1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
|
newPackage(
"ConformalBlocks",
Version => "2.4",
Date => "June 22, 2018",
Authors => {
{Name => "Dave Swinarski", Email => "dswinarski@fordham.edu"}
},
PackageExports => { "LieTypes" },
Headline => "for conformal block divisors",
Keywords => {"Commutative Algebra"},
Certification => {
-- same article as for package LieTypes
"journal name" => "The Journal of Software for Algebra and Geometry",
"journal URI" => "http://j-sag.org/",
"article title" => "Software for computing conformal block divisors on bar M_0,n",
"acceptance date" => "2 August 2018",
"published article URI" => "https://msp.org/jsag/2018/8-1/p08.xhtml",
"published article DOI" => "10.2140/jsag.2018.8.81",
"published code URI" => "https://msp.org/jsag/2018/8-1/jsag-v8-n1-x08-LieTypes.m2",
"repository code URI" => "http://github.com/Macaulay2/M2/blob/master/M2/Macaulay2/packages/LieTypes.m2",
"release at publication" => "923fbcc7c77b23f510bb0d740e00fc1722a2f397", -- git commit number in hex
"version at publication" => "0.5",
"volume number" => "8",
"volume URI" => "https://msp.org/jsag/2018/8-1/"
}
)
export {
"ConformalBlockVectorBundle",
"conformalBlockVectorBundle",
"symmetrizedConformalBlockDivisor",
"SymmetricDivisorM0nbar",
"coefficientList",
"symmetricDivisorM0nbar",
"scale",
"symmetricCurveDotDivisorM0nbar",
"basisOfSymmetricCurves",
"FdotBjIntMat",
"symmetricFCurves",
"killsCurves",
"isSymmetricFDivisor",
"isExtremalSymmetricFDivisor",
"canonicalDivisorM0nbar",
"kappaDivisorM0nbar",
"psiDivisorM0nbar",
"conformalBlockRank",
"conformalBlockDegreeM04bar",
"FCurveDotConformalBlockDivisor"
}
-- Access hasAttribute, getAttribute:
debug Core
---------------------------------------------------------
---------------------------------------------------------
-- New types:
--ConformalBlockVectorBundle and SymmetricDivisorM0nbar
---------------------------------------------------------
---------------------------------------------------------
ConformalBlockVectorBundle = new Type of HashTable;
ConformalBlockVectorBundle.GlobalAssignHook = globalAssignFunction
ConformalBlockVectorBundle.GlobalReleaseHook = globalReleaseFunction
expression ConformalBlockVectorBundle := V -> (
if hasAttribute(V,ReverseDictionary) then expression toString getAttribute(V,ReverseDictionary) else toString(pairs V)
);
net ConformalBlockVectorBundle := V -> (
if hasAttribute(V,ReverseDictionary) then return net expression V;
if not hasAttribute(V,ReverseDictionary) then return (
horizontalJoin flatten (
"{",
-- the first line prints the parts vertically, second: horizontally
stack (horizontalJoin \ apply(pairs V,(k,v) -> (net k, " => ", net v))),
"}"
)
)
);
ConformalBlockVectorBundle#{Standard,AfterPrint} = V -> (
g:=toString(V#"Genus");
n:=toString(V#"NumberOfPoints");
ostring:=concatenate(interpreterDepth:"o");
<< endl;
<< concatenate(ostring,toString lineNumber," : Conformal block vector bundle on M-",g,"-",n,"-bar");
<< endl;
);
conformalBlockVectorBundle = method(
TypicalValue => ConformalBlockVectorBundle
)
--Add some consistency checks
--Lift weights from QQ to ZZ
--Check that the weights are in P_l for the Lie algebra
conformalBlockVectorBundle(LieAlgebra,ZZ,List,ZZ):=(lieAlgebra,l,v,ggenus)-> (
v=apply(#v, i -> apply(#(v_i), j -> lift(v_i_j,ZZ)));
Pl:=weylAlcove(l,lieAlgebra);
for i from 0 to #v-1 do (
if not member(v_i,Pl) then error concatenate("The weight ",toString(v_i)," is not in the Weyl alcove of this Lie algebra at this level.");
);
return new ConformalBlockVectorBundle from {"LieAlgebra"=>lieAlgebra,"Level"=>l,"Weights"=>v,"Genus"=>ggenus,"NumberOfPoints"=>#v}
)
--declare a new type called SymmetricDivisorM0nbar
SymmetricDivisorM0nbar = new Type of HashTable;
-*Functions and methods available for the type SymmetricDivisorM0nbar:
--look up n
--create from list
--create from polynomial
--list coefficients
--print polynomial
--scale D
--scalar multiplication
--add D, E if n is the same
--negate
--test equality D==E
--Handy examples during debugging phase
--D=new SymmetricDivisorM0nbar from {{numberOfPoints,6},{B_2,2},{B_3,3}};
--E=new SymmetricDivisorM0nbar from {{numberOfPoints,6},{B_2,3},{B_3,5}};
--F=symmetricDivisorM0nbar(6,{2,3});
--G=symmetricDivisorM0nbar(6,2*B_2+3*B_3);
*-
expression SymmetricDivisorM0nbar := D -> (
if keys(D) == {"NumberOfPoints"} then return expression 0;
CL:=coefficientList(D);
coeff:=0;
divisorSymbol:=expression "B";
Sum delete(null,apply(#CL, j -> (if CL_j != 0 then (
coeff = expression abs(CL_j);
if CL_j === -1 then
Minus Subscript{divisorSymbol, j+2}
else if CL_j < 0 then
Minus {coeff * Subscript{divisorSymbol, j+2}}
else if CL_j === 1 then
Subscript{divisorSymbol, j+2}
else coeff * Subscript{divisorSymbol, j+2} )
)))
);
-*
f = D -> (
if keys(D) == {"NumberOfPoints"} then return expression 0;
CL:=coefficientList(D);
coeff:=0;
divisorSymbol:=expression "B";
Sum apply(#CL, j -> (
coeff = expression abs(CL_j);
if CL_j === -1 then
Minus Subscript{divisorSymbol, j+2}
else if CL_j < 0 then
Minus {coeff * Subscript{divisorSymbol, j+2}}
else if CL_j === 1 then
Subscript{divisorSymbol, j+2}
else coeff * Subscript{divisorSymbol, j+2} )
)
);
*-
net SymmetricDivisorM0nbar := D -> net expression D;
SymmetricDivisorM0nbar#{Standard,AfterPrint} = D -> (
n:=toString(D#"NumberOfPoints");
ostring:=concatenate(interpreterDepth:"o");
<< endl;
<< concatenate(ostring,toString lineNumber," : S_",n,"-symmetric divisor on M-0-",n,"-bar");
<< endl;
);
SymmetricDivisorM0nbar==SymmetricDivisorM0nbar :=(D,E) -> (
pairs(D)==pairs(E)
)
SymmetricDivisorM0nbar+SymmetricDivisorM0nbar :=(D,E) -> (
if D#"NumberOfPoints" != E#"NumberOfPoints" then error ///D and E are not divisors on the same $\bar{M}_{0,n}$ - the numbers of marked points are different///;
n:=D#"NumberOfPoints";
answer:={{"NumberOfPoints",n}};
a:=0;
b:=0;
for i from 2 to floor(n/2) do (
a=0;
b=0;
if D#?i then a=D#i;
if E#?i then b=E#i;
answer = append(answer,{i,a+b})
);
return new SymmetricDivisorM0nbar from answer
)
- SymmetricDivisorM0nbar :=(D) -> (
n:=D#"NumberOfPoints";
answer:={{"NumberOfPoints",n}};
a:=0;
for i from 2 to floor(n/2) do (
a=0;
if D#?i then a=-(D#i);
answer = append(answer,{i,a})
);
return new SymmetricDivisorM0nbar from answer
)
Number*SymmetricDivisorM0nbar :=(k,D) -> (
n:=D#"NumberOfPoints";
answer:={{"NumberOfPoints",n}};
a:=0;
for i from 2 to floor(n/2) do (
a=0;
