1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230
|
-- -*- coding: utf-8 -*-
newPackage(
"ExteriorModules",
Version => "1.0",
Date => "May 05, 2020",
Authors => {{Name => "Luca Amata", Email => "lamata@unime.it", HomePage => "http://mat521.unime.it/amata"},
{Name => "Marilena Crupi", Email => "mcrupi@unime.it", HomePage => "http://www.unime.it/it/persona/marilena-crupi"}
},
Headline => "monomial modules over exterior algebras",
DebuggingMode => false,
PackageExports=>{"ExteriorIdeals"},
Certification => {
"journal name" => "The Journal of Software for Algebra and Geometry",
"journal URI" => "http://j-sag.org/",
"article title" => "ExteriorModules: a package for computing monomial modules over an exterior algebra",
"acceptance date" => "3 June 2021",
"published article URI" => "https://msp.org/jsag/2021/11-1/p08.xhtml",
"published article DOI" => "10.2140/jsag.2021.11.71",
"published code URI" => "https://msp.org/jsag/2021/11-1/jsag-v11-n1-x08-ExteriorModules.zip",
"repository code URI" => "http://github.com/Macaulay2/M2/blob/master/M2/Macaulay2/packages/ExteriorModules.m2",
"release at publication" => "49c26ff4b584149645fb695d8d8ba7481d0167df", -- git commit number in hex
"version at publication" => "1.0",
"volume number" => "11",
"volume URI" => "https://msp.org/jsag/2021/11-1/"
}
)
export {"createModule", "getIdeals", "isMonomialModule", "isAlmostLexModule", "almostLexModule", "isLexModule", "lexModule", "lexModuleBySequences", "isAlmostStronglyStableModule", "almostStronglyStableModule", "isAlmostStableModule", "almostStableModule", "isStronglyStableModule", "stronglyStableModule", "isStableModule", "stableModule", "initialModule", "bassNumbers"}
------------------------------------------------------------------
-- Overloaded methods declared in "ExteriorIdeals"
-- "hilbertSequence", "isHilbertSequence", "minimalBettiNumbers"
------------------------------------------------------------------
------------------------------------------------------------------------
-- create a module from a list of ideals
------------------------------------------------------------------------
createModule = method(TypicalValue=>Module)
createModule(List,Module) := (L,F) -> (
if #L>0 then (
E:=ring F;
RM:=map(E,ring L#0);
r:=rank F;
if #L<=r then (
L=trim\ideal\(x->if x=={} then {0_E} else x)\flatten\entries\gens\L;
O:=sum apply(#L,i->trim RM L#i*F_i);
) else error "expected a shorter list of the rank of the free module";
) else error "expected a nonempty list of ideals";
O
)
------------------------------------------------------------------------
-- get ideals from a module
------------------------------------------------------------------------
getIdeals = method(TypicalValue=>List)
getIdeals Module := M -> (
E:=ring M;
F:=ambient M;
rk:=rank F;
if isMonomialModule M then (
ListI:=entries compress mingens M;
r:=#ListI;
I:=join(trim\ideal\rsort\(x->if x=={} then {0_E} else x)\ListI, rk-r: ideal 0_E);
) else error "expected a monomial module";
I
)
------------------------------------------------------------------------
-- compute the Hilbert Sequence of a module
------------------------------------------------------------------------
hilbertSequence Module := M -> (
E:=ring M;
F:=ambient M;
if (options E).SkewCommutative!=flatten entries vars E / index then error "expected an exterior algebra as polynomial ring";
if not isSubset(M,F) then error "expected a submodule of a free module";
n:=#flatten entries vars E;
for k from min flatten degrees F to n+max flatten degrees F list hilbertFunction(k,F/M)
)
------------------------------------------------------------------------
-- whether a module is monomial
------------------------------------------------------------------------
isMonomialModule = method(TypicalValue=>Boolean)
isMonomialModule Module := M -> initialModule M==M
------------------------------------------------------------------------
-- whether a module is almost lex
------------------------------------------------------------------------
isAlmostLexModule = method(TypicalValue=>Boolean)
isAlmostLexModule Module := M -> (
if isMonomialModule M then (
if not all(getIdeals M,isLexIdeal) then return false;
) else error "expected a monomial module";
true
)
------------------------------------------------------------------------
-- compute an almost lex module with the same Hilbert function of a
-- module
------------------------------------------------------------------------
almostLexModule = method(TypicalValue=>Module)
almostLexModule Module := M -> createModule(lexIdeal\getIdeals M,ambient M)
------------------------------------------------------------------------
-- whether a module is lex
------------------------------------------------------------------------
isLexModule = method(TypicalValue=>Boolean)
isLexModule Module := M -> (
E:=ring M;
EL:=newRing(E, MonomialOrder=>Lex);
F:=ambient M;
RM:=map(EL,E);
r:=rank F;
m:=ideal vars EL;
n:=#flatten entries vars EL;
if not isAlmostLexModule M then return false;
if isMonomialModule M then (
I:=RM\getIdeals M;
for k from 1 to r-1 do (
idCond:={0_EL};
if (I#k)!= ideal(0_EL) then (
esp:=initialDegree(I#k)+(degree(F_k))#0-(degree(F_(k-1)))#0;
idCond=rsort unique flatten entries compress mingens m^(esp);
);
if idCond=={} then idCond={0_EL};
if not(isSubset(ideal idCond,I#(k-1))) then return false;
)
) else error "expected a monomial module";
true
)
------------------------------------------------------------------------
-- whether the Kruskal-Katona theorem is satisfied.
