1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665
|
newPackage("DeterminantalRepresentations",
AuxiliaryFiles => false,
Version => "1.3.1",
Date => "November 8, 2021",
Authors => {
{Name => "Justin Chen",
Email => "jchen646@gatech.edu"},
{Name => "Papri Dey",
Email => "papridey@berkeley.edu"}
},
Headline => "determinantal representations",
Keywords => {"Representation Theory", "Commutative Algebra"},
HomePage => "https://github.com/papridey/DeterminantalRepresentations",
PackageExports => {"NumericalAlgebraicGeometry"},
DebuggingMode => false,
Reload => false,
Certification => {
"journal name" => "The Journal of Software for Algebra and Geometry",
"journal URI" => "http://j-sag.org/",
"article title" => "Computing symmetric determinantal representations",
"acceptance date" => "5 December 2019",
"published article URI" => "https://msp.org/jsag/2020/10-1/p02.xhtml",
"published article DOI" => "https://doi.org/10.2140/jsag.2020.10.9",
"published code URI" => "https://msp.org/jsag/2020/10-1/jsag-v10-n1-x02-DeterminantalRepresentations.m2",
"repository code URI" => "http://github.com/Macaulay2/M2/blob/master/M2/Macaulay2/packages/DeterminantalRepresentations.m2",
"release at publication" => "f3c4030a3e66ae51f54ec24a89e1d5b1992a82eb", -- git commit number in hex
"version at publication" => "1.3.0",
"volume number" => "10",
"volume URI" => "https://msp.org/jsag/2020/10-1/"
}
)
export {
"detRep",
"HyperbolicPt",
"bivariateDiagEntries",
"orthogonalFromOrthostochastic",
"linesOnCubicSurface",
"doubleSixes",
"generalizedMixedDiscriminant",
"roundMatrix",
"realPartMatrix",
"hadamard",
"coeffMatrices",
"isOrthogonal",
"isDoublyStochastic",
"randomIntegerSymmetric",
"randomOrthogonal",
"randomPSD",
"randomUnipotent",
"cholesky",
"companionMatrix"
}
detRep = method(Options => {
Tolerance => 1e-6,
HyperbolicPt => null,
Software => M2engine})
detRep RingElement := List => opts -> f -> (
(n, d) := (#support f, first degree f);
if d == 2 then quadraticDetRep(f, Tolerance => opts.Tolerance)
else if n == 2 then bivariateDetRep(f, Tolerance => opts.Tolerance, Software => opts.Software)
else if n == 3 then trivariateDetRep(f, opts)
else if n == 4 and d == 3 then cubicSurfaceDetRep(f, Tolerance => opts.Tolerance)
else error "Currently only implemented for quadrics, plane curves, and cubic surfaces"
)
-- Quadratic case
quadraticDetRep = method(Options => {Tolerance => 1e-6})
quadraticDetRep RingElement := Matrix => opts -> f -> (
if first degree f > 2 then error "Not a quadratic polynomial";
R := ring f;
n := #gens R;
k := ultimate(coefficientRing, R);
b := sub(last coefficients(f, Monomials => gens R), k);
A := sub(matrix table(n, n, (i,j) -> if i == j then (last coefficients(f, Monomials => {R_i^2}))_(0,0) else (1/2)*(last coefficients(f, Monomials => {R_i*R_j}))_(0,0)), k);
Q := (1/4)*b*transpose(b) - A;
E := clean(opts.Tolerance, eigenvectors(Q, Hermitian => true));
if all(E#0, e -> e >= 0) and #select(E#0, e -> not(e == 0)) <= 3 then (
posEvalues := positions(E#0, e -> e > 0);
posEvectors := apply(posEvalues, i -> (E#0#i,matrix E#1_i));
r := (1/2)*b + sqrt(posEvectors#0#0)*posEvectors#0#1;
s := (1/2)*b - sqrt(posEvectors#0#0)*posEvectors#0#1;
t := if #posEvalues >= 2 then sqrt(posEvectors#1#0)*posEvectors#1#1 else 0*b;
u := if #posEvalues == 3 then sqrt(posEvectors#2#0)*posEvectors#2#1 else 0*b;
L := apply(n, i -> matrix{{r_(i,0),t_(i,0) - ii*u_(i,0)},{t_(i,0)+ii*u_(i,0),s_(i,0)}});
if not class k === ComplexField then L = L/realPartMatrix/clean_(opts.Tolerance);
if k === QQ then L = L/roundMatrix_(ceiling(log_10(1/opts.Tolerance)));
{id_(R^2) + sum apply(n, i -> R_i*sub(L#i, R))}
) else (
E = clean(opts.Tolerance, eigenvectors(A, Hermitian => true));
if any(E#0, e -> e > 0) then ( print "No determinantal representation"; return; );
C := cholesky((-1)*A, opts);
if not class k === ComplexField then C = clean(opts.Tolerance, realPartMatrix C);
if k === QQ then C = roundMatrix(ceiling(log_10(1/opts.Tolerance)), C);
{(id_(R^n) | transpose C*transpose vars R) || ((vars R*C) | matrix{{1+(vars R)*b}})}
)
)
-- Bivariate code
cubicBivariateDetRep = method(Options => options quadraticDetRep)
cubicBivariateDetRep RingElement := List => opts -> f -> (
eps := opts.Tolerance;
R := ring f;
k := ultimate(coefficientRing, R);
(D1, D2, diag1, diag2) := bivariateDiagEntries(f, opts)/entries/flatten;
if first degree f > 3 then error "Not a cubic polynomial";
S := RR(monoid[getSymbol "q"]);
varSet := support f;
if #uniqueUpToTol(D1, opts) == 1 or #uniqueUpToTol(D2, opts) == 1 then (
return {id_(R^3)+R_0*sub(diagonalMatrix D1,R)+R_1*sub(diagonalMatrix D2,R)};
);
q21 := (diag2#1-D2#2-S_0*(D2#1-D2#2))/(D2#0-D2#2);
q12 := (diag1#1-D1#2-S_0*(D1#1-D1#2))/(D1#0-D1#2);
q11 := (diag2#0-D2#2-q12*(D2#1-D2#2))/(D2#0-D2#2);
q22 := S_0;
if not clean(eps, q11 - (diag1#0-D1#2-q21*(D1#1-D1#2))/(D1#0-D1#2)) == 0 then print "Not compatible";
Q := clean(eps, matrix{{q11,q12,1-q12-q11},{q21,q22,1-q21-q22},{1-q11-q21,1-q12-q22,1-(1-q11-q12)-(1-q21-q22)}});
oEq := ((q11-1)*(q22-1) + (q21-1)*(q12-1) - 1)^2 - 4*q11*q22*q12*q21;
L0 := apply(if clean(eps, oEq) == 0 then {0} else eigenvalues companionMatrix oEq, r -> realPartMatrix sub(Q, S_0=>r));
L := flatten apply(select(clean(eps, L0), isDoublyStochastic), M -> orthogonalFromOrthostochastic(M, opts));
if k === QQ then (
numDigits := ceiling(-log_10(eps));
(D1, D2) = (D1/round_numDigits, D2/round_numDigits);
L = L/roundMatrix_numDigits;
);
(D1, D2) = (D1, D2)/diagonalMatrix_k;
L = uniqueUpToTol(apply(L, M -> {D1, M*D2*transpose M}), opts);
apply(if k === QQ then L else clean(eps, L), l -> id_(R^3) + sum apply(#l, i -> varSet#i*sub(l#i, R)))
)
orthogonalFromOrthostochastic = method(Options => options quadraticDetRep)
orthogonalFromOrthostochastic Matrix := List => opts -> M -> (
if min(flatten entries M) < 0 then return {};
N := matrix apply(entries M, r -> r/sqrt);
d := numrows M;
sgn := drop(sort toList((set{1,-1}) ^** (d-1))/deepSplice/toList, -1);
validRows := {{{N^{0}}}};
for i from 1 to numrows N-1 do (
validRows = flatten apply(validRows, rowset -> apply(select(sgn/(S -> hadamard(matrix{{1} | S}, N^{i})), candidate -> clean(opts.Tolerance, matrix rowset * transpose candidate) == 0), r -> append(rowset, {r})));
);
unique validRows/matrix
)
-- General bivariate case
bivariateDetRep = method(Options => options quadraticDetRep ++ {Software => M2engine, Strategy => "DirectSystem"})
bivariateDetRep RingElement := List => opts -> f -> (
eps := opts.Tolerance;
R := ring f;
d := first degree f;
k := ultimate(coefficientRing, R);
if isHomogeneous f then (
(x, y) := toSequence support f;
g := sub(f, x => 1);
Z := toList(d-(first degree g):0) | apply(eigenvalues companionMatrix g, r -> -1/r);
if not all(Z, z -> clean(eps, z - realPart z) == 0) then error "Not a real zero polynomial";
return {(x*id_(R^d) + y*sub(realPartMatrix diagonalMatrix Z, R))};
);
(D1, D2, diag1, diag2) := bivariateDiagEntries(f, Tolerance => eps);
y = getSymbol "y";
(A1, A2) := (D1, D2)/(M -> sub(diagonalMatrix M, R));
matrixList := if opts.Strategy == "DirectSystem" then ( -- via solving polynomial system numerically
S := R/(ideal gens R)^(d+1);
mons := lift(super basis(ideal(S_1^2)), R);
C := last coefficients(f, Monomials => mons);
T := RR(monoid[y_1..y_(binomial(d,2))]);
S = T(monoid[gens R]);
A := genericSkewMatrix(T, d);
B := matrix table(d, d, (i,j) -> if i == j then diag2_(i,0) else A_(min(i,j),max(i,j)));
G := det(id_(S^d) + S_0*sub(diagonalMatrix D1, S) + S_1*sub(B, S));
C1 := last coefficients(G, Monomials => sub(mons, S)) - sub(C, S);
P := polySystem sub(clean(eps, C1), T);