if D#?i then a=k*(D#i);
answer = append(answer,{i,a})
);
return new SymmetricDivisorM0nbar from answer
)
coefficientList = method(
TypicalValue => List
)
coefficientList(SymmetricDivisorM0nbar) := (K) -> (
n:=K#"NumberOfPoints";
answer:={};
for i from 2 to floor(n/2) do (
if K#?i then answer=append(answer, K#i) else answer=append(answer,0)
);
answer
)
symmetricDivisorM0nbar = method(
TypicalValue => SymmetricDivisorM0nbar
)
symmetricDivisorM0nbar(ZZ,List) :=(n,L)-> (
g:=0;
if even(n) then g=lift((n-2)/2,ZZ) else g=lift((n-3)/2,ZZ);
if #L != g then error "expected a list of length floor(n/2)-1";
ans:={{"NumberOfPoints",n}};
for i from 2 to floor(n/2) do (
ans = append(ans,{i,L_(i-2)})
);
return new SymmetricDivisorM0nbar from ans
)
Number*IndexedVariable :=(k,x) -> (expression(k)*expression(x))
IndexedVariable+IndexedVariable :=(x,y) -> (expression(x) + expression(y))
symmetricDivisorM0nbar(ZZ,IndexedVariable) := (n,f) -> (
return new SymmetricDivisorM0nbar from {{"NumberOfPoints",n},{f#1,1}}
)
symmetricDivisorM0nbar(ZZ,Expression) := (n,f) -> (
g:=0;
if even(n) then g=lift((n-2)/2,ZZ) else g=lift((n-3)/2,ZZ);
if instance(f,ZeroExpression) then return symmetricDivisorM0nbar(n,apply(g,i->0));
ans:={{"NumberOfPoints",n}};
k:=#f;
mi:=0;
coeffi:=0;
monstri:="";
subi:=0;
regi:=0;
if instance(f,Subscript) then (
ans=append(ans,{f#1,1}));
if instance(f,Product) then (
mi=f;
coeffi=mi#0;
subi=mi#1#1;
if not instance(subi,ZZ) then error "the subscripts must be integers";
if subi<2 then error "the subscripts must be integers greater than 2";
if subi>g+1 then error "the subscripts must be integers less than or equal to floor(n/2)";
ans=append(ans,{subi,coeffi})
);
if instance(f,Sum) then (
return sum apply(k, i -> symmetricDivisorM0nbar(n,f#i))
);
return new SymmetricDivisorM0nbar from ans
)
scale = method(
TypicalValue=>SymmetricDivisorM0nbar
)
scale(SymmetricDivisorM0nbar) := (D) -> (
L:=coefficientList(D);
g:=gcd(L);
if g==0 then return D else return (1/g)*D
)
---------------------------------------------------------
---------------------------------------------------------
--General functions for working with F-curves on M0nbar
---------------------------------------------------------
---------------------------------------------------------
CdotBi = (L,i) -> (n:=sum L;
newL:={L_0,L_1,L_2,L_3,(L_0)+(L_1),(L_0)+(L_2),(L_0)+(L_3)};
newL = apply(7, k -> if newL_k <= floor(n/2) then newL_k else n-newL_k);
sum apply({4,5,6}, j -> if newL_j==i then 1 else 0 )-sum apply(4, k -> if newL_k == i then 1 else 0)
);
symmetricCurveDotDivisorM0nbar = method(
TypicalValue => QQ
)
symmetricCurveDotDivisorM0nbar(List,SymmetricDivisorM0nbar) := (C,E) -> (
D:=coefficientList(E);
sum apply(#D, i -> (D_i)*CdotBi(C,i+2))
)
basisOfSymmetricCurves = method(
TypicalValue => List
)
basisOfSymmetricCurves(ZZ) := (n) -> ( f:=floor(n/2);
apply(f-1, i -> {n-(i+1)-2,i+1,1,1})
)
FdotBjIntMat = method(
TypicalValue => Matrix
)
FdotBjIntMat(ZZ) := (n) -> (f:=floor(n/2);
cu :=basisOfSymmetricCurves(n);
matrix apply(f-1, i -> apply(f-1, j -> CdotBi(cu_i,j+2)/1 ))
)
symmetricFCurves= method(
TypicalValue => List
)
symmetricFCurves(ZZ) := (n) -> ( L:={};
p:=partitions(n);
delete(null, apply(#p, i -> if #(p_i)==4 then toList(p_i)))
)
killsCurves= method(
TypicalValue => List
)
killsCurves(SymmetricDivisorM0nbar) := (E) -> (
n:=E#"NumberOfPoints";
D:=coefficientList(E);
f:=floor(n/2);
killedCurves:={};
curves:=symmetricFCurves(n);
delete(null, apply(#curves, i -> if sum(apply(f-1, j -> (D_j*CdotBi(curves_i,j+2)) )) == 0 then curves_i))
);
isSymmetricFDivisor = method(
TypicalValue => Boolean
)
isSymmetricFDivisor(SymmetricDivisorM0nbar) := (E) -> (
n:=E#"NumberOfPoints";
g:=0;
if even(n) then g=lift(n/2-1,ZZ) else g=lift((n-1)/2-1,ZZ);
curves:=symmetricFCurves(n);
for i from 0 to #curves-1 do (
if symmetricCurveDotDivisorM0nbar(curves_i,E) < 0 then (
print concatenate("This divisor has negative intersection with the F curve F_",toString(curves_i), " (and maybe others too)") << endl;
return false
)
);
return true
)
isExtremalSymmetricFDivisor = method(
TypicalValue => Boolean
)
isExtremalSymmetricFDivisor(SymmetricDivisorM0nbar) := (E) -> (
bool:=isSymmetricFDivisor(E);
if bool==false then return false;
n:=E#"NumberOfPoints";
g:=0;
if even(n) then g=lift(n/2-1,ZZ) else g=lift((n-1)/2-1,ZZ);
curves:=killsCurves(E);
if #curves == 0 then return false;
M := matrix apply(#curves, i -> apply(g, j-> CdotBi(curves_i,j+2) ));
rank M >= g-1
)
---------------------------------------------------------
---------------------------------------------------------
--Some important divisors on M0nbar:
--K, kappaDivisorM0nbar, psiDivisorM0nbar
---------------------------------------------------------
---------------------------------------------------------
canonicalDivisorM0nbar = method(
TypicalValue => SymmetricDivisorM0nbar
)
canonicalDivisorM0nbar(ZZ) := (n) -> (f:=floor(n/2);
L2:=apply(f-1, i -> i+2);
symmetricDivisorM0nbar(n,apply(L2, k -> k*(n-k)/(n-1)-2))
);
AlexSwincurves = (n) -> (
f:=floor(n/2);
if odd(n) == true then return apply(f-1, i -> {f+(i+1)-1,f-(i+1),1,1});
if even(n) == true then return apply(f-1, i -> {f-2+(i+1),f-(i+1),1,1})
);
kappaDivisorM0nbar = method(
TypicalValue => SymmetricDivisorM0nbar
)
kappaDivisorM0nbar(ZZ) := (n) -> (
canonicalDivisorM0nbar(n) + symmetricDivisorM0nbar(n,apply(floor(n/2)-1, i -> 1))
);
psiDivisorM0nbar = method(
TypicalValue => SymmetricDivisorM0nbar
)
psiDivisorM0nbar(ZZ) := (n) -> (g:=0;
if even(n) then g=lift(n/2,ZZ)-1 else g=lift((n-1)/2,ZZ)-1;
L:=apply(g, k -> k+2);
answer:=apply(L, k -> k*(n-k)/(n-1));
symmetricDivisorM0nbar(n,answer)
);
---------------------------------------------------------
---------------------------------------------------------
--Computing conformal block bundles
---------------------------------------------------------
---------------------------------------------------------
---------------------------------------------------------
---------------------------------------------------------
--Factorization and ranks
---------------------------------------------------------
---------------------------------------------------------
-* Conformal block ranks may be computed recursively.
First, propagation allows you to drop a weight if it is zero. Next, factorization
allows one to reduce the calculation to computing conformal block ranks on M03bar.
