
Inputs => {
"I" => { "a binomial ideal"} },
Outputs => {
{"true or false, depending on whether I is a binomial primary ideal"} },
"A binomial ideal is primary only if it is cellular. If the cellular variables ",
"are known they can be given via the ", TO CellVariables, " option. ", "If the ideal is not primary, ",
"either 'false' or two distinct associated primes can be returned. The behaviour can be changed using the options ",
TO ReturnPrimes, " and ", TO ReturnPChars, ".",
EXAMPLE {
"R = QQ[x,y]",
"I = ideal(x^2-1)",
"cellularBinomialIsPrimary (I,ReturnPrimes=>true)",
},
SeeAlso => {cellularBinomialIsPrimary, CellVariables, ReturnPrimes, ReturnPChars}}
document {
Key => {binomialSolve},
Headline => "solving zero-dimensional binomial Ideals",
Usage => "binomialSolve I",
Inputs => {
"I" => {"a unital binomial ideal"}},
Outputs => {
{"the list of points in the zero locus of I in QQ[ww]"} },
"The solutions of a set of unital binomial equations exist in a cyclotomic field. This function
will compute the variety of a unital binomial ideal and construct an appropriate cyclotomic
field containing the entire variety (as a subset of the algebraic closure of QQ).",
EXAMPLE {
"R = QQ[x,y,z,w]",
"I = ideal (x-y,y-z,z*w-1*w,w^2-x)",
"dim I",
"binomialSolve I",
"J = ideal (x^3-1,y-x,z-1,w-1)",
"binomialSolve J"
},
Caveat => {"The current implementation can only handle unital binomial ideals."},
SeeAlso => Cyclotomic}
document {
Key => {isCellular,
(isCellular,Ideal)},
Headline => "testing for cellular binomial ideals",
Usage => "isCellular I",
Inputs => {
"I" => {"a binomial ideal"}},
Outputs => {
{"true, or the list of cell variables if I is cellular, false otherwise."} },
"This function is the standard way to compute the cellular variables.",
EXAMPLE {
"R = QQ[x,y,z]",
"I = ideal (x-z^2,y^4)",
"isCellular I",
"isCellular (I, ReturnCellVars=>true)"
},
SeeAlso => {cellularBinomialAssociatedPrimes,binomialCellularDecomposition}}
document {
Key => {isBinomial,
isUnital},
Headline => "testing for unital binomial ideals",
Usage => "isBinomial I; isUnital I",
Inputs => {
"I" => {"an ideal"}},
Outputs => {
{"true if I is binomial, or unital respectively."} },
EXAMPLE {
"R = QQ[x,y,z]",
"isBinomial ideal(x^2)",
"isBinomial ideal(x-y+z,z)",
"isBinomial ideal(x^3-x)",
"isUnital ideal (x-z,z-y)",
"isUnital ideal (x+z)",
"isUnital ideal (x^2)"
},
SeeAlso => {isCellular}}
-- input related functions
document {
Key => {makeBinomial},
Headline => "make a binomial from an exponent vector and a coefficient",
Usage => "makeBinomial (R,m,c)",
Inputs => {
"R" => {"a ring"},
"m" => {"a vector of exponents, one for each generator of R"},
"c" => {"an element of the coefficient ring of R"}},
Outputs => {
{"The binomial defined by the input data, as an element of R."} },
EXAMPLE {
"R = QQ[x,y,z]",
"makeBinomial (R, [1,-1,-2], 10)"}}
document {
Key => {latticeBasisIdeal},
Headline => "construct the ideal whose generators correspond to generators of an integer lattice",
Usage => "latticeBasisIdeal (R,L)",
Inputs => {
"R" => {"a ring"},
"L" => {"an integer matrix whose columns span the lattice."}},
Outputs => {
{"The unital lattice basis ideal in R, defined by L"} },
"This function is only a very simple wrapper around ", TO makeBinomial,
EXAMPLE {
"R = QQ[x,y,z]",
"L = matrix {{1,1},{-3,0},{0,1}}",
"latticeBasisIdeal (R, L)"}}