if debugLevel > 0 then print ("Solving " | binomial(d,2) | " x " | binomial(d,2) | " polynomial system ...");
sols := select(solveSystem(P, Software => opts.Software), p -> not status p === RefinementFailure);
realSols := realPoints apply(sols, p -> point{p#Coordinates/clean_eps});
indices := sort subsets(d, 2);
H := hashTable apply(binomial(d,2), i -> indices#i => i);
apply(realSols/(p -> p#Coordinates/realPart), sol -> matrix table(d, d, (i,j) -> if i == j then (diag2_(i,0))_R else sol#(H#{min(i,j),max(i,j)})))
) else if opts.Strategy == "Orthogonal" then ( -- via orthogonal matrices
T = RR(monoid[y_0..y_(d^2-1)]);
A = genericMatrix(T,d,d);
L := minors(1, (transpose A)*D1-diag1)+minors(1, A*D2-diag2);
allOnes := transpose matrix{apply(d, i -> 1_T)};
rowsum := minors(1, A*allOnes - allOnes);
colsum := minors(1, (transpose A)*allOnes - allOnes);
J := minors(1, A*transpose A - id_(T^d)) + sub(L + rowsum + colsum, apply(gens T, v -> v => v^2));
if debugLevel > 0 then print "Computing orthogonal matrices numerically ...";
N := numericalIrreducibleDecomposition(J, Software => opts.Software);
realSols = realPoints apply(N#0, W -> point{W#Points#0#Coordinates/clean_eps});
apply(realSols/(p -> sub(matrix pack(d, p#Coordinates/realPart), R)), M -> transpose M*A2*M)
);
if k === QQ then matrixList = matrixList/roundMatrix_(ceiling(-log_10(eps)));
apply(matrixList, M -> sum{id_(R^d), R_0*A1, R_1*M})
)
-- Helper functions for bivariate case
bivariateDiagEntries = method(Options => options quadraticDetRep)
bivariateDiagEntries RingElement := Sequence => opts -> f -> ( -- returns diagonal entries and eigenvalues of coefficient matrices
d := first degree f;
k := coefficientRing ring f;
V := support f;
if #V > 2 then error "Not a bivariate polynomial";
(R1, R2) := (k(monoid[V#0]), k(monoid[V#1]));
(f1, f2) := (sub(sub(f, V#1 => 0), R1), sub(sub(f, V#0 => 0), R2));
(r1, r2) := (f1, f2)/companionMatrix/eigenvalues;
D1 := reverse sort(apply(r1,r -> -1/r) | toList(d-#r1:0));
D2 := reverse sort(apply(r2,r -> -1/r) | toList(d-#r2:0));
apply(D1 | D2, r -> (
imPart := clean(opts.Tolerance, imaginaryPart r);
if not imPart == 0 then (
print("Imaginary part " | toString(imPart) | " exceeded tolerance for real-rootedness");
error("Not a real zero polynomial - no monic symmetric determinantal representation of size " | d);
);
));
(D1, D2) = (D1/realPart, D2/realPart);
if #uniqueUpToTol(D1, opts) == 1 or #uniqueUpToTol(D2, opts) == 1 then return (D1, D2, {}, {})/(L -> transpose matrix{L});
C1 := realPartMatrix sub(last coefficients(f, Monomials=>apply(d, i -> V#0*V#1^i)),k);
G1 := sub(matrix table(d,d,(i,j) -> sum apply(subsets(toList(0..<d)-set{j},i), s -> product(D2_s))), RR);
diag1 := addScaleToMajorize(flatten entries solve(G1, sub(C1, RR), ClosestFit => true), D1, G1, opts);
C2 := realPartMatrix sub(last coefficients(f, Monomials=>apply(d, i -> V#0^i*V#1)),k);
G2 := sub(matrix table(d,d,(i,j) -> sum apply(subsets(toList(0..<d)-set{j},i), s -> product(D1_s))), RR);
diag2 := addScaleToMajorize(flatten entries solve(G2, sub(C2, RR), ClosestFit => true), D2, G2, opts);
(D1, D2, diag1, diag2)/(L -> transpose matrix{L})
)
addScaleToMajorize = method(Options => options quadraticDetRep)
addScaleToMajorize (List, List, Matrix) := List => opts -> (v, w, A) -> (
if isMajorized(v, w, opts) then return v;
K := gens ker A;
if clean(opts.Tolerance, K) == 0 then error (toString(w) | " cannot be majorized by " | toString(v));
(w, K) = (rsort w, flatten entries K);
ineqs := apply(select(subsets(#K), s -> clean(opts.Tolerance, sum K_s) != 0), s -> (K_s, w_(toList(0..<#s)) - v_s)/sum);
tmax := min apply(select(ineqs, p -> p#0 > 0), p -> p#1/p#0);
tmin := max apply(select(ineqs, p -> p#0 < 0), p -> p#1/p#0);
if tmin > tmax then error (toString(w) | " cannot be majorized by " | toString(v));
t1 := 0.5*(tmax + tmin);
t0 := if tmax - tmin >= 1 then ( if floor t1 >= tmin then floor t1 else ceiling t1 ) else t1;
v + t0*K
)
isMajorized = method(Options => options quadraticDetRep)
isMajorized (List, List) := Boolean => opts -> (v, w) -> ( -- true if v is majorized by w
(v,w) = (v,w)/rsort;
if not clean(opts.Tolerance, sum v - sum w) == 0 then return false;
all(#v, k -> clean(opts.Tolerance, sum(w_{0..k}) - sum(v_{0..k})) >= 0)
)
-- Trivariate case
trivariateDetRep = method(Options => options detRep)
trivariateDetRep RingElement := List => opts -> f -> (
V := support f;
if #V > 3 or not isHomogeneous f then error "Expected a homogeneous polynomial in 3 variables";
(k, d, x) := (coefficientRing ring f, first degree f, V#0);
(e, eps) := (opts.HyperbolicPt, opts.Tolerance);
A := if e =!= null then sub(realPartMatrix(e | random(k^3,k^2)), k) else id_(k^3);
F := sub(f, matrix{V}*A);
c := last coefficients(F, Monomials => {x^d});
if c == 0 then error "Expected polynomial to be hyperbolic with respect to (1,0,0). Try specifying a point with the option HyperbolicPt";
c = sub(c_(0,0), k);
c0 := if k === QQ and (odd d or c > 0) then lift(c^(1/d), QQ) else c^(1/d);
F = 1/c*sub(sub(F, x => 1), k(monoid[delete(x,V)]));
reps := if d == 3 then cubicBivariateDetRep(F, Tolerance => eps) else bivariateDetRep(F, Software => opts.Software, Tolerance => eps);
reps = apply(reps, r -> sub(c0*homogenize(sub(r, ring f), x), matrix{V}*(id_(k^3) // A)));
if k === QQ then reps else reps/clean_eps
)
-- Cubic surface
linesOnCubicSurface = method(Options => options quadraticDetRep)
linesOnCubicSurface RingElement := List => opts -> f -> (
if not(isHomogeneous f and (degree f)#0 == 3 and #gens ring f == 4) then error "Expected a homogeneous cubic in 4 variables";
a := symbol a;
R0 := CC(monoid[a_0..a_3]);
R := R0(monoid[gens ring f]);
f = sub(f, R);
allLines := uniqueUpToTol(flatten apply(subsets(gens R, 2), s -> (
(z, w) := toSequence(gens R - set s);
F := sub(f, {z => R0_0*s#0 + R0_1*s#1, w => R0_2*s#0 + R0_3*s#1});
I := sub(ideal last coefficients F, R0);
sols := solveSystem polySystem I;
apply(sols/(p -> clean(opts.Tolerance, p#Coordinates)), p -> matrix{insert(index w, 0, insert(index z, -1, {p#0,p#1})), insert(index w, -1, insert(index z, 0, {p#2,p#3}))})
)), opts);
uniqueLines := {};
for l in allLines do if all(uniqueLines, m -> numericalRank(m || l) > 2) then uniqueLines = append(uniqueLines, l);
uniqueLines
)
-- doubleSix = method(Options => options quadraticDetRep)
-- doubleSix List := List => opts -> lineSet -> (
-- eps := opts.Tolerance;
-- L := lineSet#0;
-- meetL := select(delete(L, lineSet), l -> clean(eps, det(L || l)) == 0);
-- skewL := delete(L, lineSet) - set meetL;
-- (excepDivs, candSet, j) := ({0}, {}, 0);
-- for i to 3 do (
-- candSet = toList(1..#skewL-1) - set excepDivs;
-- j = position(candSet, k -> all(excepDivs, e -> not clean(eps, det(skewL#e || skewL#k)) == 0));
-- if j === null then ( print "Found no exceptional divisor"; break; );
-- excepDivs = append(excepDivs, candSet#j);
-- );
-- excepDivs = toList apply(5, i -> skewL#(excepDivs#i));
-- conic0 := (select(skewL_{5..15}, l -> all(excepDivs, e -> clean(eps, det(l || e)) == 0)))#0;
-- conics := {};
-- for i to 4 do (
-- candSet = toList(0..#meetL-1) - set conics;
-- j = position(candSet, k -> #select(excepDivs, e -> clean(eps, det(e || meetL#k)) == 0) == 4);
-- if j === null then ( print "Found no conic"; break; );
-- conics = append(conics, candSet#j);
-- );
-- ds := {{L} | excepDivs, {conic0} | toList apply(5, i -> meetL#(conics#i))};
-- {ds#0, (ds#1)_(inversePermutation apply(6, i -> position(ds#0, l -> not clean(eps, det(l || ds#1#i)) == 0)))}
-- )
-- doubleSix RingElement := List => opts -> f -> doubleSix(linesOnCubicSurface f, opts)
doubleSixes = method(Options => options quadraticDetRep)