-- That is, the input sequence is a Hilbert sequence
------------------------------------------------------------------------
isHilbertSequence(List,Module) := (hs,F) -> (
E:=ring F;
gradi:=flatten degrees F;
n:=#flatten entries vars E;
r:=rank F;
lung:=max gradi-min gradi+n+1;
maxSeqI:=for k to n list binomial(n,k);
hs=join(hs,(lung-#hs):0);
if hs!=toList(lung:0) then (
ini:=position(hs,i->i>0);
contrzero:=#select(gradi,i -> i==ini+min gradi);
contruno:=(hs#ini)*(maxSeqI#1) + #select(gradi,i->i==ini+1+min gradi);
maxSeqM:=flatten join {toList(ini:0),contrzero,contruno};
if (hs#ini>contrzero) or (hs#(ini+1)>contruno) or (#hs>lung) then return false;
d:=ini+min gradi+1;
while d<(max gradi+n) do (
val:=hs#(d-min gradi);
i:=r-1;
while i>=0 and val>=binomial(n,d-gradi#i) do (
val=val-binomial(n,d-gradi#i);
i=i-1;
);
seq:=apply(i+1..r-1,j->{n,d-gradi#j});
if i>=0 then seq=join(seq,macaulayExpansion(val,d-gradi#i));
seq=for x in seq list {x#0,x#1+1};
d=d+1;
maxSeqM=append(maxSeqM,solveMacaulayExpansion(seq));
if hs#(d-min gradi)>maxSeqM#(d-min gradi) then return false;
);
);
true
)
------------------------------------------------------------------------
-- compute the lex module with the given Hilbert sequence
------------------------------------------------------------------------
lexModule = method(TypicalValue=>Module)
lexModule(List, Module) := (hs,F) -> (
E:=ring F;
gradi:=flatten degrees F;
EL:=newRing(E, MonomialOrder=>Lex);
IRM:=map(E,EL);
m:=ideal vars EL;
n:=#flatten entries vars EL;
completeHomLex:={};
ind:=0;
lung:=max gradi-min gradi+n+1;
r:=rank F;
l:=new MutableList from toList(r:{0_EL});
ltempold:=new MutableList from toList(r:{0_EL});
Mlex:=null;
if isHilbertSequence(hs,F) then (
hs=join(hs,(lung-#hs):0);
k:=(min gradi);
while k<=n+(max gradi) do (
dimgr:=sum apply(r,i->binomial(n,k-gradi#i));
ind=dimgr-hs#(k-min gradi);
c:=0;
while ind>0 do (
gr:=k-gradi#c;
completeHomLex=rsort(take(unique flatten entries compress mingens m^gr, binomial(n,gr)));
ltemp:=take(completeHomLex,ind);
ltemp=rsort toList(set(ltemp)-shadowSet(ltempold#c));
l#c=join(l#c,ltemp);
ltempold#c=join(ltempold#c,take(completeHomLex,ind));
ind=ind-#completeHomLex;
c=c+1;
);
k=k+1;
);
Mlex=createModule(IRM\trim\ideal\toList l,F);
) else error "expected a Hilbert sequence";
Mlex
)
------------------------------------------------------------------------
-- compute the lex module with the same Hilbert sequence of M
------------------------------------------------------------------------
lexModule Module := M -> lexModule(hilbertSequence M,ambient M)
------------------------------------------------------------------------
-- alternative algorithm to compute the lex module with the given Hilbert sequence
------------------------------------------------------------------------
lexModuleBySequences = method(TypicalValue=>Module)
lexModuleBySequences(List, Module) := (hs,F) -> (
E:=ring F;
gradi:=flatten degrees F;
n:=#flatten entries vars E;
r:=rank F;
seq:=new MutableList from for k to n list binomial(n,k);
l:={};
O:=null;
lung:=(max gradi-min gradi)+n+1;
if #hs<=lung then
hs=join(hs,(lung-#hs):0);
hsp:=hs;
j:=0;
while j<r do (
offset:=gradi#(r-1-j)-min gradi;
seq#0=min(hsp#offset,1);
if seq#0==1 then
seq#1=min(hsp#(offset+1),n)
else seq#1=0;
k:=2;
while k<=n do (
seq#k=min(hsp#(offset+k),solveMacaulayExpansion macaulayExpansion(seq#(k-1),k-1,Shift=>true));
k=k+1;
);
l=join(l,{toList seq});
hsp=hsp-join(toList(offset:0),toList seq,toList(lung-n-1-offset:0));
j=j+1;
);
I:=for x in (reverse l) list lexIdeal(x,E);
if hsp==toList(lung:0) then
O=createModule(I,F)
else error "expected a Hilbert sequence";
O
)
------------------------------------------------------------------------
-- whether a module is almost strongly stable
------------------------------------------------------------------------
isAlmostStronglyStableModule = method(TypicalValue=>Boolean)
isAlmostStronglyStableModule Module := M -> (
if isMonomialModule M then (
if not all(getIdeals M,isStronglyStableIdeal) then return false;
) else error "expected a monomial module";
true
)
------------------------------------------------------------------------
-- compute the smallest almost strongly stable module that contains M
------------------------------------------------------------------------
almostStronglyStableModule = method(TypicalValue=>Module)
almostStronglyStableModule Module := M -> (
if isMonomialModule M then (
O:=createModule(stronglyStableIdeal\getIdeals M,ambient M);
) else error "expected a monomial module";
O
)
------------------------------------------------------------------------
-- whether a module is almost stable
------------------------------------------------------------------------
isAlmostStableModule = method(TypicalValue=>Boolean)
isAlmostStableModule Module := M -> (
if isMonomialModule M then (
if not all(getIdeals M,isStableIdeal) then return false;
) else error "expected a monomial module";
true
)
------------------------------------------------------------------------
-- compute the smallest almost stable module that contains M
------------------------------------------------------------------------
almostStableModule = method(TypicalValue=>Module)
almostStableModule Module := M -> (
if isMonomialModule M then (
O:=createModule(stableIdeal\getIdeals M,ambient M);
) else error "expected a monomial module";
O
)
------------------------------------------------------------------------
-- whether a module is strongly stable
------------------------------------------------------------------------
isStronglyStableModule = method(TypicalValue=>Boolean)
isStronglyStableModule Module := M -> (
E:=ring M;
F:=ambient M;
m:=ideal vars E;
r:=rank F;
if not isAlmostStronglyStableModule M then return false;
if isMonomialModule M then (
I:=getIdeals M;