In general, these may be computed using the Kac-Walton algorithm, which is
implemented as fusionCoefficient in the LieTypes package.
However, for three special cases, there are faster formulas for conformal
block ranks on M03bar. These cases are:
sl_2, any level
sl_3, any level
sl_m, level 1
They are implemented here.
*-
sl2threept = (l,L) -> (
a:=L_0_0;
b:=L_1_0;
c:=L_2_0;
if even(a+b+c) and 0<=a and 0<=b and 0<=c and a<= l and b<=l and c<=l and abs(b-a) <=c and c<= min({a+b,2*l-a-b}) then return 1 else 0
)
sl3threept = (l,L) -> (if #L > 3 then error "#L>3" ;
if #L==3 and L_0 == {0,0} and L_1 == {L_2_1,L_2_0} then return 1;
if #L==3 and L_0 == {0,0} and L_1 != {L_2_1,L_2_0} then return 0;
if #L==3 and L_1 == {0,0} and L_0 == {L_2_1,L_2_0} then return 1;
if #L==3 and L_1 == {0,0} and L_0 != {L_2_1,L_2_0} then return 0;
if #L==3 and L_2 == {0,0} and L_0 == {L_1_1,L_1_0} then return 1;
if #L==3 and L_2 == {0,0} and L_0 != {L_1_1,L_1_0} then return 0;
if #L==1 and L=={0,0} then return 1;
if #L==1 and L!={0,0} then return 0;
if #L==2 and L_0 == {L_1_1,L_1_0} then return 1;
if #L==2 and L_0 != {L_1_1,L_1_0} then return 0;
if #L!=3 then error "L neq 3";
a1:=L_0_0; a2:=L_0_1; b1:=L_1_0; b2:=L_1_1; c1:=L_2_0; c2:=L_2_1;
A:= (1/3)*(2*(a1+b1+c1)+(a2+b2+c2));
B:= (1/3)*((a1+b1+c1)+2*(a2+b2+c2));
k0max:=min {A,B};
k0min:= max { a1+a2, b1+b2, c1+c2, A-min(a1,b1,c1), B-min(a2,b2,c2) };
delta:=0;
if k0max >= k0min and gcd(A,1) == 1 and gcd(B,1) == 1 then delta = 1;
M:= (k0max-k0min+1)*delta;
if l < k0min or M==0 then return 0 else return (min {k0max,l} - k0min+1)
);
cc = (v) -> (
sum apply(#v, j -> (j+1)*(v_j))
);
slml1threept = (type,m,l,w) -> (
if ((sum apply(#w, i -> cc(w_i)))%(m+1)) == 0 then 1 else 0
);
slml1rank = memoize((type, m, l, w) -> (
if ((sum apply(#w, i -> cc(w_i)))%(m+1)) == 0 then 1 else 0
));
conformalBlockRankM03bar = memoize((type, m, l, w) -> (
--Zero points
if #w == 0 then return 1;
--One point
if #w == 1 and w_0 != apply(#(w_0), i -> 0) then return 0;
if #w == 1 and w_0 == apply(#(w_0), i -> 0) then return 1;
--Two point
if #w == 2 and w_1 != starInvolution(type, m, w_0) then return 0;
if #w == 2 and w_1 == starInvolution(type, m, w_0) then return 1;
--Three point:
--We use the best option available according to the following preferences:
----if g=sl_2, then we compute using the function above
----if g=sl_m and l=1, then we compute using the function above
----if g=sl_3, then we compute using the function above
----otherwise compute it using fusionCoefficient from LieTypes
if type=="A" and m==1 then (
return lift(sl2threept(l,w),ZZ));
if type=="A" and l==1 then (
return lift(slml1threept(type,m,l,w),ZZ));
if type=="A" and m==2 then (
return lift(sl3threept(l,w),ZZ));
g:=simpleLieAlgebra(type,m);
U:=irreducibleLieAlgebraModule(w_0,g);
V:=irreducibleLieAlgebraModule(w_1,g);
W:=irreducibleLieAlgebraModule(starInvolution(type,m,w_2),g);
return fusionCoefficient(U,V,W,l)
));
propagation = (m,L) -> (
z:=apply(m, i -> 0);
delete(z, L)
);
conformalBlockRank=method(
TypicalValue=> ZZ
)
conformalBlockRank(ConformalBlockVectorBundle) := memoize( (V) -> (
if V#"Genus" != 0 then error ///Only implemented for conformal blocks on $\bar{M}_{0,n}$///;
g:=V#"LieAlgebra";
type:=g#"RootSystemType";
m:=g#"LieAlgebraRank";
l:=V#"Level";
L:=V#"Weights";
if type=="A" and l==1 then return slml1rank(type,m,l,L);
L = propagation(m,L);
n:=#L;
if n <= 3 then return conformalBlockRankM03bar(type,m,l,L);
--for n >=4 use factorization:
A:={L_0,L_1};
B:=drop(L,{0,1});
rA:=0;
pl:=weylAlcove(type,m,l);
r:= sum apply(#pl, i -> (rA=conformalBlockRankM03bar(type,m,l, append(A,pl_i));
if rA == 0 then 0 else rA*conformalBlockRank(conformalBlockVectorBundle(g,l, append(B,starInvolution(type,m,pl_i)),0)) ));
return lift(r,ZZ)
));
---------------------------------------------------------
---------------------------------------------------------
--Fakhruddin's formulas for first Chern classes
---------------------------------------------------------
---------------------------------------------------------
symmetrizedConformalBlockDivisor = method(
TypicalValue => SymmetricDivisorM0nbar
)
symmetrizedConformalBlockDivisor(ConformalBlockVectorBundle) := (V) -> (
g:=V#"LieAlgebra";
type:=g#"RootSystemType";
m:=g#"LieAlgebraRank";
l:=V#"Level";
wt:=V#"Weights";
n:=#wt;
if #tally(wt)==1 then return n!*symmetricConformalBlockDivisor(g,l,n,wt_0);
Bks:={};
f:=floor(n/2);
bi:=0;
S:={};
s:={};
rlambda:=0;
rlambdaAmu:=0;
rlambdaAcstarInvolution:=0;
Acomp:={};
VlambdaAmu:={};
VlambdaAcstarInvolution:={};
pl:=weylAlcove(type,m,l);
for i from 2 to f do (
--first term
bi=0;
rlambda=conformalBlockRank(V);
bi = bi+ rlambda*( binomial(n-3,i-1) + binomial(n-3,n-i-1) )*sum(apply(#wt, k -> casimirScalar(type,m,wt_k)));
--second term
S = apply(n, z->z);
s=subsets(S,i);
for p from 0 to #s-1 do (
for k from 0 to #pl-1 do (A:=s_p;
wtA:={};
for q from 0 to #A-1 do wtA = append(wtA, wt_A_q);
VlambdaAmu=conformalBlockVectorBundle(g,l,append(wtA,pl_k),0);
rlambdaAmu=conformalBlockRank(VlambdaAmu);
if rlambdaAmu !=0 then ( Acomp := toList(set(S)-set(s_p));
wtAcomp:={};
for q from 0 to #Acomp-1 do wtAcomp = append(wtAcomp, wt_Acomp_q);
VlambdaAcstarInvolution=conformalBlockVectorBundle(g,l, append(wtAcomp, starInvolution(type,m,pl_k)),0);
rlambdaAcstarInvolution=conformalBlockRank(VlambdaAcstarInvolution);
bi = bi - casimirScalar(type,m,pl_k)*rlambdaAmu*rlambdaAcstarInvolution
)
)
);
bi = ( ( (i!)*(n-i)!)/(2*(l+dualCoxeterNumber(type,m))))*bi;
Bks = append(Bks, bi)
);
symmetricDivisorM0nbar(n,Bks)
);
--faster function if there is symmetry
symmetricConformalBlockDivisor = (g,l,n,lambda) -> (
type:=g#"RootSystemType";
m:=g#"LieAlgebraRank";
Bks:={};
f:=floor(n/2);
bi:=0;
S:={};
s:={};
rlambda:=0;
rlambdaAmu:=0;
rlambdaAcstarInvolution:=0;
VlambdaAmu:={};
VlambdaAcstarInvolution:={};
pl:=weylAlcove(type,m,l);