doubleSixes List := List => opts -> lineSet -> (
eps := opts.Tolerance;
H := hashTable apply(lineSet, l -> l => select(delete(l,lineSet), m -> clean(eps, det(l || m)) != 0));
skewPairs := select(subsets(lineSet,2), s -> clean(eps, det(s#0 || s#1)) != 0);
skewPairHash := hashTable apply(skewPairs, s -> s => set(H#(s#0)) * set(H#(s#1)));
ds := {};
for s in skewPairs do (
if #unique(ds/set) >= 72 then break;
for t in subsets(toList skewPairHash#s,4) do if all(subsets(t,2), u -> clean(eps, det(u#0 || u#1)) != 0) then ds = append(ds, s | t);
);
ds = (unique(ds/set))/toList;
for i to 35 list (
l0 := first ds;
l1 := first select(drop(ds, 1), s -> all(s, l -> #select(l0, m -> clean(eps, det(m || l)) == 0) == 5));
ds = ds - set{l0,l1};
{l0, apply(#l1, i -> first select(l1, l -> clean(eps, det(l || l0#i)) != 0))}
)
)
cubicSurfaceDetRep = method(Options => options quadraticDetRep)
cubicSurfaceDetRep (RingElement, List) := Matrix => opts -> (f, lineSet) -> (
ds := first doubleSixes(lineSet, opts);
tritangents := apply({{0,1},{1,2},{2,0},{0,2},{1,0},{2,1}}, s -> approxKer(ds#1#(s#0) || ds#0#(s#1)));
tritangents = apply(tritangents, p -> if p == 0 then 0_(ring f) else (vars ring f*p)_(0,0));
matrix{{0, tritangents#0, tritangents#3}, {tritangents#4, 0, tritangents#1}, {tritangents#2, tritangents#5, 0}}
)
cubicSurfaceDetRep RingElement := Matrix => opts -> f -> cubicSurfaceDetRep(f, linesOnCubicSurface f, opts)
-- Generalized mixed discriminant
generalizedMixedDiscriminant = method()
generalizedMixedDiscriminant List := RingElement => L -> (
T := tally L;
m := #keys T;
k := #L;
n := numcols L#0;
Sk := subsets(n, k);
Skv := unique permutations flatten apply(m, i -> toList((T#((keys T)#i)):i));
sum flatten table(Sk, Skv, (alpha, sigma) -> det matrix table(k, k, (i,j) -> ((keys T)#(sigma#i))_(alpha#i,alpha#j)))
)
-- General helper functions
uniqueUpToTol = method(Options => options quadraticDetRep)
uniqueUpToTol List := List => opts -> L -> delete(null, apply(#L, i -> if not any(i, j -> areEqual(L#i, L#j, opts)) then L#i))
clean (RR,BasicList) := BasicList => (eps, L) -> L/clean_eps
isHomogeneous RR := x -> true
round (ZZ,CC) := (n,x) -> round(n, realPart x) + ii*round(n,imaginaryPart x)
round (ZZ,ZZ) := (n,x) -> x
roundMatrix = method() -- only accepts real matrices
roundMatrix (ZZ, Matrix) := Matrix => (n, A) -> matrix apply(entries A, r -> r/(e -> (round(n,0.0+e))^QQ))
realPartMatrix = method()
realPartMatrix Matrix := Matrix => A -> matrix apply(entries A, r -> r/realPart)
approxKer = method(Options => options quadraticDetRep)
approxKer Matrix := Matrix => opts -> A -> (
d := numcols A;
(S,U,Vh) := SVD A;
n := #select(S, s -> clean(opts.Tolerance, s) == 0);
conjugate transpose Vh^{d-n..d-1}
)
hadamard = method()
hadamard (Matrix, Matrix) := Matrix => (A, B) -> (
if not(numcols A == numcols B and numrows A == numrows B) then error "Expected same size matrices";
matrix table(numrows A, numcols A, (i,j) -> A_(i,j)*B_(i,j))
)
coeffMatrices = method()
coeffMatrices Matrix := List => M -> (
V := gens ring M;
(m, n) := (numrows M, numcols M);
apply(V, v -> matrix table(m, n, (i,j) -> last coefficients(M_(i,j), Monomials => {v})))
)
-- Tests for matrix classes
isOrthogonal = method(Options => options quadraticDetRep)
isOrthogonal Matrix := Boolean => opts -> A -> (
if not numcols A == numrows A then (
if debugLevel > 0 then print "Not a square matrix";
return false;
);
delta := A*transpose A - id_((ring A)^(numcols A));
if instance(class 1_(ultimate(coefficientRing, ring A)), InexactFieldFamily) then delta = clean(opts.Tolerance, delta);
delta == 0
)
isDoublyStochastic = method(Options => options quadraticDetRep)
isDoublyStochastic Matrix := Boolean => opts -> A -> (
n := numcols A;
if not numrows A == n then ( if debugLevel > 0 then print "Not a square matrix"; return false; );
if not class(ultimate(coefficientRing, ring A)) === RealField then ( if debugLevel > 0 then print "Not a real matrix"; return false; );
if not min flatten entries A >= 0 then ( if debugLevel > 0 then print "Not all entries are nonnegative"; return false; );
v := matrix{toList(n:1_RR)};
if not clean(opts.Tolerance, v*A - v) == 0 and clean(opts.Tolerance, A*transpose v - transpose v) == 0 then ( if debugLevel > 0 then print "Not doubly stochastic"; return false; );
true
)
-- Construct various types of matrices
randomIntegerSymmetric = method()
randomIntegerSymmetric (ZZ, Ring) := Matrix => (d, R) -> (
A := random(ZZ^d,ZZ^d);
sub(A + transpose A, R)
)
randomIntegerSymmetric ZZ := Matrix => d -> randomIntegerSymmetric(d, ZZ)
randomOrthogonal = method()
randomOrthogonal (ZZ, Thing) := Matrix => (n, R) -> (
k := if instance(R, InexactFieldFamily) then R else ultimate(coefficientRing, R);
A := random(k^n, k^n);
S := A - transpose A;
sub((-1)*(id_(k^n) // (S - id_(k^n)))*(S + id_(k^n)), R)
)
randomOrthogonal ZZ := Matrix => n -> randomOrthogonal(n, RR)
randomPSD = method()
randomPSD (ZZ, ZZ, RR) := Matrix => (n, r, s) -> (
if r > n then error "Expected rank to be less than size";
O := randomOrthogonal(n, RR);
transpose O*diagonalMatrix(toList apply(r, i -> random(0.0, s)) | toList(n-r:0))*O
)
randomPSD (ZZ, RR) := Matrix => (n, s) -> randomPSD(n, n, s)
randomPSD (ZZ, ZZ) := Matrix => (n, r) -> randomPSD(n, r, 1.0)
randomPSD ZZ := Matrix => n -> randomPSD(n, n, 1.0)
randomUnipotent = method()
randomUnipotent (ZZ, Thing) := Matrix => (n, R) -> (
k := if instance(R, InexactFieldFamily) then R else ultimate(coefficientRing, R);
sub(matrix table(n, n, (i,j) -> if i == j then 1_k else if i < j then random k else 0), R)
)
randomUnipotent ZZ := Matrix => n -> randomUnipotent(n, QQ)
cholesky = method(Options => options quadraticDetRep)
cholesky Matrix := Matrix => opts -> A -> (
n := numcols A;
if not n == numrows A then error "Expected square matrix";
if not clean(opts.Tolerance, A - transpose A) == 0 then error "Expected symmetric matrix";
if min clean(opts.Tolerance, eigenvalues A) < 0 then error "Expected positive semidefinite matrix";
L := new MutableHashTable;
for i from 0 to n-1 do (
for j from 0 to i do (
L#(i,j) = if i == j then sqrt(max(0, A_(i,j) - sum apply(j, k -> (L#(j,k))^2)))
else if L#(j,j) == 0 then 0 else (1/L#(j,j))*(A_(i,j) - sum apply(j, k -> L#(i,k)*L#(j,k)));
)
);
clean(opts.Tolerance, matrix table(n, n, (i,j) -> if i >= j then L#(i,j) else 0))
)
companionMatrix = method()
companionMatrix RingElement := Matrix => f -> (
(n, k, x) := ((degree f)#0, coefficientRing ring f, (support f)#0);
C := sub(last coefficients(f, Monomials => apply(n+1, i -> x^i)), k);
(map(k^1,k^(n-1),0) || id_(k^(n-1))) | (submatrix'(-C, {n}, )*inverse C^{n})
)
-- Documentation --
-- <<docTemplate
beginDocumentation()
doc ///
Key
DeterminantalRepresentations
Headline
computing determinantal representations of polynomials
Description
Text
The goal of this package is to compute symmetric determinantal representations of
real polynomials. A polynomial $f$ in $\mathbb{R}[x_1, \ldots, x_n]$
of total degree $d$ (not necessarily homogeneous) is called determinantal if $f$
is the determinant of a matrix of linear forms - in other words, there exist
matrices $A_0, \ldots, A_n\in \mathbb{R}^{d\times d}$ such that
$f(x_1, \ldots, x_n) = det(A_0 + x_1A_1 + \ldots + x_nA_n)$. The matrix pencil
$A_0 + x_1A_1 + \ldots + x_nA_n$ is said to give a determinantal representation
of $f$ of size $d$. If the matrices $A_i$ can be chosen to be all symmetric, then
the determinantal representation is called symmetric. The determinantal
representation is called definite if $A_0$ is positive definite, and monic if
$A_0 = I_d$ is the identity matrix.