for k from 1 to r-1 do (
esp:=(degree(F_k))#0-(degree(F_(k-1)))#0;
idCond:=rsort unique flatten entries compress mingens m^(esp);
if idCond=={} then idCond={0_E};
left:=(ideal idCond)*I#k;
if not(isSubset(left,I#(k-1))) then return false;
)
) else error "expected a monomial module";
true
)
------------------------------------------------------------------------
-- compute the smallest strongly stable module that contains M
------------------------------------------------------------------------
stronglyStableModule = method(TypicalValue=>Module)
stronglyStableModule Module := M -> (
E:=ring M;
EL:=newRing(E, MonomialOrder=>Lex);
F:=ambient M;
RM:=map(EL,E);
IRM:=map(E,EL);
m:=ideal vars EL;
r:=rank F;
O:=null;
if isMonomialModule M then (
I:=new MutableList from RM\stronglyStableIdeal\getIdeals M;
k:=r-1;
while k>0 do (
esp:=(degree(F_k))#0-(degree(F_(k-1)))#0;
idCond:=rsort unique flatten entries compress mingens m^(esp);
if idCond=={} then idCond={0_EL};
idLeft:=(ideal idCond)*I#k;
idRight:=I#(k-1);
genLeft:=flatten entries mingens idLeft;
genRight:=flatten entries mingens idRight;
if not isSubset(idLeft,idRight) then
for m in genLeft do
if (m % idRight)!=0_EL then
genRight=append(genRight,m);
if genRight=={} then genRight={0_EL};
I#(k-1)=stronglyStableIdeal ideal rsort unique genRight;
k=k-1;
);
O=createModule(IRM\ideal\rsort\mingens\toList I,F);
) else error "expected a monomial module";
O
)
------------------------------------------------------------------------
-- whether a module is stable
------------------------------------------------------------------------
isStableModule = method(TypicalValue=>Boolean)
isStableModule Module := M -> (
E:=ring M;
F:=ambient M;
m:=ideal vars E;
r:=rank F;
if not isAlmostStableModule M then return false;
if isMonomialModule M then (
I:=getIdeals M;
for k from 1 to r-1 do (
esp:=(degree(F_k))#0-(degree(F_(k-1)))#0;
idCond:=rsort unique flatten entries compress mingens m^(esp);
if idCond=={} then idCond={0_E};
left:=(ideal idCond)*I#k;
if not(isSubset(left,I#(k-1))) then return false;
)
) else error "expected a monomial module";
true
)
------------------------------------------------------------------------
-- compute the smallest stable module that contains M
------------------------------------------------------------------------
stableModule = method(TypicalValue=>Module)
stableModule Module := M -> (
E:=ring M;
EL:=newRing(E, MonomialOrder=>Lex);
F:=ambient M;
RM:=map(EL,E);
IRM:=map(E,EL);
m:=ideal vars EL;
r:=rank F;
O:=null;
if isMonomialModule M then (
I:=new MutableList from RM\stableIdeal\getIdeals M;
k:=r-1;
while k>0 do (
esp:=(degree(F_k))#0-(degree(F_(k-1)))#0;
idCond:=rsort unique flatten entries compress mingens m^(esp);
if idCond=={} then idCond={0_EL};
idLeft:=(ideal idCond)*I#k;
idRight:=I#(k-1);
genLeft:=flatten entries mingens idLeft;
genRight:=flatten entries mingens idRight;
if not isSubset(idLeft,idRight) then
for m in genLeft do
if (m % idRight)!=0_EL then
genRight=append(genRight,m);
if genRight=={} then genRight={0_EL};
I#(k-1)=stableIdeal ideal rsort unique genRight;
k=k-1;
);
O=createModule(IRM\ideal\rsort\mingens\toList I,F);
) else error "expected a monomial module";
O
)
-------------------------------------------------------------------------------------------
-- compute the (minimal) Betti numbers of M
----------------------------------------------------------------------------------------------
minimalBettiNumbers Module := M -> betti res image mingens M
-------------------------------------------------------------------------------------------
-- compute the initial module of M
----------------------------------------------------------------------------------------------
initialModule = method(TypicalValue=>Module)
initialModule Module := M -> image monomials leadTerm gens gb M
-------------------------------------------------------------------------------------------
-- compute the Bass numbers of M
----------------------------------------------------------------------------------------------
bassNumbers = method(TypicalValue=>BettiTally)
bassNumbers Module := M -> sum(minimalBettiNumbers\ann\getIdeals M)
---------------------------------------------
---------------------------------------------
-- Private Methods by ExteriorIdeals
---------------------------------------------
---------------------------------------------
------------------------------------------------------------------------
-- compute the shadow of a monomial in an exterior algebra
------------------------------------------------------------------------
shadowMon = method(TypicalValue=>Set)
shadowMon RingElement := mon -> (
E:=ring mon;
n:=(#flatten entries vars E)-1;
if #(flatten entries monomials mon)==1 then
sh:=select(for k to n list (product support(mon*E_k))_E,x->x!=1);
sh
)
------------------------------------------------------------------------
-- compute the shadow of a set of monomials in an exterior algebra
------------------------------------------------------------------------
shadowSet = method(TypicalValue=>Set)
shadowSet List := l -> set flatten apply(l,x->shadowMon x)
beginDocumentation()
-------------------------------------------------------
--DOCUMENTATION ExteriorModules
-------------------------------------------------------
document {
Key => {ExteriorModules},
Headline => "a package for working with modules over exterior algebra",
TT "ExteriorModules", " is a package for creating and manipulating modules over exterior algebra",