V:={};
lambdan := apply(n, j -> lambda);
for i from 2 to f do (
--first term
bi=0;
V=conformalBlockVectorBundle(g,l,lambdan,0);
rlambda=conformalBlockRank(V);
bi = bi+ rlambda*( i*(n-i)/(n-1) )*casimirScalar(type,m,lambda) ;
--second term
lambdai := apply(i, j -> lambda);
lambdac:=apply(n-i, j -> lambda);
for k from 0 to #pl-1 do (
VlambdaAmu=conformalBlockVectorBundle(g,l,append(lambdai,pl_k),0);
rlambdaAmu=conformalBlockRank(VlambdaAmu);
if rlambdaAmu !=0 then (
VlambdaAcstarInvolution=conformalBlockVectorBundle(g,l, append(lambdac, starInvolution(type,m,pl_k)),0);
rlambdaAcstarInvolution=conformalBlockRank(VlambdaAcstarInvolution);
bi = bi - casimirScalar(type,m,pl_k)*rlambdaAmu*rlambdaAcstarInvolution
)
);
bi = ( (1 )/(2*(l+dualCoxeterNumber(type,m))))*bi;
Bks = append(Bks, bi)
);
symmetricDivisorM0nbar(n,Bks)
);
conformalBlockDegreeM04bar=method(
TypicalValue => ZZ
)
conformalBlockDegreeM04bar(ConformalBlockVectorBundle):=memoize((V) -> (
if V#"Genus" != 0 then error ///Only implemented for conformal blocks on $\bar{M}_{0,4}$///;
g:=V#"LieAlgebra";
type:=g#"RootSystemType";
m:=g#"LieAlgebraRank";
l:=V#"Level";
w:=V#"Weights";
n:=#w;
if n != 4 then error ///This function is for conformal blocks on $\bar{M}_{0,4}$///;
a:=w_0;
b:=w_1;
c:=w_2;
d:=w_3;
pl:=weylAlcove(type,m,l);
answer:=sum apply(4, i -> casimirScalar(type,m,w_i));
answer = conformalBlockRank(V)*answer;
for i from 0 to #pl-1 do (
e:=pl_i;
f:=starInvolution(type,m,pl_i);
answer = answer - casimirScalar(type,m,pl_i)*(conformalBlockRankM03bar(type,m,l,{a,b,e})*conformalBlockRankM03bar(type,m,l,{c,d,f})+conformalBlockRankM03bar(type,m,l,{a,c,e})*conformalBlockRankM03bar(type,m,l,{b,d,f}) + conformalBlockRankM03bar(type,m,l,{a,d,e})*conformalBlockRankM03bar(type,m,l,{b,c,f}))
);
return lift(answer/(2*(l+dualCoxeterNumber(type,m))),ZZ);
));
wtindex = (w) -> (
if w==apply(#w, j-> 0) then return 0;
i:=0;
while (w_i)==0 do i =i+1;
i+1
)
FCurveDotConformalBlockDivisorslml1 = memoize((curve,m,l,w) -> (
wts:=apply(#w, i -> wtindex(w_i));
if #(flatten curve) != #wts then error "The number of marked points in the F curve does not match the number of weights";
nu1:=(sum apply(curve_0, h -> wts_(h-1)))%m;
nu2:=(sum apply(curve_1, h -> wts_(h-1) ))%m;
nu3:=(sum apply(curve_2, h -> wts_(h-1) ))%m;
nu4:=(sum apply(curve_3, h -> wts_(h-1) ))%m;
numax:=max {nu1,nu2,nu3,nu4};
numin:=min {nu1,nu2,nu3,nu4};
nusum:= sum {nu1,nu2,nu3,nu4};
if nusum != 2*m then return lift(0,ZZ);
if nusum == 2*m and numax + numin <= m then return lift(numin,ZZ);
if nusum == 2*m and numax + numin >= m then return lift(m - numax,ZZ)
));
FCurveDotConformalBlockDivisor = method(
TypicalValue=>ZZ)
FCurveDotConformalBlockDivisor(List,ConformalBlockVectorBundle) := (C,V) -> (
if V#"Genus" != 0 then error ///Only implemented for conformal blocks on $\bar{M}_{0,n}$///;
g:=V#"LieAlgebra";
type:=g#"RootSystemType";
m:=g#"LieAlgebraRank";
l:=V#"Level";
w:=V#"Weights";
if #(flatten C) != #w then error "The number of marked points in the F curve does not match the number of weights";
if type=="A" and l==1 and m>1 then return FCurveDotConformalBlockDivisorslml1(C,m+1,l,w);
answer:=0;
pl:=weylAlcove(type,m,l);
d:=0;
r0:=0;
r1:=0;
r2:=0;
r3:=0;
mu0:=0;
mu1:=0;
mu2:=0;
mu3:=0;
lambda0:=0;
lambda1:=0;
lambda2:=0;
lambda3:=0;
W:={};
for m0 from 0 to #pl-1 do (
for m1 from 0 to #pl-1 do (
for m2 from 0 to #pl-1 do (
for m3 from 0 to #pl-1 do (
mu0 = pl_m0;
mu1 = pl_m1;
mu2 = pl_m2;
mu3 = pl_m3;
W = conformalBlockVectorBundle(g,l,{mu0,mu1,mu2,mu3},0);
d = conformalBlockDegreeM04bar(W);
if d == 0 then continue;
lambda0 = append(apply(#(C_0), i -> w_(C_0_i-1)),starInvolution(type,m,mu0));
r0=conformalBlockRank(conformalBlockVectorBundle(g,l,lambda0,0));
if r0==0 then continue;
lambda1 = append(apply(#(C_1), i -> w_(C_1_i-1)),starInvolution(type,m,mu1));
r1=conformalBlockRank(conformalBlockVectorBundle(g,l,lambda1,0));
if r1==0 then continue;
lambda2 = append(apply(#(C_2), i -> w_(C_2_i-1)),starInvolution(type,m,mu2));
r2=conformalBlockRank(conformalBlockVectorBundle(g,l,lambda2,0));
if r2==0 then continue;
lambda3 = append(apply(#(C_3), i -> w_(C_3_i-1)),starInvolution(type,m,mu3));
r3=conformalBlockRank(conformalBlockVectorBundle(g,l,lambda3,0));
if r3!=0 then answer = answer + d*r0*r1*r2*r3
)
)
)
);
return answer
);
---------------------------------------------------------
---------------------------------------------------------
beginDocumentation()
---------------------------------------------------------
---------------------------------------------------------
doc ///
Key
ConformalBlocks
Headline
for vector bundles of conformal blocks on the moduli space of curves
Description
Text
Vector bundles of conformal blocks are vector bundles on the moduli stack of Deligne-Mumford stable n-pointed genus g curves $\bar{M}_{g,n}$ that arise in conformal field theory. Each triple $(\mathbf{g},l,(\lambda_1,...,\lambda_n))$ with $\mathbf{g}$ a simple Lie algebra, $l$ a nonnegative integer called the level, and $(\lambda_1,...,\lambda_n)$ an n-tuple of dominant integral weights of $\mathbf{g}$ specifies a conformal block bundle $V=V(\mathbf{g},l,(\lambda_1,...,\lambda_n))$. This package computes ranks and first Chern classes of conformal block bundles on $\bar{M}_{0,n}$ using formulas from Fakhruddin's paper @TO2{"Bibliography","[Fakh]"}@.
Text
Most of the functions are in this package are for $S_n$ symmetric divisors and/or symmetrizations of divisors, but a few functions are included for non-symmetric divisors as well.
Text
Some of the documentation nodes refer to books, papers, and preprints. Here is a link to the @TO "Bibliography"@.
Text
Between versions 1.x and 2.0, the package was rewritten in a more object-oriented way, and the basic Lie algebra functions were moved into a separate package called @TO "LieTypes::LieTypes"@.