Deciding whether or not a degree $d$ polynomial has a determinantal
representation of size $d$ is in general difficult, and computing such a
representation even more so. Computing (monic) symmetric determinantal
representations (even in 2 variables) is of interest owing to a connection with
real-zero and hyperbolic polynomials, due to a celebrated theorem of
Helton-Vinnikov. In general, determinantal polynomials also have connections to
convex algebraic geometry and semidefinite programming.
Currently, the functions in this package are geared towards computing monic
symmetric determinantal representations of quadrics, as well as plane curves of
low degree (i.e., cubics and quartics). The algorithms implemented in this
package can be found in [1], [2].
Additionally, a number of helper functions are included for creating/working
with various classes of matrices, which may be of general interest (and
are not limited to the scope of determinantal representations). These include:
creating/testing orthogonal, symmetric, doubly stochastic, unipotent, and
positive semidefinite matrices, Hadamard products, Cholesky decomposition,
and lifting/rounding matrices from @TO CC@ to @TO RR@/@TO QQ@.
Text
{\bf References}:
Code
UL {
HREF {"http://arxiv.org/abs/1708.09559", "[1] Dey, P., Definite Determinantal Representations via Orthostochastic Matrices, arXiv:1708.09559"},
HREF {"http://arxiv.org/abs/1708.09557", "[2] Dey, P., Definite Determinantal Representations of Multivariate Polynomials, arXiv:1708.09557"}
}
///
doc ///
Key
detRep
(detRep, RingElement)
[detRep, Tolerance]
Headline
compute determinantal representations
Usage
detRep f
detRep(f, Tolerance => 1e-6)
Inputs
f:RingElement
a polynomial with real coefficients
Outputs
:List
of matrices, each giving a determinantal representation of $f$
Description
Text
This method is a wrapper function for the various methods implemented in this
package. Currently it accepts quadrics (in any number of variables), bivariate
polynomials or homogeneous trivariate polynomials, and cubic polynomials in
4 variables. By default, all polynomials are assumed to have real coefficients.
For any polynomial falling in one of these categories, the user may call this method,
and the correct algorithm will be automatically applied. For details on each case,
see the pages below.
SeeAlso
"Determinantal representations of quadrics"
"Determinantal representations of bivariate polynomials"
"Determinantal representations of hyperbolic plane cubics"
///
doc ///
Key
"Determinantal representations of quadrics"
Usage
detRep f
detRep(f, Tolerance => 1e-6)
Inputs
f:RingElement
a quadric with real coefficients
Outputs
:Matrix
giving a determinantal representation of $f$
Description
Text
This page demonstrates how the method @TO detRep@ computes a monic
symmetric determinantal representation of a real quadric $f$ (in any number of
variables), or returns false if no such representation exists.
If a quadratic determinantal representation of size $2$ exists, then it is
returned. Otherwise, the method will find a determinantal representation of size
$n+1$, where $n$ is the number of variables (if it exists). If no monic symmetric
determinantal representation exists, then @TO null@ is returned.
When working over an @TO InexactFieldFamily@ like @TO RR@ or
@TO CC@, the option {\tt Tolerance} can be used to specify the internal
threshold for checking equality (any floating point number below the tolerance
is treated as numerically zero).
Example
R = RR[x1, x2, x3, x4]
f = 260*x1^2+180*x1*x2-25*x2^2-140*x1*x3-170*x2*x3-121*x3^2+248*x1*x4+94*x2*x4-142*x3*x4+35*x4^2+36*x1+18*x2+2*x3+20*x4+1
A = first detRep f
clean(1e-10, f - det A)
g = -61*x1^2-96*x1*x2-177*x2^2-126*x1*x3-202*x2*x3-86*x3^2-94*x1*x4-190*x2*x4-140*x3*x4-67*x4^2+8*x1+3*x2+5*x3+3*x4+1
B = first detRep g
clean(1e-10, g - det B)
SeeAlso
detRep
///
doc ///
Key
bivariateDiagEntries
(bivariateDiagEntries, RingElement)
[bivariateDiagEntries, Tolerance]
Headline
computes diagonal entries and eigenvalues for a determinantal representation of a bivariate polynomial
Usage
bivariateDiagEntries f
bivariateDiagEntries(f, Tolerance => 1e-6)
Inputs
f:RingElement
a bivariate polynomial with real coefficients
Outputs
:Sequence
of eigenvalues and diagonal entries of a determinantal representation of $f$
Description
Text
This method computes the eigenvalues and diagonal entries of a monic
symmetric determinantal representation of a real bivariate polynomial $f$, or
gives an error if certain necessary conditions for existence of such a
representation are not met. For a symmetric determinantal representation
$f = det(I + x_1A_1 + x_2A_2)$, this method computes diagonal entries and
eigenvalues of $A_1$ and $A_2$. The output is a 4-tuple of column vectors:
(eigenvalues of A_1, eigenvalues of $A_2$, diagonal entries of $A_1$,
diagonal entries of $A_2$).
When working over an @TO InexactFieldFamily@ like @TO RR@ or
@TO CC@, the option {\tt Tolerance} can be used to specify the internal
threshold for checking equality (any floating point number below the tolerance
is treated as numerically zero).
Example
R = RR[x1, x2]
f = 15*x1^2 + 20*x1*x2 - 36*x2^2 + 20*x1 + 16*x2 + 1
bivariateDiagEntries f
SeeAlso
detRep
"Determinantal representations of bivariate polynomials"
"Determinantal representations of hyperbolic plane cubics"
///
doc ///
Key
"Determinantal representations of bivariate polynomials"
[detRep, Software]
Description
Text
This page demonstrates how the method @TO detRep@ computes a
monic symmetric determinantal representation of a bivariate polynomial,
if such a representation exists.
First, if the polynomial $f$ is homogeneous, then over
@TO CC@, $f$ splits as a product of linear forms, and it
admits a real symmetric determinantal representation if and only if
all the linear factors are defined over @TO RR@. If
this is the case, this method returns the diagonal matrix
of linear factors of $f$, which is a symmetric determinantal
representation:
Example
R = RR[x,y]
detRep(x^2 - 3*y^2)
detRep(x^5+6*x^4*y-2*x^3*y^2-36*x^2*y^3+x*y^4+30*y^5)
Text
Here it is assumed that the dehomogenization of $f$ (with
respect to the first variable in its @TO support@) is
monic - this can always be achieved by rescaling.
Now suppose $f$ is not homogeneous. For a
symmetric determinantal representation $f = det(I + x_1A_1 + x_2A_2)$, by
suitable conjugation one may assume $A_1 = D_1$ is a diagonal matrix. We
also have that $D_1$ and the diagonal entries of $A_2$ can be found using
the method @TO bivariateDiagEntries@. From this data,
here are 2 approaches to numerically compute a determinantal
representation of $f$, which can be specified by the option
{\tt Strategy}.
The first (and default) strategy is "DirectSystem", which computes the
off-diagonal entries of $A_2$ directly as solutions to a
$(d choose 2)\times (d choose 2)$ polynomial system.
The second strategy is "Orthogonal", which computes the orthogonal
change-of-basis matrices $V$ such that $VA_2V^T = D_2$ is diagonal.
Since $D_2$ can be found using @TO bivariateDiagEntries@, $A_2$ can
be recovered from $V$.
Both strategies use numerical algebraic geometry, specifically a
@TO numericalIrreducibleDecomposition@.
When working over an @TO InexactFieldFamily@ like @TO RR@ or
@TO CC@, the option {\tt Tolerance} can be used to specify the internal
threshold for checking equality (any floating point number below the tolerance
is treated as numerically zero).
The option @TO Software@ specifies the numerical algebraic
geometry software used to perform a numerical irreducible decomposition: by
default, the native routines provided by Macaulay2 are used, although other
valid options include BERTINI and PHCPACK (if the user has these installed
on their system).
Example
R = RR[x1, x2]
f=(1/2)*(x1^4+x2^4-3*x1^2-3*x2^2+x1^2*x2^2)+1
repList = detRep f;
#repList
repList#0
all(repList, A -> clean(1e-10, f - det A) == 0)
Caveat
As this algorithm implements relatively brute-force algorithms, it may not
terminate for non-homogeneous polynomials of large degree
(e.g., degree >= 5).