PARA{"Let ", TEX///$K$///, " be a field, ", TEX///$E$///, " the exterior algebra of a finite dimensional, ", TEX///$K$///, "-vector space, and ", TEX///$F$///, " a finitely generated graded free ", TEX///$E$///, "-module with homogeneous basis ", TEX///$g_1, \ldots, g_r$///, " such that ", TEX///$\mathrm{deg}(g_1) \le \mathrm{deg}(g_2) \le \cdots \le \mathrm{deg}(g_r)$///, ". We present a ", TT "Macaulay2", " package to manage some classes of monomial submodules of ", TEX///$F$///, ". The package is an extension of the one on monomial ideals, and contains some algorithms for computing stable, strongly stable and lexicograhic ", TEX///$E$///, "-submodules of ", TEX///$F$///, ". Such a package also includes some methods to check whether a sequence of nonnegative integers is the Hilbert function of a graded ", TEX///$E$///, "-module of the form ", TEX///$F/M$///, ", with ", TEX///$M$///, " graded submodule of ", TEX///$F$///, ". Moreover, if ", TEX///$H_{F/M}$///, " is the Hilbert function of a graded ", TEX///$E$///, "-module ", TEX///$F/M$///, ", some routines are able to compute the unique lexicograhic submodule ", TEX///$L$///, " of ", TEX///$F$///, " such that ", TEX///$H_{F/M} = H_{F/L}.$///}
}
document {
Key => {createModule,(createModule,List,Module)},
Headline => "create a module over an exterior algebra from a list of ideals in input",
Usage => "createModule(L,F)",
Inputs => {"L" => {"a list of ideals"},
"F" => {"a free module"}
},
Outputs => {Module => {"the submodule of ", TT "F", " which is a direct sum of submodules determined by the ideals in ", TT "L"}},
"Let ", TEX///$\{g_1,g_2,\ldots,g_r\}$///, " be a graded basis of ", TT "F", " and let be ", TEX///$L=\{I_1,I_2,\ldots,I_r\}$///, ". This method yields the following submodule of ", TT "F", ": ", TEX///$I_1 g_1 \oplus I_2 g_2 \oplus \cdots \oplus I_r g_r$///,".",
Caveat => {"ideals and their number have to be compatible with ambient free module"},
PARA {"Example:"},
EXAMPLE lines ///
E = QQ[e_1..e_4, SkewCommutative => true]
F=E^{0,0,0}
I_1=ideal {e_1*e_2,e_3*e_4};
I_2=ideal {e_1*e_2,e_2*e_3*e_4};
I_3=ideal {e_2*e_3*e_4};
l={I_1,I_2,I_3};
M=createModule(l,F)
///,
SeeAlso =>{getIdeals}
}
document {
Key => {getIdeals,(getIdeals,Module)},
Headline => "get component ideals from a monomial module",
Usage => "getIdeals M",
Inputs => {"M" => {"a monomial submodule of the ambient module over an exterior algebra"}
},
Outputs => {List => {"list of ideals that determine the submodules whose direct sum is ", TT "M"}},
"Let ", TT "M", " be a submodule of ", TT "F", " and let ", TEX///$\{g_1,g_2,\ldots,g_r\}$///, " be a graded basis of ", TT "F", ". This method returns a list ", TEX///$L=\{I_1,I_2,\ldots,I_r\}$///, " such that ", TEX///$M=I_i g_i \oplus I_2 g_2 \oplus \cdots \oplus I_r g_r$///,".",
PARA {"Example:"},
EXAMPLE lines ///
E = QQ[e_1..e_4, SkewCommutative => true]
m=matrix {{e_1*e_2,e_3*e_4,0,0,0},{0,0,e_1*e_2,e_2*e_3*e_4,0},{0,0,0,0,e_2*e_3*e_4}}
M=image m
getIdeals M
///,
SeeAlso =>{createModule}
}
document {
Key => {(hilbertSequence,Module)},
Headline => "compute the Hilbert sequence of a given module over an exterior algebra",
Usage => "hilbertSequence M",
Inputs => {"M" => {"a module over an exterior algebra ", TT "E"}
},
Outputs => {List => {"nonnegative integers representing the Hilbert sequence of the quotient ", TT "F/M"}},
"Let ", TEX///$\{g_1,g_2,\ldots,g_r\}$///, " be a graded basis of ", TT "F", " with ", TEX///$deg(g_i)=f_i,\ i=1, \ldots, r.$///, " Given ", TEX///$\sum_{i=f_1}^{n+f_r}{h_i t^i}$///, " the Hilbert series of a graded ", TT "E", "-module ", TEX///$F/M$///, ", the sequence ", TEX///$(h_{f_1},\ldots,h_{n+f_r})$///, " is called the Hilbert sequence of ", TEX///$F/M.$///,
PARA {"Example:"},
EXAMPLE lines ///
E = QQ[e_1..e_4, SkewCommutative => true]
M=image matrix {{e_1*e_2,e_3*e_4,0,0,0},{0,0,e_1*e_2,e_2*e_3*e_4,0},{0,0,0,0,e_2*e_3*e_4}}
hilbertSequence M
///
}
document {
Key => {isMonomialModule,(isMonomialModule,Module)},
Headline => "whether a module is monomial",
Usage => "isMonomialModule M",
Inputs => {"M" => {"a monomial submodule of the ambient module over an exterior algebra"}
},
Outputs => {Boolean => {"whether the module ", TT "M", " is monomial"}},
"Let ", TEX///$F$///, " a free module with homogeneous basis ", TEX///$\{g_1,g_2,\ldots,g_r\}.$///, " The elements ", TEX///$e_{\sigma}g_i$///, " with ", TEX///$e_{\sigma}$///, " a monomial of ", TEX///$E$///, " are called monomials of ", TEX///$F$///, " and ", TEX///$\mathrm{deg}(e_{\sigma} g_i) = \mathrm{deg}(e_{\sigma}) + \mathrm{deg}(g_i).$///, " A graded submodule ", TT "M", " of ", TEX///$F$///, " is a monomial submodule if ", TT "M", " is a submodule generated by monomials of ", TEX///$F$///, ", i.e., ", TEX///$M=I_i g_i \oplus I_2 g_2 \oplus \cdots \oplus I_r g_r,$///, " where ", TEX///$I_i$///, " is a monomial ideal of ", TEX///$E$///, " for each ", TEX///$i.$///,
PARA {"Example:"},
EXAMPLE lines ///
E=QQ[e_1..e_3,SkewCommutative=>true]
F=E^{0,0}
f_1=(e_1*e_2)*F_0
f_2=(e_1*e_3)*F_0+(e_2*e_3)*F_1
f_3=(e_1*e_2*e_3)*F_1
M=image map(F,E^{-degree f_1,-degree f_2,-degree f_3},matrix {f_1,f_2,f_3})
isMonomialModule M
///,
SeeAlso =>{initialModule}
}
document {
Key => {isAlmostLexModule,(isAlmostLexModule,Module)},
Headline => "whether a monomial module over an exterior algebra is almost lex",
Usage => "isAlmostLexModule M",
Inputs => {"M" => {"a monomial module over an exterior algebra"}
},
Outputs => {Boolean => {"whether the module ", TT "M", " is almost lex"}},
"Let ", TEX///$\{g_1,g_2,\ldots,g_r\}$///, " be a graded basis of ", TT "F.", " A monomial submodule ", TEX///$M=\oplus_{i=1}
^{r}{I_ig_i}$///, " of ", TT "F", " is almost lex if ", TEX///$I_i$///, " is a lex ideal of ", TT "E", " for each ", TEX///$i.$///,
PARA {"Example:"},
EXAMPLE lines ///
E = QQ[e_1..e_4, SkewCommutative => true]
F=E^{0,0}
I_1=ideal(e_1*e_2,e_1*e_3)
I_2=ideal(e_1*e_2,e_1*e_3,e_2*e_3)
M=createModule({I_1,I_2},F)
isAlmostLexModule M
I_3=ideal(e_1*e_2,e_1*e_3, e_1*e_4)
isAlmostLexModule createModule({I_1,I_3},F)
///,
SeeAlso =>{almostLexModule}
}
document {
Key => {almostLexModule,(almostLexModule,Module)},