///
doc ///
Key
"Bibliography"
Headline
Bibliography for the ConformalBlocks package
Description
Text
[AS] Alexeev and Swinarski. Nef divisors on $\bar{M}_{0,n}$ from GIT. p. 1–21 in {\it Geometry and arithmetic}, EMS Ser. Congr. Rep., Eur. Math. Soc., Zurich, 2012.
[AGSS] Arap, Gibney, Stankewicz, and Swinarski. $sl_n$ level 1 conformal blocks on $\bar{M}_{0,n}$. Int. Math. Res. Not. {\bf 7} (2012), 1634-1680.
[Beauville] Beauville. Conformal blocks, fusion rules, and the Verlinde formula, (Ramat Gan, 1993), Israel Math. Conf. Proc., vol. 9, Bar-Ilan Univ., Ramat Gan, 1996, pp. 75-96.
[Bourbaki] Bourbaki. Lie Groups and Lie Algebras. Chapters 4-6.
[DMS] Di Francesco, Mathieu, and Senechal. {\it Conformal Field Theory.} Graduate Texts in Contemporary Physics, Springer.
[Fakh] Fakhruddin. Chern classes of conformal blocks. {\it Compact moduli spaces and vector bundles}, 145-176, Contemp. Math., {\bf 564} Amer. Math. Soc., Providence, RI, 2012.
[Humphreys] Humphreys. {\it Introduction to Lie Algebras and Representation Theory.} Graduate Texts in Mathematics, Springer.
[KM] Keel and McKernan. Contractible extremal rays. p. 113-128 in {\it Handbook of Moduli, Vol. II.} Higher Education \& International Press, Beijing-Boston, 2012.
///
doc ///
Key
"standard basis"
Headline
The standard basis of symmetric divisors for the moduli space of stable n-pointed genus zero curves
Description
Text
The standard basis of the $Q$-vector space of $S_n$ symmetric divisors on $\bar{M}_{0,n}$ is given by the boundary divisors $B_i$, as we now explain. Let $\Delta_I$ be the closure of the locus of curves with two irreducible components meeting at one node such that the marked points with labels in $I$ lie on the first component, and the marked points with labels in $I^c$ lie on the second component. Then $B_i= \sum_{\#I=i} \Delta_I$, and the divisors $B_2, ..., B_{[n/2]}$ form a basis of the space of symmetric divisors. See @TO2{"Bibliography","[KM]"}@.
///
doc ///
Key
"F curve"
Headline
F curves in the moduli space of stable n-pointed genus zero curves
Description
Text
Let $P={P_0,P_1,P_2,P_3}$ be a partition of $\{1,...,n\}$ into four nonempty subsets. Fix four (arithmetic) genus zero at worst nodal curves $C_j$ for $j=0,1,2,3$, and $\#(P_j)$ marked points on each curve. We call the curves $C_j$ the tails. Mark one additional point $x_j$ on each tail. Next, consider $\mathbb{P}^1$ with four marked points, $y_0,...,y_3$; we call this the spine. Glue the four tails to the spine by identifying $x_j$ and $y_j$. Then, as the cross ratio of $y_0,...,y_3$ varies, we sweep out a curve $F_{P}$ in $\bar{M}_{0,n}$.
Text
The homology class of $F_{P}$ only depends on the partition $P$, and not on the choice of the tails $C_j$ or the choices of marked points. The classes of the F-curves span $H_2(\bar{M}_{0,n},Q)$.
Text
If we only consider F-curves up to $S_n$ symmetry, then it is enough to keep track of the four integers $\#(P_0)$, $\#(P_1)$, $\#(P_2)$, $\#(P_3)$.
///
doc ///
Key
ConformalBlockVectorBundle
Headline
the class of conformal block vector bundles on the moduli space of n-pointed genus g curves
Description
Text
This type implements conformal block vector bundles on the moduli space of n-pointed genus g curves.
Text
Conformal block vector bundles are implemented as hash tables. The key "LieAlgebra" records the Lie algebra used to define the conformal block. The key "Level" records the level. The key "Weights" records the weights. The key "Genus" records the $g$ in $\bar{M}_{g,n}$. The key "NumberOfPoints" records the number of marked points, i.e., the $n$ in $\bar{M}_{g,n}$.
Text
An object of the "ConformalBlockVectorBundle" class can be created using the function @TO conformalBlockVectorBundle@.
///
doc ///
Key
SymmetricDivisorM0nbar
Headline
the class of S_n symmetric divisors on the moduli space of stable n-pointed genus 0 curves
Description
Text
This type implements $S_n$ symmetric divisors on the moduli space of stable n-pointed genus 0 curves $\bar{M}_{0,n}$.
Text
The @TO "standard basis"@ of the $Q$-vector space of $S_n$ symmetric divisors on $\bar{M}_{0,n}$ is given by the boundary divisors B_i, as we now explain. Let $\Delta_I$ be the closure of the locus of curves with two irreducible components meeting at one node such that the marked points with labels in $I$ lie on the first component, and the marked points with labels in $I^c$ lie on the second component. Then $B_i= \sum_{\#I=i} \Delta_I$, and the divisors $B_2, ..., B_{[n/2]}$ form a basis of the space of symmetric divisors. See @TO2{"Bibliography","[KM]"}@.
Text
Symmetric divisors are implemented as hash tables. The key "NumberOfPoints" records the number of marked points, i.e., the $n$ in $\bar{M}_{0,n}$. The keys must be integers between 2 and $[n/2]$; the value of the key i is the coefficient of $B_i$ when a divisor $D$ is written in the standard basis.
Text
An object of the "SymmetricDivisorM0nbar" class can be created using the function @TO symmetricDivisorM0nbar@ in either one of two ways: by entering $n$ and a linear polynomial in the $B_i$'s, or entering $n$ and a list of coefficients.
Text
Methods are included for adding two symmetric divisors, negating a divisor, multiplying a divisor by a scalar, and testing equality of two divisors. The function @TO coefficientList@ returns the list of the coefficients.
///
doc ///
Key
symmetricDivisorM0nbar
(symmetricDivisorM0nbar,ZZ,List)
(symmetricDivisorM0nbar,ZZ,Expression)
(symmetricDivisorM0nbar,ZZ,IndexedVariable)
Headline
create a symmetric divisor on the moduli space of stable pointed genus 0 curves
Usage
symmetricDivisorM0nbar(n,L), symmetricDivisorM0nbar(n,f)
Inputs
n:ZZ
L:List
Outputs
D:SymmetricDivisorM0nbar
Description
Text
A symmetric divisor on $\bar{M}_{0,n}$ may be created in either one of two ways. The user may either enter the number of marked points $n$ and a linear polynomial in the @TO "standard basis"@ classes $B_i$, or enter $n$ and a list of the coefficients of $D$ in the standard basis. Both usages are demonstrated in the example below.
Example
D=symmetricDivisorM0nbar(6,{2,3})
E=symmetricDivisorM0nbar(6,2*B_2+3*B_3)
D==E
///
TEST ///
assert(symmetricDivisorM0nbar(6,2*B_2+3*B_3) === new SymmetricDivisorM0nbar from {2 => 2, 3 => 3, "NumberOfPoints" => 6})
///
doc ///
Key
(symbol +,SymmetricDivisorM0nbar,SymmetricDivisorM0nbar)
Headline
add two $S_n$ symmetric divisors
Usage
D+E
Inputs
D:SymmetricDivisorM0nbar
E:SymmetricDivisorM0nbar
Outputs
F:SymmetricDivisorM0nbar
Description
Text
Let $Pic(\bar{M}_{0,n})_Q^{S_n}$ denote the vector space of $S_n$-invariant divisors with rational coefficients. Here, given two $S_n$ symmetric $Q$-divisors $D$ and $E$ on $\bar{M}_{0,n}$, the function returns $D+E$.