SeeAlso
detRep
bivariateDiagEntries
///
doc ///
Key
"Determinantal representations of hyperbolic plane cubics"
HyperbolicPt
[detRep, HyperbolicPt]
Description
Text
This page demonstrates how the method @TO detRep@ computes monic symmetric
determinantal representations of a hyperbolic cubic $f$ in $3$ variables, or gives
an error if certain necessary conditions for existence of such a representation are not
met. First, the polynomial is dehomogenized to obtain a bivariate polynomial. Next, if
$f = det(I + x_1A_1 + x_2A_2)$ is a symmetric determinantal representation,
then by suitable conjugation one may assume $A_1 = D_1$ is a diagonal matrix.
Since $A_2$ is symmetric, there exists an orthogonal change-of-basis matrix
$V$ such that $VA_2V^T = D_2$ is diagonal. Since $D_1, D_2$ can be found
using the method @TO bivariateDiagEntries@, to find a symmetric determinantal
representation of $f$ it suffices to compute the possible orthogonal matrices
$V$. This method computes the orthostochastic matrices which are the
Hadamard squares of $V$, via the algorithm in [1], and returns the
associated determinantal representation (using the method
@TO orthogonalFromOrthostochastic@ - see that method for more on the
possible orthogonal matrices returned).
For a generic hyperbolic polynomial of degree $d$ in 3 variables, the number of
definite determinantal representations is $2^g$, where $g = (d-1)(d-2)/2$ is the
genus of the plane curve.
For plane curves in special position, the option {\tt HyperbolicPt} allows
the user to specify a point $e$ such that the polynomial is hyperbolic with
respect to $e$. In this case, a general coordinate change which brings $e$ to
$(1,0,0)$ is applied before computing the determinantal representation (which will
then be inverted before giving the result - note that the representation will no longer
be monic in general).
When working over an @TO InexactFieldFamily@ like @TO RR@ or
@TO CC@, the option {\tt Tolerance} can be used to specify the internal
threshold for checking equality (any floating point number below the tolerance
is treated as numerically zero).
Example
R = RR[x1, x2, x3]
f = 6*x1^3+36*x1^2*x2+66*x1*x2^2+36*x2^3+11*x1^2*x3+42*x1*x2*x3+36*x2^2*x3+6*x1*x3^2+11*x2*x3^2+x3^3
repList = detRep f
all(repList, A -> clean(1e-10, f - det A) == 0)
g = product gens R -- hyperbolic with respect to (1,1,1)
B = clean(1e-6, first detRep(g, HyperbolicPt => matrix{{1_RR},{1},{1}}))
clean(1e-6, g - det B)
SeeAlso
detRep
bivariateDiagEntries
orthogonalFromOrthostochastic
"Determinantal representations of bivariate polynomials"
///
doc ///
Key
orthogonalFromOrthostochastic
(orthogonalFromOrthostochastic, Matrix)
[orthogonalFromOrthostochastic, Tolerance]
Headline
computes orthogonal matrices for a given orthostochastic matrix
Usage
orthogonalFromOrthostochastic A
orthogonalFromOrthostochastic(A, Tolerance => 1e-6)
Inputs
A:Matrix
an orthostochastic matrix
Outputs
:List
of orthogonal matrices whose Hadamard square is $A$
Description
Text
This method computes orthogonal matrices whose Hadamard square is a
given orthostochastic matrix. This is a helper function to
@TO detRep@, which computes symmetric
determinantal representations of real cubic bivariate polynomials.
Given a $n\times n$ orthostochastic matrix $A$, there are $2^{n^2}$ possible
matrices whose Hadamard square is $A$ (not all of which will be orthogonal in
general though). Let $G\cong (\ZZ/2\ZZ)^n$ be the group of diagonal matrices
with diagonal entries equal to ±1. Then $G \times G$ acts (by
$(g_1, g_2) O = g_1Og_2$) on the set of orthogonal matrices whose
Hadamard square is $A$. This method computes all such orthogonal matrices,
modulo the action of $G\times G$. The representative for each orbit is chosen
so that the first row and column will have all nonnegative entries, and modulo this
restriction on the signs, the algorithm is essentially a brute-force search. Note that
for generic choices of the orthostochastic matrix $A$, there will be exactly one
$G\times G$-orbit of orthogonal matrices with Hadamard square equal to $A$.
When working over an @TO InexactFieldFamily@ like @TO RR@ or
@TO CC@, the option {\tt Tolerance} can be used to specify the internal
threshold for checking equality (any floating point number below the tolerance
is treated as numerically zero).
Example
O = randomOrthogonal 4
A = hadamard(O, O)
orthogonalFromOrthostochastic A
SeeAlso
detRep
///
doc ///
Key
generalizedMixedDiscriminant
(generalizedMixedDiscriminant, List)
Headline
computes generalized mixed discriminant of a list of matrices
Usage
generalizedMixedDiscriminant L
Inputs
L:List
an $n$-tuple of $n\times n$ matrices
Outputs
:RingElement
the generalized mixed discriminant of L
Description
Text
This method computes the generalized mixed discriminant of an $n$-tuple
of $n\times n$ matrices. The generalized mixed discriminants give formulas
for the coefficients of a determinantal polynomial, which are polynomial in
the entries of the representing matrices. Thus, computing determinantal
representations can be viewed as solving a system of specializations of
generalized mixed discriminants, i.e., recovering a set of matrices from
its generalized mixed discriminants.
Example
n = 3
R = QQ[a_(1,1)..a_(n,n),b_(1,1)..b_(n,n),c_(1,1)..c_(n,n)][x_1..x_n]
A = sub(transpose genericMatrix(coefficientRing R,n,n), R)
B = sub(transpose genericMatrix(coefficientRing R,b_(1,1),n,n), R)
C = sub(transpose genericMatrix(coefficientRing R,c_(1,1),n,n), R)
P = det(id_(R^n) + x_1*A + x_2*B + x_3*C);
gmd = generalizedMixedDiscriminant({A,B,C})
coeff = (last coefficients(P, Monomials => {x_1*x_2*x_3}))_(0,0)
gmd == coeff
///
doc ///
Key
isDoublyStochastic
(isDoublyStochastic, Matrix)
[isDoublyStochastic, Tolerance]
Headline
whether a matrix is doubly stochastic
Usage
isDoublyStochastic A
Inputs
A:Matrix
Outputs
:Boolean
whether $A$ is a doubly stochastic matrix
Description
Text
This method determines whether a given matrix is doubly stochastic, i.e., is
a real square matrix with all entries nonnegative and all row and column sums
equal to $1$.
When working over an @TO InexactFieldFamily@ like @TO RR@ or
@TO CC@, the option {\tt Tolerance} can be used to specify the internal
threshold for checking equality (any floating point number below the tolerance
is treated as numerically zero).
Example
O = randomOrthogonal 3
A = hadamard(O, O)
isDoublyStochastic A
///
doc ///
Key
isOrthogonal
(isOrthogonal, Matrix)
[isOrthogonal, Tolerance]
Headline
whether a matrix is orthogonal
Usage
isOrthogonal A
Inputs
A:Matrix
Outputs
:Boolean
whether $A$ is orthogonal
Description
Text
This method determines whether a given matrix is orthogonal, i.e., has
inverse equal to its transpose.
When working over an @TO InexactFieldFamily@ like @TO RR@ or
@TO CC@, the option {\tt Tolerance} can be used to specify the internal
threshold for checking equality (any floating point number below the tolerance
is treated as numerically zero). If the given matrix does not have floating point
entries, then this option is not used.
Example
O1 = randomOrthogonal 5
isOrthogonal O1
O2 = randomOrthogonal(5, QQ)
isOrthogonal O2
SeeAlso
randomOrthogonal
///
doc ///
Key
randomOrthogonal
(randomOrthogonal, ZZ)
(randomOrthogonal, ZZ, Thing)
Headline
constructs a random special orthogonal matrix
Usage
randomOrthogonal n
randomOrthogonal(n, R)
Inputs
n:ZZ
R:Ring
or @TO RR@ or @TO CC@ (of type @TO InexactFieldFamily@)
Outputs
:Matrix
a random $n\times n$ special orthogonal matrix, over the ring $R$
Description
Text
This method returns a random orthogonal matrix of a given size $n$.
The orthogonal matrix is constructed via Cayley's correspondence,
which gives a bijection between skew-symmetric matrices, and
orthogonal matrices $O$ which do not have $1$ as an eigenvalue
(i.e., $O - I$ is invertible). Up to changing signs of rows, any orthogonal
matrix can be obtained this way: if $G\cong (\ZZ/2\ZZ)^n$
is the group of diagonal matrices with diagonal entries equal to
±1, acting on $n\times n$ matrices by left multiplication, then
(as one may check) every $G$-orbit contains a matrix
that does not have $1$ as an eigenvalue (if the characteristic is not 2).
Note that the matrices which feature in the Cayley correspondence have
determinant $(-1)^n$, so this method scales by $-1$ to return a special
orthogonal matrix. Thus the matrices returned by this method do not have
$-1$ as an eigenvalue.
By default a matrix over @TO RR@ is returned. This method also accepts
a ring as an (optional) argument, in which case a special orthogonal matrix
over the ring is returned, with entries in the
@TO2{coefficientRing, "base coefficient ring"}@.