-- cellular stuff:
document {
Key => {cellularBinomialAssociatedPrimes,
(cellularBinomialAssociatedPrimes,Ideal)},
Headline => "Associated primes of a cellular binomial ideal",
Usage => "cellularBinomialAssociatedPrimes I",
Inputs => {
"I" => {"a cellular binomial ideal"} },
Outputs => {
{"the list of associated primes of I"} },
"If the cell variables are known, they can be given via the option ",
TO CellVariables, " otherwise they are computed.",
EXAMPLE {
"R = QQ[x,y]",
"I = ideal(x^2-1,y-x)",
"cv = isCellular (I,ReturnCellVars=>true)",
"cellularBinomialAssociatedPrimes (I,CellVariables=>cv)"
},
SeeAlso => binomialAssociatedPrimes}
document {
Key => {cellularBinomialPrimaryDecomposition,
(cellularBinomialPrimaryDecomposition,Ideal)},
Headline => "Primary decomposition of a cellular binomial ideal",
Usage => "cellularBinomialPrimaryDecomposition I",
Inputs => {
"I" => {"a cellular binomial ideal"}},
Outputs => {
{"a binomial primary decomposition of I"}},
"If the cell variables are known, they can be given via the option ",
TO CellVariables, " otherwise they are computed.",
EXAMPLE {
"R = QQ[x,y]",
"I = ideal(x^3-1,y-x)",
"cv = isCellular (I,ReturnCellVars=>true)",
"pd = cellularBinomialPrimaryDecomposition (I,CellVariables=>cv)",
"mingens \\ pd"
},
Caveat => {"This function will not return minimal generators for performance reasons."},
SeeAlso => binomialAssociatedPrimes}
document {
Key => {cellularBinomialUnmixedDecomposition,
(cellularBinomialUnmixedDecomposition,Ideal)},
Headline => "Unmixed decomposition of a cellular binomial ideal",
Usage => "cellularBinomialUnmixedDecomposition I",
Inputs => {
"I" => {"a cellular binomial ideal"}},
Outputs => {
{"an unmixed decomposition of I"}},
"If the cell variables are known, they can be given via the option ",
TO CellVariables, " otherwise they are computed.",
EXAMPLE {
"R = QQ[x,y]",
"I = ideal(x*(y^3-1),x^2)",
"cv = isCellular (I,ReturnCellVars=>true)",
"ud = cellularBinomialUnmixedDecomposition (I,CellVariables=>cv)"
},
SeeAlso => binomialUnmixedDecomposition}
document {
Key => {partialCharacter,
(partialCharacter,Ideal)},
Headline => "Computing the partial character of a cellular binomial ideal",
Usage => "partialCharacter I",
Inputs => {
"I" => {"a cellular binomial ideal"}},
Outputs => {
{"the ", TO PartialCharacter}},
"If the cell variables are known, they can be given via the option ",
TO CellVariables, " otherwise they are computed.",
EXAMPLE {
"R = QQ[x,y]",
"I = ideal(x^3-1,y-x)",
"cv = isCellular (I,ReturnCellVars=>true)",
"pc = partialCharacter (I,CellVariables=>cv)",
},
Caveat => {"If the input is not cellular the behaviour is undefined. Cellularity is not checked."}}
document {
Key => {idealFromCharacter,
(idealFromCharacter,Ring,PartialCharacter)},
Headline => "Generate a lattice ideal from a character.",
Usage => "idealFromCharacter (R, rho)",
Inputs => {
"R" => {"a ring to contain the output ideal"},
"rho" => {"a ", TO partialCharacter } },
Outputs => {
{"the lattice ideal corresponding to rho"}
},
Caveat => {"The variables occurring in rho#\"J\" must be variables of R."},
EXAMPLE {
"R = QQ[x,y]",
"I = ideal(x^3-1,y-x)",
"cv = isCellular (I,ReturnCellVars=>true)",
"pc = partialCharacter (I,CellVariables=>cv)",
"idealFromCharacter (R,pc) == I"}}
document {
Key => {randomBinomialIdeal},
Headline => "Random Binomial Ideals",