Headline => "compute an almost lex module with the same Hilbert sequence of the module in input",
Usage => "almostLexModule M",
Inputs => {"M" => {"a monomial module over an exterior algebra"}
},
Outputs => {Module => {"an almost lex submodule of the ambient module with the same Hilbert sequence of ", TT "M"}},
"Let ", TEX///$\{g_1,g_2,\ldots,g_r\}$///, " be a graded basis of ", TT "F", " and let ", TEX///$M=\oplus_{i=1}^{r}{I_ig_i}$///, " be a monomial submodule of ", TT "F", ". The almost lex module associated to ", TT "M", " is the monomial module ", TEX///$M^{alex}=\oplus_{i=1}^{r}{J_ig_i}$///, " with ", TEX///$J_i=\mathrm{lexIdeal}\ I_i$///, " for each ", TEX///$i$///, ", i.e., the lex ideal associated to ", TEX///$I_i$///, " for each ", TEX///$i.$///,
PARA {"Example:"},
EXAMPLE lines ///
E = QQ[e_1..e_4, SkewCommutative => true]
F=E^{0,0}
I_1=ideal(e_1*e_2,e_1*e_3,e_2*e_3)
I_2=ideal(e_1*e_2,e_1*e_3)
M=createModule({I_1,I_2},F)
almostLexModule M
///,
SeeAlso =>{isAlmostLexModule, lexIdeal}
}
document {
Key => {isLexModule,(isLexModule,Module)},
Headline => "whether a monomial module over an exterior algebra is lex",
Usage => "isLexModule M",
Inputs => {"M" => {"a monomial module over an exterior algebra"}
},
Outputs => {Boolean => {"whether the module ", TT "M", " is lex"}},
"A monomial module ", TT "M", " is lex if for all monomials ", TEX///$u,v$///, " of ", TT "F", " of the same degree with ", TEX///$v\in M$///, " and ", TEX///$u>v$///, " (> lex order) then ", TEX///$u\in M$///,".", " An equivalent definition of a lex submodule is the following one: a monomial submodule ", TEX///$M=\oplus_{i=1}^{r}{I_ig_i}$///, " of ", TT "F", " is lex if ", TEX///$I_i$///, " is a lex ideal of ", TT "E", " for each ", TEX///$i,$///, " and ", TEX///$(e_1,\dots, e_n)^{\rho_i + f_i - f_{i-1}} \subseteq I_{i-1}$///, " for ", TEX///$i = 2, \dots, r$///, " with ", TEX///$\rho_i = \mathrm{indeg}\ I_i.$///,
PARA {"Example:"},
EXAMPLE lines ///
E = QQ[e_1..e_4, SkewCommutative => true]
F=E^{0,0}
I_1=ideal(e_1*e_2,e_1*e_3,e_2*e_3)
I_2=ideal(e_1*e_2,e_1*e_3)
M=createModule({I_1,I_2},F)
Malex=almostLexModule M
isLexModule Malex
L=createModule({ideal(e_1*e_2,e_1*e_3*e_4),ideal(e_1*e_2*e_3*e_4)},F)
isLexModule L
///,
SeeAlso =>{lexModule}
}
document {
Key => {(isHilbertSequence,List,Module)},
Headline => "whether the given sequence is a Hilbert sequence",
Usage => "isHilbertSequence(hs,F)",
Inputs => {"hs" => {"a list of integers"},
"F" => {"a free module over an exterior algebra"}
},
Outputs => {Boolean => {"whether the sequence ", TT "hs", " satisfies the generalization of the Kruskal-Katona theorem in the free module ", TT "F"}},
"Let ", TEX///$F$///, " a free module with homogeneous basis ", TEX///$\{g_1,g_2,\ldots,g_r\},$///, " with ", TEX///$deg(g_i)=f_i,\ i=1, \ldots, r.$///, " If ", TEX///$M$///, " is a graded submodule of ", TT "F", ", and ", TEX///$H_{F/M}(t) =\sum_{i=f_1}^{f_r+n}H_{F/M}(i)t^i$///, " is the Hilbert series of ", TEX///$F/M,$///, " then the sequence ", TEX///$(H_{F/M}(f_1), H_{F/M}(f_1+1), \ldots, H_{F/M}(f_r+n))\in \mathbb{N}_0^{f_r+n-f_1+1}$///, " is called the Hilbert sequence of ", TEX///$F/M$///, " and we denote it by ", TEX///$Hs_{F/M}.$///, " The integers ", TEX///$f_1, f_1+1, \ldots, f_r+n$///, " are called the ", TEX///$Hs_{F/M}$///, "-degrees.",
PARA {"Example:"},
EXAMPLE lines ///
E=QQ[e_1..e_4,SkewCommutative=>true]
F=E^{0,0}
isHilbertSequence({2,8,3,1,0},F)
isHilbertSequence({2,8,3,2,0},F)
///,
SeeAlso =>{lexModule}
}
document {
Key => {lexModule,(lexModule,List,Module),(lexModule,Module)},
Headline => "compute the lex submodule with a given Hilbert sequence in a free module",
Usage => "lexModule(hs,F) or lexModule M",
Inputs => {"hs" => {"a list of integers"},
"F" => {"a free module over an exterior algebra"},
"M" => {"a monomial submodule of a free module"}
},
Outputs => {Module => {"the lex submodule of the ambient module with Hilbert sequence ", TT "hs", " or the lex submodule of the ambient module with the same Hilbert sequence of ", TT "M"}},
"Let ", TEX///$F$///, " a free module with homogeneous basis ", TEX///$\{g_1,g_2,\ldots,g_r\}.$///, " If ", TEX///$M$///, " is a graded submodule of ", TT "F", ", as a consequence of a generalization of the Kruskal-Katona theorem, then there exists a unique lex submodule of ", TT "F", " with the same Hilbert function as ", TT "M", ". If ", TT "M", " is a monomial submodule of ", TT "F", ", we denote by ", TEX///$M^\mathrm{lex}$///, " the unique lex submodule of ", TT "F", " with the same Hilbert function as ", TT "M", ". ", TEX///$M^\mathrm{lex}$///, " is called the lex submodule associated to ", TT "M", ".", " This construction uses the generalization of the Kruskal-Katona theorem.",
PARA {"Example:"},
EXAMPLE lines ///
E=QQ[e_1..e_4,SkewCommutative=>true]
F=E^{0,0}
lexModule({2,8,3,1,0},F)
I_1=ideal(e_1*e_2,e_1*e_3,e_2*e_3)
I_2=ideal(e_1*e_2,e_1*e_3)
M=createModule({I_1,I_2},F)
Mlex=lexModule M
///,
SeeAlso =>{isLexModule,isHilbertSequence,lexModuleBySequences}
}
document {
Key => {lexModuleBySequences,(lexModuleBySequences,List,Module)},
Headline => "alternative algorithm to compute the lex submodule with a given Hilbert sequence in a free module",
Usage => "lexModuleBySequences(hs,F)",
Inputs => {"hs" => {"a list of integers"},
"F" => {"a free module over an exterior algebra"}
},
Outputs => {Module => {"the lex submodule of the free module ", TT "F", " with Hilbert sequence ", TT "hs"}},