Example
O1 = randomOrthogonal 5
isOrthogonal O1
eigenvalues O1
det O1
R = QQ[x,y]
O2 = randomOrthogonal(5, R)
isOrthogonal O2
det(O2), det(O2+id_(R^5))
SeeAlso
isOrthogonal
///
doc ///
Key
randomIntegerSymmetric
(randomIntegerSymmetric, ZZ)
(randomIntegerSymmetric, ZZ, Ring)
Headline
constructs a random integer symmetric matrix
Usage
randomIntegerSymmetric n
randomIntegerSymmetric(n, R)
Inputs
n:ZZ
R:Ring
or @TO RR@ or @TO CC@ (of type @TO InexactFieldFamily@)
Outputs
:Matrix
a random $n\times n$ symmetric matrix with integer entries, over the ring $R$
Description
Text
This method returns a random symmetric matrix of a given size $n$ with
integer entries. This can in turn be specialized to any ring, which may be
provided as an argument.
Example
randomIntegerSymmetric 5
randomIntegerSymmetric 20
R = RR[x,y]
randomIntegerSymmetric(3, R)
Caveat
The entries of the constructed matrix will be integers between 0 and 18, inclusive.
SeeAlso
genericSymmetricMatrix
///
doc ///
Key
randomPSD
(randomPSD, ZZ)
(randomPSD, ZZ, ZZ)
(randomPSD, ZZ, RR)
(randomPSD, ZZ, ZZ, RR)
Headline
constructs a random positive semidefinite matrix
Usage
randomPSD n
randomPSD(n, r)
randomPSD(n, s)
randomPSD(n, r, s)
Inputs
n:ZZ
the size of the output matrix
r:ZZ
the desired rank
s:RR
an upper bound on the spectral radius (= largest eigenvalue)
Outputs
:Matrix
a random $n\times n$ positive semidefinite matrix with real entries,
of rank $r$, with eigenvalues between $0$ and $s$.
Description
Text
This method returns a random symmetric positive semidefinite real matrix
of a given size $n$. The rank $r$ can also be specified: by default,
the matrix will be full rank (with probability 1). An upper bound $s$ on the
spectral radius can also be specified: by default, the matrix will have spectral
radius $<= 1$.
Example
randomPSD 5
A1 = randomPSD(5, 3)
A2 = randomPSD(5, 3.0)
(A1, A2)/eigenvectors -- note the difference!
A3 = randomPSD(5, 3, 7.0)
eigenvectors(A3, Hermitian => true)
Caveat
This method works by choosing the eigenvectors and eigenvalues independently
randomly. The distribution on the (compact) set of PSD matrices of bounded
spectral radius may not be uniform or statistically desirable (cf. Wishart distribution).
SeeAlso
cholesky
///
doc ///
Key
randomUnipotent
(randomUnipotent, ZZ)
(randomUnipotent, ZZ, Thing)
Headline
constructs a random unipotent matrix
Usage
randomUnipotent n
randomUnipotent(n, R)
Inputs
n:ZZ
R:Ring
or @TO RR@ or @TO CC@ (of type @TO InexactFieldFamily@)
Outputs
:Matrix
a random $n\times n$ unipotent matrix, over the ring $R$
Description
Text
This method returns a random unipotent matrix of a given size $n$,
which is upper triangular with all diagonal entries equal to $1$.
if a ring $R$ is provided, then the output is a matrix over $R$ -
by default, the output is a matrix over @TO QQ@.
Example
randomUnipotent 5
randomUnipotent(3, CC)
randomUnipotent(3, RR[x,y])
///
doc ///
Key
cholesky
(cholesky, Matrix)
[cholesky, Tolerance]
Headline
computes the Cholesky decomposition of a positive semidefinite matrix
Usage
cholesky A
Inputs
A:
an $n\times n$ PSD matrix
Outputs
L:Matrix
a lower-triangular matrix, with $A = LL^T$
Description
Text
This method computes the Cholesky decomposition of a symmetric positive
semidefinite matrix $A$, which is a factorization $A = LL^T$, where $L$ is
lower-triangular. If $A$ is not positive-definite, then the Cholesky
decomposition is not unique - in this case, this method will attempt to
give an output which is as sparse as possible.
When working over an @TO InexactFieldFamily@ like @TO RR@ or
@TO CC@, the option {\tt Tolerance} can be used to specify the internal
threshold for checking equality (any floating point number below the tolerance
is treated as numerically zero).
Example
A = randomPSD 5 -- 5x5 PSD of full rank
L = cholesky A
clean(1e-12, A - L*transpose L) == 0
B = randomPSD(7, 3) -- 7x7 PSD matrix of rank 3
L = cholesky B
clean(1e-12, B - L*transpose L) == 0
///
doc ///
Key
hadamard
(hadamard, Matrix, Matrix)
Headline
computes the Hadamard product of two matrices
Usage
hadamard(A, B)
Inputs
A:
an $m\times n$ matrix
B:
an $m\times n$ matrix
Outputs
:Matrix
the Hadamard product of $A$ and $B$
Description
Text
This method computes the Hadamard product of two matrices $A, B$ of the
same size. The Hadamard product is defined as the componentwise product,
i.e., if $A, B$ are $m\times n$ matrices, then the Hadamard product is the
$m\times n$ matrix with $(i,j)$ entry equal to $A_{i,j}*B_{i,j}$.
Example
(A1, A2) = (random(ZZ^2, ZZ^3), random(ZZ^2, ZZ^3))
hadamard(A1, A2)
///
doc ///
Key
coeffMatrices
(coeffMatrices, Matrix)
Headline
gets coefficient matrices for a matrix of linear forms
Usage
coeffMatrices(M)
Inputs
M:Matrix
of linear forms
Outputs
:List
of matrices
Description
Text
Given a linear matrix pencil $M = I_d + x_1A_1 + ... + x_nA_n$,
this method returns the list of matrices $A_1, ..., A_n$.
Example
R = QQ[x,y,z]
M = id_(R^3) + random(R^3,R^{3:-1})
coeffs = coeffMatrices M
M - sum(#gens R, i -> R_i*coeffs#i)
Caveat
This method does not return the constant term, or coefficients
of terms of degree $> 1$.
///
doc ///
Key
companionMatrix
(companionMatrix, RingElement)
Headline
companion matrix of a univariate polynomial
Usage
companionMatrix f
Inputs
f:RingElement
a univariate polynomial
Outputs
:Matrix
Description
Text
For a monic univariate polynomial $f$ of degree $d$, this
method returns the companion matrix $C(f)$, which is a
$d\times d$ matrix whose characteristic polynomial is $f$.
Explicitly, $C(f)$ has entries $1$ on the first subdiagonal
(the diagonal below the main diagonal), negative coefficients
of $f$ in the last column (other than the leading coefficient
of $1$), and $0$ elsewhere.
If $f$ is not monic, then this method returns the companion
matrix of the normalized monic polynomial $(1/a_n)f$, where
$a_n$ is the leading coefficient of $f$.
Example
R = CC[x]
eigenvalues companionMatrix(9*x^2 - 1)
f = x^10 + sum(10, i -> random(i, R))
C = companionMatrix f
clean(1e-10, f - det(x*id_(R^10) - C))
all(eigenvalues C, z -> clean(1e-10, sub(f, R_0 => z)) == 0)
///
doc ///
Key
realPartMatrix
(realPartMatrix, Matrix)
Headline
real part of a matrix over CC
Usage
realPartMatrix A
Inputs
A:Matrix
with complex entries
Outputs
:Matrix
the real matrix whose entries are real parts of entries of A
Description
Text
Given a complex matrix, this method returns a real matrix obtained by taking
the real part of each entry. It leaves matrices over @TO RR@ and @TO QQ@
unchanged.
Example
A = random(RR^3,RR^5)
A == realPartMatrix A
B = sub(A, CC)
C = realPartMatrix B
clean(1e-10, A - C) == 0
D = random(QQ^3, QQ^1)
D == realPartMatrix D
Text
If the matrix is over a polynomial ring, but has entries defined over the base
field (e.g., when taking @TO coefficients@), then it is necessary to @TO sub@
into the base field first:
Example
R = CC[x,y]
f = random(2,R)
C = last coefficients f
realPartMatrix sub(C, coefficientRing R)
SeeAlso
roundMatrix
///
doc ///
Key
roundMatrix
(roundMatrix, ZZ, Matrix)
Headline
lifts matrix over RR to matrix over QQ
Usage
roundMatrix(n, A)
Inputs
A:Matrix
with real entries
n:ZZ
a threshold for rounding digits
Outputs
:Matrix
a matrix over QQ, obtained by rounding entries of A
Description
Text
This method converts a real matrix to a rational matrix, by rounding each
entry. The input $n$ specifies the number of (decimal) digits used for rounding.