Usage => "randomBinomialIdeal (R,n,d,w,h)",
Inputs => {
"I" => {"a ring for the output"},
"n" => {"number of generators of the output "},
"d" => {"maximum degree of each variable" },
"w" => {"number of variables in each generator "},
"h" => {"should the generators be 'as homogeneous as possible'"} },
Outputs => {
{"a random ideal"} },
"The exponents are drawn at random from {-d,...,d}. All coefficients are set to 1.",
EXAMPLE {
"R = QQ[a..x]",
"randomBinomialIdeal (R,6,2,4,true)",
"randomBinomialIdeal (R,3,4,10,false)"
},
"This function is mostly for internal testing purposes. Don't expect anything from it.",
Caveat => "Minimal generators are produced. These can be less than n and of
higher degree. They also need not be homogeneous."}
document {
Key => {extractInclusionMinimalIdeals,
(extractInclusionMinimalIdeals,List)},
Headline => "Extract inclusion minimal ideals from a list of ideals",
Usage => "extractInclusionMinimalIdeals L",
Inputs => {
"L" => {"a list of ideals"} },
Outputs => {
{"the list with some redundant ideals removed"}},
EXAMPLE {
"R = QQ[a,b]",
"L = {ideal(a^4),ideal(a^3),ideal(a^5),ideal(b^2*a) }",
"extractInclusionMinimalIdeals L",
},
"This function is mostly for internal purposes.",
Caveat => "The resulting list may be not irredundant, because I_1
\\subset I_2 \\cap I_3 is not checked."}
document { Key => {CellVariables, [partialCharacter,CellVariables],
[cellularBinomialRadical,CellVariables], [binomialIsPrime,CellVariables],
[cellularBinomialIsPrimary,CellVariables], [cellularBinomialAssociatedPrimes,CellVariables],
[cellularBinomialPrimaryDecomposition,CellVariables],
[cellularBinomialUnmixedDecomposition,CellVariables]},
Headline => "cellular variables",
"The cellular variables of a binomial ideal are the variables which are non-zerodivisors modulo
that ideal. With this option these variables, if known in advance, can be handed over to
specialized functions for cellular ideals. ",
SeeAlso => {cellularBinomialPrimaryDecomposition,cellularBinomialAssociatedPrimes}}
document {
Key => {ReturnCellVars,
[isCellular,ReturnCellVars]},
Headline => "return the cellular variables",
"The cellular variables of a binomial ideal are the variables which are non-zerodivisors
module that ideal. If this option is set to 'true' then binomialCellularDecomposition will
return the set of variables for each of its outputs",
EXAMPLE {
"R = QQ[x,y,z]",
"I = ideal (x*y-z, x*z-y^2)",
"bcd = binomialCellularDecomposition (I,ReturnCellVars=>true)"}}
document {
Key => {ReturnPrimes,
[cellularBinomialIsPrimary,ReturnPrimes]},
Headline => "return two associated primes",
"If cellularBinomialIsPrimary does not return true it can either return 'false' or two associated primes.
If this option is set then two associated primes are returned. If ReturnPChars is set too, then partial
characters will be returned.",
EXAMPLE {
"R = QQ[x,y,z]",
"I = ideal (x^2-1)",
"cellularBinomialIsPrimary (I,ReturnPrimes=>true)",
},
SeeAlso => {ReturnPChars, cellularBinomialIsPrimary}}
document {
Key => {ReturnPChars,
[cellularBinomialIsPrimary,ReturnPChars]},
Headline => "return two partial characters",
"If cellularBinomialIsPrimary does not return true it can either return 'false' or two associated primes.
If this option is set then two partial characters of distinct associated primes are returned.