"Let ", TEX///$F$///, " a free module with homogeneous basis ", TEX///$\{g_1,g_2,\ldots,g_r\}.$///, " If ", TEX///$M$///, " is a graded submodule of ", TT "F", ", as a consequence of a generalization of the Kruskal-Katona theorem, then there exists a unique lex submodule of ", TT "F", " with the same Hilbert function as ", TT "M", ". If ", TT "M", " is a monomial submodule of ", TT "F", ", we denote by ", TEX///$M^\mathrm{lex}$///, " the unique lex submodule of ", TT "F", " with the same Hilbert function as ", TT "M", ". ", TEX///$M^\mathrm{lex}$///, " is called the lex submodule associated to ", TT "M", ".", " The algorithmic construction of the lex submodule is based on the additive property of Hilbert functions and on Kruskal-Katona's theorem",
PARA {"Example:"},
EXAMPLE lines ///
E=QQ[e_1..e_4,SkewCommutative=>true]
F=E^{0,0}
lexModuleBySequences({2,8,3,1,0},F)
///,
SeeAlso =>{isLexModule,isHilbertSequence,lexModule}
}
document {
Key => {isAlmostStronglyStableModule,(isAlmostStronglyStableModule,Module)},
Headline => "whether a monomial module over an exterior algebra is almost strongly stable",
Usage => "isAlmostStronglyStableModule M",
Inputs => {"M" => {"a monomial module over an exterior algebra"}
},
Outputs => {Boolean => {"whether the module ", TT "M", " is almost strongly stable"}},
"Let ", TEX///$\{g_1,g_2,\ldots,g_r\}$///, " be a graded basis of ", TT "F.", " A monomial submodule ", TEX///$M=\oplus_{i=1}^{r}{I_ig_i}$///, " of ", TT "F", " is almost strongly stable if ", TEX///$I_i$///, " is a strongly stable ideal of ", TT "E", " for each ", TEX///$i.$///,
PARA {"Example:"},
EXAMPLE lines ///
E = QQ[e_1..e_4, SkewCommutative => true]
F=E^{0,0}
I_1=ideal(e_1*e_2,e_1*e_3,e_2*e_3)
I_2=ideal(e_1*e_2,e_1*e_3)
M=createModule({I_1,I_2},F)
isAlmostStronglyStableModule M
I_3=ideal(e_1*e_2,e_1*e_4)
isAlmostStronglyStableModule createModule({I_1,I_3},F)
///,
SeeAlso =>{almostStronglyStableModule}
}
document {
Key => {almostStronglyStableModule,(almostStronglyStableModule,Module)},
Headline => "compute the smallest almost strongly stable module containing a given monomial module",
Usage => "almostStronglyStableModule M",
Inputs => {"M" => {"a monomial module over an exterior algebra"}
},
Outputs => {Module => {"the smallest almost strongly stable submodule of the ambient module containing ", TT "M"}},
"Let ", TEX///$\{g_1,g_2,\ldots,g_r\}$///, " be a graded basis of ", TT "F", " and let ", TEX///$M=\oplus_{i=1}^{r}{I_ig_i}$///, " a monomial submodule of ", TT "F", ". The almost strongly stable module associated to ", TT "M", " is the monomial module ", TEX///$M_{ss}=\oplus_{i=1}^{r}{J_ig_i}$///, " with ", TEX///$J_i=\mathrm{stronglyStableIdeal}\ I_i$///, " for each ", TEX///$i$///, ", i.e., the strongly stable ideal associated to ", TEX///$I_i$///, " for each ", TEX///$i.$///,
PARA {"Example:"},
EXAMPLE lines ///
E = QQ[e_1..e_4, SkewCommutative => true]
F=E^{0,0}
I_1=ideal(e_1*e_2,e_1*e_3,e_2*e_3)
I_2=ideal(e_1*e_2,e_1*e_4)
M=createModule({I_1,I_2},F)
N=almostStronglyStableModule M
///,
SeeAlso =>{isAlmostStronglyStableModule}
}
document {
Key => {isAlmostStableModule,(isAlmostStableModule,Module)},
Headline => "whether a monomial module over an exterior algebra is almost stable",
Usage => "isAlmostStableModule M",
Inputs => {"M" => {"a monomial module over an exterior algebra"}
},
Outputs => {Boolean => {"whether the module ", TT "M", " is almost stable"}},
"Let ", TEX///$\{g_1,g_2,\ldots,g_r\}$///, " be a graded basis of ", TT "F.", " A monomial submodule ", TEX///$M=\oplus_{i=1}^{r}{I_ig_i}$///, " of ", TT "F", " is almost stable if ", TEX///$I_i$///, " is a stable ideal of ", TT "E", " for each ", TEX///$i.$///,
PARA {"Example:"},
EXAMPLE lines ///
E = QQ[e_1..e_4, SkewCommutative => true]
F=E^{0,0}
I_1=ideal(e_1*e_2,e_1*e_3)
I_2=ideal(e_1*e_2,e_2*e_3)
M=createModule({I_1,I_2},F)
isAlmostStableModule M
I_3=ideal(e_1*e_3,e_2*e_3)
isAlmostStableModule createModule({I_1,I_3},F)
///,
SeeAlso =>{almostStableModule}
}
document {
Key => {almostStableModule,(almostStableModule,Module)},
Headline => "compute the smallest almost stable module containing a given monomial module",
Usage => "almostStableModule M",
Inputs => {"M" => {"a monomial module over an exterior algebra"}
},
Outputs => {Module => {"the smallest almost stable submodule of the ambient module containing ", TT "M"}},
"Let ", TEX///$\{g_1,g_2,\ldots,g_r\}$///, " be a graded basis of ", TT "F", " and let ", TEX///$M=\oplus_{i=1}^{r}{I_ig_i}$///, " a monomial submodule of ", TT "F", ". The almost stable module associated to ", TT "M", " is the monomial module ", TEX///$M_{s}=\oplus_{i=1}^{r}{J_ig_i}$///, " with ", TEX///$J_i=\mathrm{stableIdeal}\ I_i$///, " for each ", TEX///$i$///, ", i.e., the stable ideal associated to ", TEX///$I_i$///, " for each ", TEX///$i.$///,
PARA {"Example:"},
EXAMPLE lines ///
E = QQ[e_1..e_4, SkewCommutative => true]
F=E^{0,0}
I_1=ideal(e_1*e_2,e_1*e_3)
I_2=ideal(e_1*e_3,e_2*e_3)
M=createModule({I_1,I_2},F)
N=almostStableModule M
///,
SeeAlso =>{isAlmostStableModule}
}
document {
Key => {isStronglyStableModule,(isStronglyStableModule,Module)},
Headline => "whether a monomial module over an exterior algebra is strongly stable",
Usage => "isStronglyStableModule M",
Inputs => {"M" => {"a monomial module over an exterior algebra"}
},
Outputs => {Boolean => {"whether the module ", TT "M", " is strongly stable"}},
"Let ", TEX///$\{g_1,g_2,\ldots,g_r\}$///, " be a graded basis of ", TT "F", " with ", TEX///$deg(g_i)=f_i,\ i=1,\ldots,r.$///," A monomial submodule ", TEX///$M=\oplus_{i=1}^{r}{I_ig_i}$///, " of ", TT "F", " is strongly stable if it is almost strongly stable and ", TEX///$(x_1,\ldots,x_n)^{(f_{i+1}-f_i)} I_{i+1}$///, " belongs to ", TEX///$I_i$///, " for ", TEX///$i=1,\ldots,r-1.$///, " A monomial ideal ", TEX///$I$///, " of ", TEX///$E$///, " is called strongly stable if for each monomial ", TEX///$e_{\sigma} \in I$///, " and each ", TEX///$j \in \sigma$///, " one has ", TEX///$e_ie_{\sigma \setminus \{j\}} \in I$///, " for all ", TEX///$i<j.$///,
PARA {"Example:"},
EXAMPLE lines ///
E = QQ[e_1..e_4, SkewCommutative => true]
F=E^{0,0}