Example
A = matrix{{1, 2.5, -13/17}, {2*pi, 4.7, sqrt(2)}}
roundMatrix(5, A)
SeeAlso
realPartMatrix
///
undocumented {
linesOnCubicSurface,
(linesOnCubicSurface, RingElement),
doubleSixes,
(doubleSixes, List),
cubicSurfaceDetRep,
(cubicSurfaceDetRep, RingElement),
(cubicSurfaceDetRep, RingElement, List)
}
-----------------------------
-- TESTS
TEST /// -- Quadratic case: over QQ, RR, CC
-- no-check-flag #1746
S = QQ[x1,x2,x3]
f = 1 - 8*x1*x2 - 4*x1*x3 - 100*x2^2 - 12*x2*x3 - x3^2 - 5*x1^2
M = first detRep(f, Tolerance => 1e-10)
assert(clean(1e-9, sub(f - det M, RR(monoid[gens S]))) == 0)
SRR = RR[x1,x2,x3]
fRR = sub(f, SRR)
M = first detRep fRR
assert(0 == clean(1e-10, fRR - det M))
SCC = CC[x1,x2,x3]
fCC = sub(f, SCC)
M = first detRep fCC
assert(0 == clean(1e-10, fCC - det M))
R = RR[x1,x2,x3,x4]
f = det sum({id_(R^2)} | apply(gens R, v -> v*randomIntegerSymmetric(2, R)))
M = first detRep f
assert(clean(1e-10, f - det M) == 0)
///
TEST /// -- Quadratic case: size > 2
d = 7
R = RR[x_1..x_d]
A1 = randomPSD d;
f1 = ((vars R)*(-1)*A1*transpose vars R + vars R*random(RR^d,RR^1) + 1)_(0,0)
M = first detRep f1
assert(clean(1e-12, f1 - det M) == 0)
A2 = randomPSD(d, d//2)
f2 = ((vars R)*(-1)*A2*transpose vars R + vars R*random(RR^d,RR^1) + 1)_(0,0)
M = first detRep f2
assert(clean(1e-12, f2 - det M) == 0)
coeffs = coeffMatrices M
assert(clean(1e-10, M - sum({id_(R^(d+1))} | apply(#gens R, i -> R_i*coeffs#i))) == 0)
///
TEST /// -- Cubic case: over QQ, RR, CC
S=QQ[x1,x2,x3]
f = 6*x1^3+36*x1^2*x2+66*x1*x2^2+36*x2^3+11*x1^2*x3+42*x1*x2*x3+36*x2^2*x3+6*x1*x3^2+11*x2*x3^2+x3^3
reps = detRep(f, Tolerance => 1e-12)
assert(all(reps, A -> clean(1e-10, sub(f - det A, RR(monoid[gens S]))) == 0))
SRR=RR[x1,x2,x3]
fRR=sub(f, SRR)
reps = detRep fRR
assert(all(reps, L -> clean(1e-9, fRR - det L) == 0))
SCC=CC[x1,x2,x3]
fCC=sub(f, SCC)
reps = detRep fCC
assert(all(reps, L -> clean(1e-9, fCC - det L) == 0))
reps = detRep(fCC, HyperbolicPt => matrix{{3_RR},{2},{-7}}) -- representations are not monic
assert(all(reps, L -> clean(1e-5, fCC - det L) == 0))
///
TEST /// -- Cubic case: homogeneous, 3 variables
S = RR[x,y,z]
F = det sum(gens S, v -> v*sub(randomPSD 3, S)) -- nondegenerate
M = first detRep F
assert(clean(1e-4, F - det M) == 0)
F = (random(1,S))^3 -- degenerate
M = first detRep(F, Tolerance => 1e-3)
assert(clean(1e-5, F - det M) == 0)
F = 162*y^3 - 23*y^2*z + 99*y^2*x - 8*y*z^2 - 10*y*z*x + 18*y*x^2 + z^3 - z^2*x - z*x^2 + x^3 -- degenerate (Example 2.17 in [Dey1])
M = first detRep F
assert(clean(1e-10, F - det M) == 0)
///
TEST /// -- Specific threshold tests
M = matrix{{0.5322,0.3711,0.0967},{0.4356,0.2578,0.3066},{0.0322,0.3711,0.5967}}
assert(orthogonalFromOrthostochastic M === {})
assert(#orthogonalFromOrthostochastic(M, Tolerance => 1e-4) > 0)
S = RR[x,y,z]
l1 = .182627222080409*x+.00411844060723943*y+.677316669916152*z -- y coefficient much smaller
assert((try detRep l1^3) === null)
A = first detRep(l1^3, Tolerance => 1e-4)
assert(clean(1e-10, l1^3 - det A) == 0)
l2 = .000267436534581389*x + .622384659384624*y + .608050635739978*z -- x coefficient much smaller
assert((try detRep l2^3) === null)
A = first detRep(l2^3, Tolerance => 5e-2) -- !!
assert(clean(1e-3, l2^3 - det A) == 0)
///
TEST /// -- Degenerate cubics
R = RR[x,y,z]
D222 = diagonalMatrix {2_R,2,2}
D444 = diagonalMatrix {4_R,4,4}
D123 = diagonalMatrix {1_R,2,3}
D456 = diagonalMatrix {4_R,5,6}
D445 = diagonalMatrix {4_R,4,5}
D455 = diagonalMatrix {4_R,5,5}
D225 = diagonalMatrix {2_R,2,5}
D122 = diagonalMatrix {1_R,2,2}
D233 = diagonalMatrix {2_R,3,3}
D223 = diagonalMatrix {2_R,2,3}
D557 = diagonalMatrix {5_R,5,-7}
D577 = diagonalMatrix {5_R,-7,-7}
degenCubicList = {
-- A1, A2 both repeated eigenvalue of multiplicity 3
det(R_0*id_(R^3) + R_1*D222 + R_2*D444),
det(R_0*id_(R^3) + R_1*D222 + R_2*D222),
-- A1 distinct eigenvalues, A2 repeated eigenvalue of multiplicity 3
det(R_0*id_(R^3) + R_1*D123 + R_2*D444),
det(R_0*id_(R^3) + R_1*D123 + R_2*D222),
-- A1 repeated eigenvalue of multiplicity 3, A2 distinct eigenvalues
det(R_0*id_(R^3) + R_1*D222 + R_2*D456),
det(R_0*id_(R^3) + R_1*D444 + R_2*D456),
-- A1 distinct eigenvalues, A2 repeated eigenvalue of multiplicity 2
det(R_0*id_(R^3) + R_1*D123 + R_2*D445),
det(R_0*id_(R^3) + R_1*D123 + R_2*D455),
det(R_0*id_(R^3) + R_1*D123 + R_2*D225),
det(R_0*id_(R^3) + R_1*D123 + R_2*D122),
-- A1 repeated eigenvalue of multiplicity 2, A2 distinct eigenvalues
det(R_0*id_(R^3) + R_1*D233 + R_2*D456),
det(R_0*id_(R^3) + R_1*D223 + R_2*D456),
-- A1, A2 both repeated eigenvalue of multiplicity 2
det(R_0*id_(R^3) + R_1*D223 + R_2*D557),
det(R_0*id_(R^3) + R_1*D233 + R_2*D557), -- non-diagonal
det(R_0*id_(R^3) + R_1*D223 + R_2*D577),
det(R_0*id_(R^3) + R_1*D233 + R_2*D577) -- non-diagonal
}
assert(all(degenCubicList, f -> (
reps = detRep(f, Tolerance => 1e-4);
all(reps, A -> clean(1e-3, f - det A) == 0)
)))
///
TEST /// -- HyperbolicPt test
R = RR[x,y,z]
f = product gens R
assert((try detRep f) === null)
e = transpose matrix{{1_RR,1,1}}
assert(clean(1e-10, f - det first detRep(f, HyperbolicPt => e)) == 0)
f = (2*x - 3*y)*(4*y + z)*(7*x - 11*z)
assert((try detRep f) === null)
setRandomSeed 0
assert(clean(1e-10, f - det first detRep(f, HyperbolicPt => e)) == 0)
///
TEST /// -- Higher degree case
R=RR[x,y]
f = x^5+6*x^4*y-2*x^3*y^2-36*x^2*y^3+x*y^4+30*y^5
M = first detRep f
assert(clean(1e-13, f - det M) == 0)
f = 24*x^4+(49680/289)*x^3*y+50*x^3+(123518/289)*x^2*y^2+(72507/289)*x^2*y+35*x^2+(124740/289)*x*y^3+(112402/289)*x*y^2+(32022/289)*x*y+10*x+144*y^4+180*y^3+80*y^2+15*y+1
sols = detRep f
assert(all(sols, M -> clean(1e-10, f - det M) == 0))
n = 4
A = randomIntegerSymmetric(n, R)
f = det(id_(R^n) + R_0*diagonalMatrix {4,3,2,1_R} + R_1*A)
(D1, D2, diag1, diag2) = bivariateDiagEntries f
sols = detRep f;
assert(all(sols, M -> clean(1e-6, f - det M) == 0))
///
TEST /// -- cubic surface (Bernd)
eps = 1e-10
R = CC[x,y,z,w]
f = homogenize(3*x^3+2*x^2*y+x*y^2+6*y^3+7*x^2*z+8*x*y*z+3*y^2*z+8*x*z^2+3*y*z^2+8*z^3+8*x^2+7*x*y+9*y^2+7*x*z+3*y*z+8*z^2+2*x+4*y+8*z+1, w)
lineSet = linesOnCubicSurface f
assert(#lineSet == 27)
-- ds = first doubleSixes lineSet
-- assert(all(subsets(ds#1, 2), s -> not clean(eps, det(s#0 || s#1)) == 0))
-- assert(all(ds#1, l -> #select(ds#0, m -> clean(eps, det(l || m)) == 0) == 5))
-- assert(all(6, i -> not clean(eps, det(ds#0#i || ds#1#i)) == 0))
-- M = detRep f
-- g1 = M_(0,1)*M_(1,2)*M_(2,0)
-- g2 = M_(0,2)*M_(1,0)*M_(2,1)
-- assert(clean(eps, det M - (g1 + g2)) == 0)
-- a1 = sub(last coefficients(g1, Monomials => {x^3, w^3}), coefficientRing ring f)
-- a2 = sub(last coefficients(g2, Monomials => {x^3, w^3}), coefficientRing ring f)