Example
D=symmetricDivisorM0nbar(6,{1/2,1/3})
E=symmetricDivisorM0nbar(6,2*B_2+3*B_3)
D+E
///
TEST ///
D=symmetricDivisorM0nbar(6,{1,0});
E=symmetricDivisorM0nbar(6,{0,1});
F=symmetricDivisorM0nbar(6,{1,1});
assert(D+E == F)
///
doc ///
Key
(symbol -, SymmetricDivisorM0nbar)
Headline
negate a symmetric divisor
Usage
-D
Inputs
D:SymmetricDivisorM0nbar
Outputs
E:SymmetricDivisorM0nbar
Description
Text
Let $Pic(\bar{M}_{0,n})_Q^{S_n}$ denote the vector space of $S_n$-invariant divisors with rational coefficients. Here, given an $S_n$ symmetric $Q$-divisor $D$ on $\bar{M}_{0,n}$, the function returns $-D$.
Example
D=symmetricDivisorM0nbar(6,{2,3})
E=-D
///
TEST ///
D=symmetricDivisorM0nbar(6,{1,0});
E=symmetricDivisorM0nbar(6,{-1,0});
assert(-D == E)
///
doc ///
Key
(symbol *, Number, SymmetricDivisorM0nbar)
Headline
multiply a symmetric divisor by a number
Usage
c*D
Inputs
c:Number
D:SymmetricDivisorM0nbar
Outputs
E:SymmetricDivisorM0nbar
Description
Text
Let $Pic(\bar{M}_{0,n})_R^{S_n}$ denote the vector space of $S_n$-invariant divisors with coefficients in a ring $R$. Here, given an $S_n$ symmetric $R$-divisor $D$ on $\bar{M}_{0,n}$ and a number $c$, the function returns $cD$.
Example
D=symmetricDivisorM0nbar(6,{2,3})
6*D
///
TEST ///
D=symmetricDivisorM0nbar(6,{2,3});
assert(coefficientList(6*D) === {12,18})
///
doc ///
Key
(symbol ==, SymmetricDivisorM0nbar, SymmetricDivisorM0nbar)
Headline
test equality of two symmetric divisor classes on $\bar{M}_{0,n}$
Usage
D==E
Inputs
D:SymmetricDivisorM0nbar
E:SymmetricDivisorM0nbar
Outputs
b:Boolean
Description
Text
Two objects of type SymmetricDivisorM0nbar are equal if their underlying hash tables have the same pairs.
Example
D=symmetricDivisorM0nbar(6,{2,1})
E=scale symmetricDivisorM0nbar(6,288*B_2+144*B_3)
D==E
///
TEST ///
assert(symmetricDivisorM0nbar(6,{2,1}) == scale symmetricDivisorM0nbar(6,288*B_2+144*B_3))
///
doc ///
Key
coefficientList
(coefficientList,SymmetricDivisorM0nbar)
Headline
the coefficients of a symmetric divisor D in the standard basis
Usage
coefficientList(D)
Inputs
D:SymmetricDivisorM0nbar
Outputs
L:List
SeeAlso
SymmetricDivisorM0nbar
Description
Text
This function returns a list of the coefficients of a symmetric divisor on $\bar{M}_{0,n}$ in the @TO "standard basis"@.
Example
D=symmetricDivisorM0nbar(6,2*B_2+3*B_3)
coefficientList(D)
///
TEST ///
D=symmetricDivisorM0nbar(6,2*B_2+3*B_3);
assert(coefficientList(D) === {2,3})
///
doc ///
Key
scale
(scale,SymmetricDivisorM0nbar)
Headline
reduces a list or divisor by the gcd of its coefficients
Usage
scale(D)
Inputs
D:SymmetricDivisorM0nbar
Outputs
E:SymmetricDivisorM0nbar
Description
Text
Let $D$ be an $S_n$ symmetric $Q$-divisor on $\bar{M}_{0,n}$. This function reduces a symmetric divisor $D$ by the gcd of its coefficients in the @TO "standard basis"@. This gives a canonical representative of each nonzero ray in $Pic(\bar{M}_{0,n})_Q^{S_n}$.
Example
D=symmetricDivisorM0nbar(6,288*B_2+144*B_3)
scale(D)
///
TEST ///
D=symmetricDivisorM0nbar(6,288*B_2+144*B_3)
assert(coefficientList(scale(D)) === {2/1,1/1})
///
doc ///
Key
symmetricCurveDotDivisorM0nbar
(symmetricCurveDotDivisorM0nbar,List,SymmetricDivisorM0nbar)
Headline
the intersection number of a symmetric F-curve C with the symmetric divisor D
Usage
symmetricCurveDotDivisorM0nbar({3,1,1,1},D)
Inputs
C:List
D:SymmetricDivisorM0nbar
Outputs
k:QQ
Description
Text
This function implements the basic formula of @TO2{"Bibliography","[KM]"}@ Corollary 4.4 for intersecting an $S_n$-symmetric @TO "F curve"@ with an $S_n$ symmetric divisor on $\bar{M}_{0,n}$.
Example
D=symmetricDivisorM0nbar(6,2*B_2+B_3)
symmetricCurveDotDivisorM0nbar({3,1,1,1},D)
E=symmetricDivisorM0nbar(6,B_2+3*B_3)
symmetricCurveDotDivisorM0nbar({3,1,1,1},E)
///
TEST ///
assert(symmetricCurveDotDivisorM0nbar({3,1,1,1},symmetricDivisorM0nbar(6,2*B_2+B_3)) === 5)
assert(symmetricCurveDotDivisorM0nbar({3,1,1,1},symmetricDivisorM0nbar(6,B_2+3*B_3)) === 0)
///
doc ///
Key
basisOfSymmetricCurves
(basisOfSymmetricCurves,ZZ)
Headline
produces a basis of symmetric curves
Usage
basisOfSymmetricCurves(8)
Inputs
n:ZZ
Outputs
B:List
Description
Text
This function returns the list of @TO2{"F curve","F curves"}@ $\{F_{1,1,i,n-i-2}: 1 \leq i \leq [n/2]\}$. This set of curves is a basis for $H_2(\bar{M}_{0,n})_{Q}^{S_n}$; see e.g. @TO2{"Bibliography","[AGSS]"}@. The symmetric F-curve $F_{1,1,i,n-i-2}$ is represented by the list of integers \{1,1,i,n-i-2\}.
Example
basisOfSymmetricCurves(8)
///
TEST ///
assert(basisOfSymmetricCurves(8) === {{5, 1, 1, 1}, {4, 2, 1, 1}, {3, 3, 1, 1}})
///
doc ///
Key
symmetricFCurves
(symmetricFCurves,ZZ)
Headline
a list of all symmetric F-curves given n
Usage
symmetricFCurves(8)
Inputs
n:ZZ
Outputs
B:List
Description
Text
This is the list of @TO2{"F curve","F curves"}@ up to $S_n$ symmetry, i.e., this function generates partitions of the integer $n$ into 4 positive integers, not partitions of the set {1,...,n} into four nonempty subsets.
Example
symmetricFCurves(8)
///
TEST ///
assert(symmetricFCurves(8) === {{5, 1, 1, 1}, {4, 2, 1, 1}, {3, 3, 1, 1}, {3, 2, 2, 1}, {2, 2, 2, 2}})
///
doc ///
Key
FdotBjIntMat
(FdotBjIntMat,ZZ)
Headline
matrix of intersection numbers between F-curves and divisors on $\bar{M}_{0,n}$
Usage
FdotBjIntMat(n)
Inputs
n:ZZ
Outputs
M:Matrix
Description
Text
This function produces the matrix of intersection numbers between the @TO "standard basis"@ of $S_n$ symmetric divisors and the most popular basis of $S_n$ symmetric @TO2{"F curve","F curves"}@. Specifically, the i,j-th entry of the matrix is $F_{n-i-2,i,1,1} . B_j$. This matrix can be used for instance to write a divisor in the standard basis if its intersection numbers with the F curves are known. See @TO2{"Bibliography","[AGSS]"}@ Section 4 for explicit formulas.
Text
These intersection numbers are integers, but we create the matrix over the rational numbers so that Macaulay2 will invert it correctly if we want to do so later.