I_1=ideal(e_1*e_2)
I_2=ideal(e_1*e_2*e_3,e_1*e_2*e_4,e_1*e_3*e_4)
M=createModule({I_1,I_2},F)
isAlmostStronglyStableModule M
isStronglyStableModule M
///,
SeeAlso =>{isAlmostStronglyStableModule, stronglyStableModule}
}
document {
Key => {stronglyStableModule,(stronglyStableModule,Module)},
Headline => "compute the smallest strongly stable module containing a given monomial module",
Usage => "stronglyStableModule M",
Inputs => {"M" => {"a monomial module over an exterior algebra"}
},
Outputs => {Module => {"the smallest strongly stable submodule of the ambient module containing ", TT "M"}},
"Let ", TEX///$F$///, " be a free module with homogeneous basis ", TEX///$\{g_1,g_2,\ldots,g_r\}$///, " and let ", TEX///$M$///, " be a monomial submodule of ", TT "F", ". This method allows the construction of the smallest strongly stable submodule of ", TT "F", " containing ", TT "M", ". It is useful, although it does not preserve invariants. In fact, the computation by hand of a strongly stable submodule implies some tedious calculations overall in the case when the elements of the homogeneous basis of ", TT "F", " have different degrees. Furthermore, it is worth pointing out that such methods are analogous to the ", TT "Macaulay2", " function ", TT "borel", " that computes the smallest borel ideal containing a given ideal.",
PARA {"Example:"},
EXAMPLE lines ///
E = QQ[e_1..e_4, SkewCommutative => true]
F=E^{0,0}
I_1=ideal(e_1*e_2)
I_2=ideal(e_1*e_2*e_3,e_1*e_2*e_4,e_1*e_3*e_4)
M=createModule({I_1,I_2},F)
isStronglyStableModule M
Mss=stronglyStableModule M
isStronglyStableModule Mss
///,
SeeAlso =>{isStronglyStableModule,isAlmostStronglyStableModule}
}
document {
Key => {isStableModule,(isStableModule,Module)},
Headline => "whether a monomial module over an exterior algebra is stable",
Usage => "isStableModule M",
Inputs => {"M" => {"a monomial module over an exterior algebra"}
},
Outputs => {Boolean => {"whether the module ", TT "M", " is stable"}},
"Let ", TEX///$\{g_1,g_2,\ldots,g_r\}$///, " be a graded basis of ", TT "F", " with ", TEX///$deg(g_i)=f_i,\ i=1,\ldots,r.$///, " A monomial submodule ", TEX///$M=\oplus_{i=1}^{r}{I_ig_i}$///, " of ", TT "F", " is stable if it is almost stable and ", TEX///$(x_1,\ldots,x_n)^{(f_{i+1}-f_i)} I_{i+1}$///, " belongs to ", TEX///$I_i$///, " for ", TEX///$i=1,\ldots,r-1.$///, " A monomial ideal ", TEX///$I$///, " of ", TEX///$E$///, " is called stable if for each monomial ", TEX///$e_{\sigma}\in I$///, " and each ", TEX///$j < \mathrm{m}(e_{\sigma})$///, " one has ", TEX///$e_j e_{{\sigma} \setminus \{\mathrm{m}(e_{\sigma})\}} \in I.$///,
PARA {"Example:"},
EXAMPLE lines ///
E = QQ[e_1..e_4, SkewCommutative => true]
F=E^{0,0}
I_1=ideal(e_1*e_2)
I_2=ideal(e_1*e_2*e_3,e_1*e_2*e_4,e_1*e_3*e_4)
M=createModule({I_1,I_2},F)
isAlmostStableModule M
isStableModule M
///,
SeeAlso =>{isAlmostStableModule, stableModule}
}
document {
Key => {stableModule,(stableModule,Module)},
Headline => "compute the smallest stable module containing a given monomial module",
Usage => "stableModule M",
Inputs => {"M" => {"a monomial module over an exterior algebra"}
},
Outputs => {Module => {"the smallest stable submodule of the ambient module containing ", TT "M"}},
"Let ", TEX///$F$///, " be a free module with homogeneous basis ", TEX///$\{g_1,g_2,\ldots,g_r\}$///, " and let ", TEX///$M$///, " be a monomial submodule of ", TT "F", ". This method allows the construction of the smallest stable submodule of ", TT "F", " containing ", TT "M", ". It is useful, although it does not preserve invariants. In fact, the computation by hand of a stable submodule implies some tedious calculations overall in the case when the elements of the homogeneous basis of ", TT "F", " have different degrees.",
PARA {"Example:"},
EXAMPLE lines ///
E = QQ[e_1..e_4, SkewCommutative => true]
F=E^{0,0}
I_1=ideal(e_1*e_2)
I_2=ideal(e_1*e_2*e_3,e_1*e_2*e_4,e_1*e_3*e_4)
M=createModule({I_1,I_2},F)
isStableModule M
Ms=stableModule M
isStableModule Ms
///,
SeeAlso =>{isStableModule,isAlmostStableModule}
}
document {
Key => {(minimalBettiNumbers,Module)},
Headline => "compute the minimal Betti numbers of a given graded module",
Usage => "minimalBettiNumbers M",
Inputs => {"M" => {"a graded module over an exterior algebra"}
},
Outputs => {BettiTally => {"the Betti table of the module ", TT "M", " computed using its minimal generators"}},
"If ", TT"M", " is a graded finitely generated module over an exterior algebra ", TT "E", ", we denote by ", TEX///$\beta_{i,j}(M)=\dim_K\mathrm{Tor}_{i}^{E}(M,K)_j$///, " the graded Betti numbers of ", TT "M", ".",
PARA {"Example:"},
EXAMPLE lines ///
E=QQ[e_1..e_4,SkewCommutative=>true]
F=E^{0,0}
I_1=ideal(e_1*e_2,e_1*e_3,e_2*e_3)
I_2=ideal(e_1*e_2,e_1*e_3)
M_1=createModule({I_1,I_2},F)
J=ideal(join(flatten entries gens I_1,{e_1*e_2*e_3}))
M_2=createModule({J,I_2},F)
M_1==M_2
betti M_1==betti M_2
minimalBettiNumbers M_1==minimalBettiNumbers M_2
///
}
document {
Key => {initialModule,(initialModule,Module)},
Headline => "compute the initial module of a given module",
Usage => "initialModule M",
Inputs => {"M" => {"a module over an exterior algebra"}
},
Outputs => {Module => {"the initial module of the module ", TT "M", " with default monomial order"}},
"Let ", TEX///$F$///, " a free module with homogeneous basis ", TEX///$\{g_1,g_2,\ldots,g_r\}.$///, " The elements ", TEX///$e_{\sigma}g_i$///, " with ", TEX///$e_{\sigma}$///, " a monomial of ", TEX///$E$///, " are called monomials of ", TEX///$F$///, " and ", TEX///$\mathrm{deg}(e_{\sigma} g_i) = \mathrm{deg}(e_{\sigma}) + \mathrm{deg}(g_i).$///, " Any element ", TEX///$f$///, " of ", ///$F$///, " is a unique linear combination of monomials with coefficients in ", TEX///$K$///, ". Let > be a monomial order on ", TEX///$E$///, ". The largest monomial of ", TEX///$f$///, " is called the initial monomial of ", TEX///$f$///, " and it is denoted by ", TEX///$\mathrm{In}(f)$///, ". If ", TT "M", " is a graded submodule of ", TEX///$F$///, " then the submodule of initial terms of ", TT "M", ", denoted by ", TEX///$\mathrm{In}(M)$///, ", is the submodule of ", TEX///$F$///, " generated by the initial terms of elements of ", TT "M", ".",