-- b = sub(last coefficients(f, Monomials => {x^3, w^3}), coefficientRing ring f)
-- c = solve(a1 | a2, b)
-- f - (c_(0,0)*g1 + c_(1,0)*g2)
///
TEST /// -- Clebsch cubic surface (cf. https://blogs.ams.org/visualinsight/2016/02/15/27-lines-on-a-cubic-surface/)
eps = 1e-10
R = CC[x,y,z,w]
f = 81*(x^3 + y^3 + z^3) - 189*(x^2*y + x^2*z + x*y^2 + x*z^2 + y^2*z + y*z^2) + 54*x*y*z + 126*w*(x*y + x*z + y*z) - 9*w*(x^2 + y^2 + z^2) - 9*w^2*(x+y+z) + w^3
elapsedTime lineSet = linesOnCubicSurface(f, Tolerance => eps)
assert(#lineSet == 27)
assert(all(lineSet, m -> clean(eps, m - realPartMatrix m) == 0)) -- all real lines
///
TEST /// -- Generalized mixed discriminant
n = 4
R = QQ[a_(1,1)..a_(n,n),b_(1,1)..b_(n,n)][x_1,x_2] -- bivariate quartic
A = sub(transpose genericMatrix(coefficientRing R,n,n), R)
B = sub(transpose genericMatrix(coefficientRing R,b_(1,1),n,n), R)
P = det(id_(R^n) + x_1*A + x_2*B);
assert((last coefficients(P, Monomials => {x_1*x_2}))_(0,0) == generalizedMixedDiscriminant({A,B}))
assert((last coefficients(P, Monomials => {x_1^3*x_2}))_(0,0) == generalizedMixedDiscriminant({A,A,A,B}))
n = 3
R = QQ[a_(1,1)..a_(n,n),b_(1,1)..b_(n,n),c_(1,1)..c_(n,n)][x_1..x_n] -- trivariate cubic
A = sub(transpose genericMatrix(coefficientRing R,n,n), R)
B = sub(transpose genericMatrix(coefficientRing R,b_(1,1),n,n), R)
C = sub(transpose genericMatrix(coefficientRing R,c_(1,1),n,n), R)
P = det(id_(R^n) + x_1*A + x_2*B + x_3*C);
assert((last coefficients(P, Monomials => {x_1*x_2*x_3}))_(0,0) == generalizedMixedDiscriminant({A,B,C}))
///
TEST /// -- isOrthogonal, isDoublyStochastic
assert(isOrthogonal id_(ZZ^5))
assert(isOrthogonal id_(QQ^5))
assert(isOrthogonal id_((CC[x,y])^5))
R = RR[x,y]
I = id_(R^5)
assert(isOrthogonal I and isDoublyStochastic I)
assert(clean(1e-10, hadamard(I, I) - I) == 0)
O1 = randomOrthogonal 5
A = hadamard(O1, O1)
O = first orthogonalFromOrthostochastic(A, Tolerance => 1e-10)
assert(isOrthogonal(O, Tolerance=>1e-5) and isDoublyStochastic A and clean(1e-8, hadamard(O, O) - A) == 0)
///
TEST /// -- cholesky, randomPSD
-- no-check-flag #1745
eps = 1e-15
A = randomPSD 5
E = eigenvectors(A, Hermitian => true)
assert(clean(eps, A - E#1*diagonalMatrix(E#0)*transpose E#1) == 0)
L = cholesky A
assert(clean(eps, A - L*transpose L) == 0)
///
TEST /// -- companion matrix / root test
R = RR[x]
f1 = sum(4, i -> random(i,R))
f2 = sum(40, i -> random(i,R))
f3 = (R_0)^2 - 1
f4 = (R_0 - 1)^3
f5 = (R_0 + 1)^6
polys = {f1,f2,f3,f4,f5}
rtList = polys/companionMatrix/eigenvalues;
assert(all(#polys, i -> all(rtList#i, r -> clean(1e-5, sub(polys#i, R_0 => r)) == 0)))
///
end--
restart
debug needsPackage "DeterminantalRepresentations"
debug loadPackage("DeterminantalRepresentations", Reload => true)
uninstallPackage "DeterminantalRepresentations"
installPackage "DeterminantalRepresentations"
installPackage("DeterminantalRepresentations", RemakeAllDocumentation => true)
viewHelp "DeterminantalRepresentations"
check "DeterminantalRepresentations"
-- Quartic examples
R = RR[x1,x2]
f=(1/2)*(x1^4+x2^4-3*x1^2-3*x2^2+x1^2*x2^2)+1
reps = detRep f;
time repList = bivariateDetRep(f, Strategy => "Orthogonal", Software => BERTINI) -- SLOW!
f = 24*x1^4+(49680/289)*x1^3*x2+50*x1^3+(123518/289)*x1^2*x2^2+(72507/289)*x1^2*x2+35*x1^2+(124740/289)*x1*x2^3+(112402/289)*x1*x2^2+(32022/289)*x1*x2+10*x1+144*x2^4+180*x2^3+80*x2^2+15*x2+1
-- Higher degree bivariate
n = 5
R = RR[x,y]
f = det(id_(R^n) + x*sub(diagonalMatrix toList(1..n),R) + y*randomIntegerSymmetric(n, R))
----------------------------------------------------
-- To do:
----------------------------------------------------
-- Old code
makeUvector = method()
makeUvector (List, ZZ) := List => (D, k) -> transpose matrix{apply(subsets(#D, k), s -> product(s, i -> D_i))}
makeUComp = method()
makeUComp (List, ZZ, ZZ) := List => (D, k, l) -> (
Nk := subsets(#D, k);
Nl := subsets(#D, l);
transpose matrix{apply(Nl, s -> sum flatten((select(Nk, t -> #((set t)*(set s)) == 0))/(S -> product(D_S))))}
)
----------------------------------------------------
-- Nuij path (cf. Leykin-Plaumann)
clearAll
tOperator = method()
tOperator (RingElement, RingElement) := RingElement => (f, l) -> (
R := ring f;
f+(1-last gens coefficientRing R)*l*diff(R_0,f)
)
(n,d) = (2,3)
e = max(d,n)
k = CC
C = k[a_0..a_(binomial(n+d,d)-1),s]
R = C[t,x_1..x_n]
f = (basis(d,R)*matrix pack(1, drop(gens C, -1)))_(0,0)
g = sub(f, apply(drop(gens R, 1), v -> v => v*last gens C))
F = g
for i to e-1 do F = tOperator(F, (basis(1,R,Variables=>drop(gens R,1))*random(k^n,k^1))_(0,0))
system = sub(last coefficients(F, Monomials => basis(first degree f,R)), C)
S = k[gens C | {t}]
H = flatten entries sub(system, S)
sols = bertiniUserHomotopy(t,{s=>t},H,{point{toList(#gens S-2:0)}})
f = det(R_0*id_(R^d) + R_1*diagonalMatrix {1_R,2,3} + R_2*diagonalMatrix {4_R,5,6})
p = point sub(last coefficients f, CC)
sols = bertiniUserHomotopy(t,{s=>t},H-p#Coordinates,{p})
needsPackage "Bertini"
R = CC[x,a,t]
H = { (x^2-1)*a^3 + (x^2-2)*(1-a)^2}
sol1 = point {{1}}
sol2 = point {{ -1}}
S1= { sol1, sol2 }
S0 = bertiniUserHomotopy (t,{a=>t}, H, S1)
------------------------------------------------------------------
-- 27 lines on cubic surface from determinantal representation
needsPackage "NumericalImplicitization"
P2 = CC[x_0..x_2]
P3 = CC[z_0..z_3]
S = P2 ** P3
X = sub(matrix pack(1, gens P2), S)
Z = sub(vars P3, S)
M = sub(random(P3^3,P3^{3:-1}), S)
L = matrix apply(flatten entries(M*X), e -> {transpose(e // Z)})
clean(1e-10, M*X - L*transpose Z)
I = sub(minors(3, L), P2)
time pts = apply((numericalIrreducibleDecomposition I)#1, p -> p#Points#0#Coordinates)
-- Get exceptional divisor
L1 = ideal ((M*transpose matrix{pts#0})^{0,1})
clean(1e-13, det M % L1)
-- Get line through 2 points
pair = pts_{0,1}
newpair = {pair#0 + pair#1, pair#0 - pair#1}
newpair = {4*pair#0 + 7*pair#1, 9*pair#0 - (-3/4)*pair#1}
q = matrix apply(newpair, p -> {sub(gens I, matrix{p})})
l = sub(Z*gens ker q, P3)
clean(1e-10, sub(l, q^{0}))
clean(1e-10, sub(l, q^{1}))
sub(det M, P3) % l -- not 0!
F = extractImageEquations(gens I, ideal 0_P2, 3)
(map(P3, ring F, gens P3))(F)
G = sub(matrix{{det L_{1,2,3}, det L_{0,2,3}, det L_{0,1,3}, det L_{0,1,2}}}, P2)
q1 = matrix apply(newpair, p -> {sub(G, matrix{p})})
l1 = sub(Z*gens ker q1, P3)
q0 = sub(gens I, apply(#gens ring I, i -> (ring I)_i => newpair#0#i))
q1 = sub(gens I, apply(#gens ring I, i -> (ring I)_i => newpair#1#i))
P1 = CC[s,t]
l0 = extractImageEquations(s*sub(q0, P1) + t*sub(q1, P1), ideal 0_P1, 1)
l0 = (map(P3, ring l0, gens P3))(l0)
(sub(det M, P3) % l) - (sub(det M, P3) % l0)
|