Text
In the example below, we use this function to find the divisor class of an $S_{12}$ symmetric divisor $D$ on $\bar{M}_{0,12}$ such that $D . F_{1,1,i,12-i-2} = 1$ if $i=0$, and 0 otherwise. Then we check that $D$ has the correct intersection numbers.
Example
M=FdotBjIntMat(12)
N=M^-1
v=N*(matrix{{1},{0},{0},{0},{0}})
D=symmetricDivisorM0nbar(12,flatten entries v)
symmetricCurveDotDivisorM0nbar({1,1,1,9},D)
apply(5, i-> symmetricCurveDotDivisorM0nbar({1,1,i+1,12-i-3},D))
///
TEST ///
assert(FdotBjIntMat(12) === matrix {{3/1, -1, 0, 0, 0}, {0, 2, -1, 0, 0}, {1, -1, 2, -1, 0}, {1, 0, -1, 2, -1}, {1, 0, 0, -2, 2}})
///
doc ///
Key
killsCurves
(killsCurves,SymmetricDivisorM0nbar)
Headline
given an S_n symmetric divisor D, produces a list of symmetric F-curves C such that C dot D = 0
Usage
killsCurves(D)
Inputs
D:SymmetricDivisorM0nbar
Outputs
L:List
Description
Text
Given a symmetric divisor D on $\bar{M}_{0,n}$, this function returns the list of symmetric @TO2{"F curve","F curves"}@ $C$ such that $D . C=0$.
Text
Here is an example from the paper @TO2{"Bibliography","[AGSS]"}@: When n is even, the divisor $D^n_{1,n/2}$ is zero on even F-curves and 1 on odd F-curves. (Here the parity of $F_{a,b,c,d}$ is defined to be the parity of the product $abcd$.) In the calculations below, we check this claim for $n=8$.
Example
D=symmetricDivisorM0nbar(8,3*B_2+2*B_3+4*B_4)
killsCurves(D)
///
TEST ///
D=symmetricDivisorM0nbar(8,3*B_2+2*B_3+4*B_4)
assert(killsCurves(D) === {{4, 2, 1, 1}, {3, 2, 2, 1}, {2, 2, 2, 2}})
///
doc ///
Key
isSymmetricFDivisor
(isSymmetricFDivisor,SymmetricDivisorM0nbar)
Headline
checks whether a symmetric divisor intersects all the F-curves nonnegatively
Usage
isSymmetricFDivisor(D)
Inputs
D:SymmetricDivisorM0nbar
Outputs
b:Boolean
Description
Text
We say a symmetric divisor on $\bar{M}_{0,n}$ is a symmetric F-divisor if $D . F_{I_1,I_2,I_3,I_4} \geq 0$ for every @TO "F curve"@.
Text
In the example below, we see that for $n=8$, the divisor $3B_2+2B_3+4B_4$ is a symmetric F-divisor, while the divisor $B_2$ is not.
Example
D=symmetricDivisorM0nbar(8,3*B_2+2*B_3+4*B_4)
isSymmetricFDivisor(D)
D=symmetricDivisorM0nbar(8,B_2)
isSymmetricFDivisor(D)
///
TEST ///
D=symmetricDivisorM0nbar(8,3*B_2+2*B_3+4*B_4)
assert(isSymmetricFDivisor(D) === true)
D=symmetricDivisorM0nbar(8,B_2)
assert(isSymmetricFDivisor(D) === false)
///
doc ///
Key
isExtremalSymmetricFDivisor
(isExtremalSymmetricFDivisor,SymmetricDivisorM0nbar)
Headline
tests whether an S_n symmetric divisor spans an extremal ray of the cone of symmetric F-divisors
Usage
isExtremalSymmetricFDivisor(D)
Inputs
D:SymmetricDivisorM0nbar
Outputs
b:Boolean
Description
Text
We say a symmetric divisor on $\bar{M}_{0,n}$ is a symmetric F-divisor if $D . F \geq 0$ for every @TO "F curve"@.
Text
Let $SF_{0,n}$ denote the cone of all $S_n$ symmetric divisors on $\bar{M}_{0,n}$ that intersect all the F-curves nonnegatively. This cone contains the cone of $S_n$ symmetric nef divisors. (Fulton's F Conjecture predicts that the two cones are equal). See @TO2{"Bibliography","[AGSS]"}@ Section 2 for more details.
Text
This function first checks to see if $D$ is an F-divisor. If not, the function returns false. If so, the function goes on to check whether $D$ is an extremal ray of the cone $SF_{0,n}$. It does so by finding all the F-curves which $D$ intersects in degree zero (i.e., finding how many facets of the cone $D$ lies on) and then checking to see whether this set contains sufficiently many independent hyperplanes to determine an extremal ray.
Text
In the example below, we check that the divisor $3B_2+2B_3+4B_4$ is extremal in the cone $SF_{0,8}$ for $n=8$. We also check that the divisor kappa (see @TO kappaDivisorM0nbar@), which is known to be very ample, is not an extremal ray of $SF_{0,8}$.
Example
D=symmetricDivisorM0nbar(8,3*B_2+2*B_3+4*B_4)
isExtremalSymmetricFDivisor(D)
D=kappaDivisorM0nbar(8)
isExtremalSymmetricFDivisor(D)
///
TEST ///
D=symmetricDivisorM0nbar(8,3*B_2+2*B_3+4*B_4)
assert(isExtremalSymmetricFDivisor(D) === true)
D=kappaDivisorM0nbar(8)
isExtremalSymmetricFDivisor(D)
///
doc ///
Key
canonicalDivisorM0nbar
(canonicalDivisorM0nbar,ZZ)
Headline
returns the class of the canonical divisor on the moduli space of stable n-pointed genus 0 curves
Usage
canonicalDivisorM0nbar(14)
Inputs
n:ZZ
Outputs
K:SymmetricDivisorM0nbar
Description
Text
This function returns the class of the canonical divisor $K$ on the moduli space $\bar{M}_{0,n}$. See e.g. @TO2{"Bibliography","[KM]"}@ for a formula for $K$ in the @TO "standard basis"@.
Example
canonicalDivisorM0nbar(14)
///
TEST ///
assert(coefficientList(canonicalDivisorM0nbar(14)) === {-2/13, 7/13, 14/13, 19/13, 22/13, 23/13})
///
doc ///
Key
kappaDivisorM0nbar
(kappaDivisorM0nbar,ZZ)
Headline
the class of the divisor kappa
Usage
kappaDivisorM0nbar(14)
Inputs
n:ZZ
Outputs
D:SymmetricDivisorM0nbar
Description
Text
On $\bar{M}_{0,n}$, the divisor kappa may be defined by $K + \Delta$, where $K$ is the canonical divisor, and $\Delta$ is the sum of the boundary classes $B_i$. A fun fact is that kappa . $F_{I_1,I_2,I_3,I_4} =1$ for every @TO "F curve"@.
Example
kappaDivisorM0nbar(14)
///
TEST ///
assert(coefficientList(kappaDivisorM0nbar(14)) === {11/13, 20/13, 27/13, 32/13, 35/13, 36/13})
///
doc ///
Key
psiDivisorM0nbar
(psiDivisorM0nbar,ZZ)
Headline
returns the class of the divisor $\Psi$
Usage
psiDivisorM0nbar(14)
Inputs
n:ZZ
Outputs
D:SymmetricDivisorM0nbar
Description
Text
Let $U$ be the universal family over $M=\bar{M}_{0,n}$, let $\omega_{U/M}$ be the relative dualizing sheaf, and let $\sigma_i: M \rightarrow U$ be the sections defining the marked points. The divisors $\psi_i$ are defined by $\psi_i := \sigma_i^*(\omega_{U/M})$. We define the class $\Psi$ by $\Psi = \psi_1 + ... + \psi_n.$
Example
psiDivisorM0nbar(14)
///
TEST ///
assert(coefficientList(psiDivisorM0nbar(14)) === {24/13, 33/13, 40/13, 45/13, 48/13, 49/13})
///
doc ///
Key
conformalBlockVectorBundle
(conformalBlockVectorBundle,LieAlgebra,ZZ,List,ZZ)
Headline
creates an object of class ConformalBlockVectorBundle
Usage
conformalBlockVectorBundle(g,l,w,genus)
Inputs
g:LieAlgebra
l:ZZ
w:List
genus:ZZ
Outputs
V:ConformalBlockVectorBundle
Description
Text
This function creates an object of the type ConformalBlockVectorBundle.