If ReturnPrimes is set too, then partial characters will be returned.",
EXAMPLE {
"R = QQ[x]",
"I = ideal (x^2-1)",
"cellularBinomialIsPrimary (I,ReturnPChars=>true)",
},
SeeAlso => {ReturnPrimes, cellularBinomialIsPrimary}}
document {
Key => {[binomialPrimaryDecomposition, Verbose],
[binomialUnmixedDecomposition, Verbose],
[binomialCellularDecomposition,Verbose],
[binomialMinimalPrimes,Verbose],
[cellularBinomialAssociatedPrimes,Verbose],
[cellularBinomialPrimaryDecomposition,Verbose],
[extractInclusionMinimalIdeals,Verbose],
[cellularBinomialUnmixedDecomposition,Verbose]},
Headline => "generate informative output",
"If this option is set, functions will generate additional output. Defaults to false"}
document {
Key => PartialCharacter,
Headline => "the class of all partial characters",
"In ", TO Binomials , " the partial character of a cellular binomial ideal is represented
as an object of class ", TO PartialCharacter,". It contains the following three data:",
UL { {"J -- the cellular variables"},
{"L -- a matrix whose columns are generators for the lattice"},
{"c -- the list of values the character takes on the generators"}}}
----- TESTS -----
TEST ///
R = QQ[a..f]
I = ideal(b*c-d*e,b*e*f-a*c,a*d*f-d*e,a*b*f-c*d,d^2*e-e,a*d*e-d*e,a*c*e-d*f)
bpd = BPD I;
assert (intersect bpd == sub(I,ring bpd#0))
///
TEST ///
R = QQ[c,d,x,y,z,w];
I = ideal(x^3*d^2*w-c*z^2,x^5*y^2-w^7,w^3-z^8,z^2-d*w*x^7)
time bpd = binomialPrimaryDecomposition (I,Verbose=>false);
assert (intersect bpd == I)
///
TEST ///
S = QQ[R00,U00,R01,D01,U01,R02,D02,L10,U10,L11,D11,U11,L12,D12];
I = ideal (U00*R01-R00*U10,R01*D11-D01*R00,D11*L10-L11*D01,
L10*U00-U10*L11,U01*R02-R01*U11,R02*D12-D02*R01,
D12*L11-L12*D02,L11*U01-U11*L12);
bpd = BPD I;
assert (intersect bpd == I)
///
TEST ///
R = QQ[a..h]
I = ideal(d*g*h-e*g*h,a*b*g-c*f*h,a*b*c-e*g*h,c*f*h^2-d*f,e^2*g*h-d*h,b*d*f*h-c*g,a*d*f*g-c*e,b*c*e*g-a*f,a*b*e*f-c*d);
bpd = binomialPrimaryDecomposition (I,Verbose=>false);
assert (intersect bpd == I);
///
TEST ///
-- Cyclotomic stuff
R = QQ[x,y,z]; I = ideal (x^2*y-z^2, x^2-z^3, y^4-1);
bpd = BPD (I,Verbose=>false);
assert (intersect bpd == sub(I, ring bpd#0));
///
TEST ///
-- Unmixed Decomposition
R = QQ[x,y,z];
I = ideal (x^2, y^2, x*y, x*(z^3-1), y*(z^2-1))
bud = BUD (I, Verbose=>false);
assert(intersect bud == I);
///
TEST ///
-- minimal primes:
-- The 1.0 version of Binomials.m2 would return 6 minimal primes here
-- because redundancy was not taken care of properly
R = QQ[a,b,c,d,x]
I = ideal (a^2 - b^2, c^2 - d^2, x*(a*d-b*c), x*(a*c-b*d))
mp = binomialMinimalPrimes I
assert (intersect mp == I)
assert (#mp == 4)
///
TEST ///
-- remove redundant:
R = QQ[x]
I1 = ideal (x)
I2 = ideal (x^2)
I3 = ideal (x^3)
for L in permutations {I1,I2,I3} do (
assert (#(extractInclusionMinimalIdeals L) == 1);
)
///
TEST ///
R = QQ[x,y]
assert(binomialIsPrime ideal x^2 == false)
assert(binomialIsPrime ideal (x^2-y^2) == false)
assert(binomialIsPrime ideal (x-y) == true)
///
end
------------------------------------------------------------
restart
uninstallPackage "Binomials"
installPackage "Binomials"
check "Binomials"
restart
needsPackage "Binomials";
S = QQ[x,y];
b = makeBinomial (S, [2,-3], 5)
isBinomial ideal b
I = ideal(x^2-x*y, x*y-y^2);
isCellular I
binomialIsPrimary I
binomialRadical I
binomialPrimaryDecomposition I
L = binomialPrimaryDecomposition ideal(x^3-1)
L#0
P = binomialPrimaryDecomposition ideal (x^10000 * (y-1), x^10001)
radical P#0
P#1
|