Text
In the example below we create the conformal block bundle $V(sl_3,2,(\omega_1,\omega_1,\omega_1,\omega_2,\omega_2,\omega_2))$ on $\bar{M}_{0,6}$.
Example
sl_3=simpleLieAlgebra("A",2);
V=conformalBlockVectorBundle(sl_3,2,{{1,0},{1,0},{1,0},{0,1},{0,1},{0,1}},0)
///
TEST ///
sl_3=simpleLieAlgebra("A",2);
V=conformalBlockVectorBundle(sl_3,2,{{1,0},{1,0},{1,0},{0,1},{0,1},{0,1}},0)
assert(V#"LieAlgebra" === sl_3)
assert(V#"Level" === 2)
assert(V#"Weights" === {{1,0},{1,0},{1,0},{0,1},{0,1},{0,1}})
assert(V#"NumberOfPoints" === 6)
--assert(V#"Genus"=== 0)
///
doc ///
Key
conformalBlockRank
(conformalBlockRank,ConformalBlockVectorBundle)
Headline
computes the rank of the conformal block vector bundle
Usage
conformalBlockRank(V)
Inputs
V:ConformalBlockVectorBundle
Outputs
r:ZZ
Description
Text
This function uses propagation and factorization to recursively compute ranks in terms of the ranks on $\bar{M}_{0,3}$. These are determined by the so-called fusion rules and are computed via the function @TO "LieTypes::fusionCoefficient"@ in the @TO "LieTypes"@ package. See @TO2{"Bibliography","[Beauville]"}@ for details on these topics.
Text
In the example below we compute the rank of the conformal block bundle $V(sl_3,2,(\omega_1,\omega_1,\omega_2,\omega_2))$.
Example
sl_3=simpleLieAlgebra("A",2);
V=conformalBlockVectorBundle(sl_3,2,{{1,0},{1,0},{0,1},{0,1}},0)
conformalBlockRank(V)
///
TEST ///
sl_3=simpleLieAlgebra("A",2);
V=conformalBlockVectorBundle(sl_3,2,{{1,0},{1,0},{0,1},{0,1}},0)
assert(conformalBlockRank(V)=== 2)
///
doc ///
Key
symmetrizedConformalBlockDivisor
(symmetrizedConformalBlockDivisor,ConformalBlockVectorBundle)
Headline
computes the symmetrization of the first Chern class of a conformal block vector bundle
Usage
symmetrizedConformalBlockDivisor(V)
Inputs
V:ConformalBlockVectorBundle
Outputs
D:SymmetricDivisorM0nbar
Description
Text
This function implements the formula given in @TO2{"Bibliography","[Fakh]"}@ Corollary 3.6. It computes the symmetrization of the first Chern class of a conformal block vector bundle: $\sum_{S_n} c_1 V(\mathbf{g},l,(\lambda_{\sigma 1},...\lambda_{\sigma n}))$.
Text
NEW in Version 2.1: Previously there was a separate, faster function to use in the case that $\lambda_1 = ... = \lambda_n$. However, now this function automatically checks for symmetry and uses the faster formula if applicable, so the user does not need to use two separate functions.
Text
In the example below, we compute the symmetrization of the divisor class of the conformal block bundle $V(sl_4,1,(\omega_1,\omega_1,\omega_2,\omega_2,\omega_3,\omega_3))$.
Example
sl_4 =simpleLieAlgebra("A",3);
V=conformalBlockVectorBundle(sl_4,1,{{1,0,0},{1,0,0},{0,1,0},{0,1,0},{0,0,1},{0,0,1}},0);
D=symmetrizedConformalBlockDivisor(V)
///
TEST ///
sl_4 =simpleLieAlgebra("A",3);
V=conformalBlockVectorBundle(sl_4,1,{{1,0,0},{1,0,0},{0,1,0},{0,1,0},{0,0,1},{0,0,1}},0);
D=symmetrizedConformalBlockDivisor(V)
///
doc ///
Key
conformalBlockDegreeM04bar
(conformalBlockDegreeM04bar,ConformalBlockVectorBundle)
Headline
computes the degree of a conformal block bundle on $\bar{M}_{0,4}$
Usage
conformalBlockDegreeM04bar(V)
Inputs
V:ConformalBlockVectorBundle
Outputs
d:ZZ
Description
Text
This function implements the formula given in @TO2{"Bibliography","[Fakh]"}@ Corollary 3.5 for computing the degree of a conformal block vector bundle $V$ on $\bar{M}_{0,4}$.
Text
The first line of the example below shows that the conformal block bundle $V(sl_3,1,(\omega_1,\omega_1,\omega_2,\omega_2))$ has degree 1 on $\bar{M}_{0,4} \cong \mathbb{P}^1$. The second line shows that this vector bundle is a line bundle. Hence, $V(sl_3,1,(\omega_1,\omega_1,\omega_2,\omega_2))$ is isomorphic to $\mathcal{O}(1)$.
Example
sl_3 = simpleLieAlgebra("A",2);
V=conformalBlockVectorBundle(sl_3,1,{{1,0},{1,0},{0,1},{0,1}},0);
conformalBlockDegreeM04bar(V)
conformalBlockRank(V)
///
TEST ///
sl_3 = simpleLieAlgebra("A",2);
V=conformalBlockVectorBundle(sl_3,1,{{1,0},{1,0},{0,1},{0,1}},0);
assert(conformalBlockDegreeM04bar(V) === 1)
///
doc ///
Key
FCurveDotConformalBlockDivisor
(FCurveDotConformalBlockDivisor,List,ConformalBlockVectorBundle)
Headline
intersection of an F-curve with a conformal block divisor
Usage
FCurveDotConformalBlockDivisor(C,V)
Inputs
C:List
V:ConformalBlockVectorBundle
Outputs
k:ZZ
Description
Text
This function implements the formulas given in @TO2{"Bibliography","[Fakh]"}@ Prop. 2.7 and Cor. 3.5. Note: in contrast with most of the other functions in this package, this function is for UNsymmetrized curves and bundles. The @TO "F curve"@ must be entered as a partition of the set {1,...,n} into four nonempty subsets.
Text
The example below shows that the first Chern class of the conformal block bundle $V(sl_2,1,(1,1,1,1,1,1))$ intersects the F curve $F_{123,4,5,6}$ positively, and intersects $F_{12,34,5,6}$ in degree zero.
Example
sl_2=simpleLieAlgebra("A",1);
V=conformalBlockVectorBundle(sl_2,1,{{1},{1},{1},{1},{1},{1}},0);
FCurveDotConformalBlockDivisor({{1,2,3},{4},{5},{6}},V)
FCurveDotConformalBlockDivisor({{1,2},{3,4},{5},{6}},V)
sl_3=simpleLieAlgebra("A",2);
W=conformalBlockVectorBundle(sl_3,1,{{0,1},{1,0},{1,0},{1,0},{1,0}},0);
FCurveDotConformalBlockDivisor({{4,5},{1},{2},{3}},W)
///
TEST ///
sl_2=simpleLieAlgebra("A",1);
V=conformalBlockVectorBundle(sl_2,1,{{1},{1},{1},{1},{1},{1}},0);
assert( FCurveDotConformalBlockDivisor({{1,2,3},{4},{5},{6}},V) === 1 )
assert( FCurveDotConformalBlockDivisor({{1,2},{3,4},{5},{6}},V) === 0 )
sl_3=simpleLieAlgebra("A",2);
W=conformalBlockVectorBundle(sl_3,1,{{0,1},{1,0},{1,0},{1,0},{1,0}},0);
assert( FCurveDotConformalBlockDivisor({{4,5},{1},{2},{3}},W) === 1 )
///
|