PARA {"Example:"},
EXAMPLE lines ///
E=QQ[e_1..e_3,SkewCommutative=>true]
F=E^{0,0}
f_1=(e_1*e_2)*F_0
f_2=(e_1*e_3)*F_0+(e_2*e_3)*F_1
f_3=(e_1*e_2*e_3)*F_1
M=image map(F,E^{-degree f_1,-degree f_2,-degree f_3},matrix {f_1,f_2,f_3})
initialModule M
///,
SeeAlso =>{isMonomialModule}
}
document {
Key => {bassNumbers,(bassNumbers,Module)},
Headline => "compute the Bass numbers of a given graded module",
Usage => "bassNumbers M",
Inputs => {"M" => {"a graded module over an exterior algebra"}
},
Outputs => {BettiTally => {"the Bass table of the module ", TT "M", " computed using its minimal generators"}},
"If ", TT"M", " is a graded finitely generated module over an exterior algebra ", TT "E", ", we denote by ", TEX///$\beta_{i,j}(M)=\dim_K\mathrm{Tor}_{i}^{E}(M,K)_j$///, " the graded Betti numbers of ", TT "M", " and by ", TEX///$\mu_{i,j}(M) = \dim_K \mathrm{Ext}_E^i(K, M)_j$///, " the graded Bass numbers of ", TT "M", ". Let ", TEX///$M^\ast$///, " be the right (left) ", TEX///$E$///, "-module ", TEX///$\mathrm{Hom}_E(M,E).$///, " The duality between projective and injective resolutions implies the following relation between the graded Bass numbers of a module and the graded Betti numbers of its dual: ", TEX///$\beta_{i,j}(M) = \mu_{i,n-j}(M^\ast)$///, ", for all ", TEX///$i, j.$///,
PARA {"Example:"},
EXAMPLE lines ///
E=QQ[e_1..e_4,SkewCommutative=>true]
F=E^{0,0}
I_1=ideal(e_1*e_2,e_1*e_3,e_2*e_3)
I_2=ideal(e_1*e_2,e_1*e_3)
M=createModule({I_1,I_2},F)
bassNumbers M
///
}
------------------------------------------------------------
-- TESTS
------------------------------------------------------------
----------------------------
-- Test create module
----------------------------
TEST ///
E=QQ[e_1..e_4,SkewCommutative=>true]
F=E^{0,0}
I_1=ideal(e_1*e_2,e_1*e_3,e_2*e_3)
I_2=ideal(e_1*e_2,e_1*e_3)
M=createModule({I_1,I_2},F)
assert(M==I_1*F_0+I_2*F_1)
///
----------------------------
-- Test getIdeals
----------------------------
TEST ///
E=QQ[e_1..e_4,SkewCommutative=>true]
m=matrix {{e_1*e_2,e_3*e_4,0,0},
{0,0,e_1*e_2,e_2*e_3*e_4}}
M=image m
I_1=ideal(e_1*e_2,e_3*e_4)
I_2=ideal(e_1*e_2,e_2*e_3*e_4)
assert(getIdeals M=={I_1,I_2})
///
----------------------------
-- Test hilbertSequence
----------------------------
TEST ///
E=QQ[e_1..e_4,SkewCommutative=>true]
F=E^{0,0}
I_1=ideal(e_1*e_2,e_1*e_3,e_2*e_3)
I_2=ideal(e_1*e_2,e_1*e_3)
M=createModule({I_1,I_2},F)
assert(hilbertSequence M=={2,8,7,1,0})
///
----------------------------
-- Test isMonomialModule
----------------------------
TEST ///
E=QQ[e_1..e_4,SkewCommutative=>true]
M=image matrix {{e_1*e_2,e_3*e_4,0,0,0},
{0,0,e_1*e_2,e_2*e_3*e_4,0},
{0,0,0,0,e_2*e_3*e_4}}
assert(isMonomialModule M==true)
///
----------------------------
-- Test isAlmostLexModule
----------------------------
TEST ///
E=QQ[e_1..e_4,SkewCommutative=>true]
F=E^{0,0}
I_1=ideal(e_1*e_2,e_1*e_3,e_2*e_3)
I_2=ideal(e_1*e_2,e_1*e_3)
M=createModule({I_1,I_2},F)
assert(not isAlmostLexModule M)
///
----------------------------
-- Test almostLexModule
----------------------------
TEST ///
E=QQ[e_1..e_4,SkewCommutative=>true]
F=E^{0,0}
I_1=ideal(e_1*e_2,e_1*e_3,e_2*e_3)
I_2=ideal(e_1*e_2,e_1*e_3)
M=createModule({I_1,I_2},F)
Malex=almostLexModule(M)
assert(Malex==lexIdeal(I_1)*F_0+lexIdeal(I_2)*F_1)
///
----------------------------
-- Test isLexModule
----------------------------
TEST ///
E=QQ[e_1..e_4,SkewCommutative=>true]
F=E^{0,0}
I_1=ideal(e_1*e_2,e_1*e_3,e_2*e_3)
I_2=ideal(e_1*e_2,e_1*e_3)
M=createModule({I_1,I_2},F)
Malex=almostLexModule(M)
assert(not isLexModule Malex)
///
----------------------------
-- Test lexModule
----------------------------
TEST ///
E=QQ[e_1..e_4,SkewCommutative=>true]
F=E^{0,0}
I_1=ideal(e_1*e_2,e_1*e_3,e_2*e_3)
I_2=ideal(e_1*e_2,e_1*e_3)
M=createModule({I_1,I_2},F)
Mlex=lexModule(M)
K_1=ideal({e_1*e_2,e_1*e_3,e_1*e_4,e_2*e_3,e_2*e_4})
K_2=ideal({e_1*e_2*e_3,e_1*e_2*e_4,e_1*e_3*e_4})
L=createModule({K_1,K_2},F)
assert(Mlex==L)
///
----------------------------
-- Test isHilbertSequence
----------------------------
TEST ///
E=QQ[e_1..e_4,SkewCommutative=>true]
F=E^{0,0}
assert(isHilbertSequence({2,8,3,1,0},F))
assert(not isHilbertSequence({1,8,3,1,0},F))
assert(not isHilbertSequence({2,8,12,9,0},F))
///
----------------------------
-- Test lexModuleBySequences
----------------------------
TEST ///
E=QQ[e_1..e_4,SkewCommutative=>true]
F=E^{0,0}
assert(lexModuleBySequences({2,8,12,7,0},F)==ideal(e_1*e_2*e_3)*F_0+ideal(e_1*e_2*e_3*e_4)*F_1)
///
----------------------------
-- Test isAlmostStronglyStableModule
----------------------------
TEST ///
E=QQ[e_1..e_4,SkewCommutative=>true]
F=E^{0,0}
I_1=ideal(e_1*e_2)
I_2=ideal(e_1*e_2*e_3,e_1*e_2*e_4,e_1*e_3*e_4)
M=createModule({I_1,I_2},F)
assert(isAlmostStronglyStableModule M)
///
----------------------------
-- Test almostStronglyStableModule
----------------------------
TEST ///
E=QQ[e_1..e_4,SkewCommutative=>true]
F=E^{0,0}
I_1=ideal(e_1*e_2)
I_2=ideal(e_1*e_2*e_3,e_1*e_2*e_4,e_1*e_3*e_4)
M=createModule({I_1,I_2},F)
assert(almostStronglyStableModule M==M)
///
----------------------------
-- Test isAlmostStableModule
----------------------------
TEST ///
E=QQ[e_1..e_4,SkewCommutative=>true]
F=E^{0,0}
I_1=ideal(e_1*e_2)
I_2=ideal(e_1*e_2*e_3,e_1*e_2*e_4,e_1*e_3*e_4)
M=createModule({I_1,I_2},F)
assert(isAlmostStableModule M)
///
----------------------------
-- Test almostStableModule
----------------------------
TEST ///
E=QQ[e_1..e_4,SkewCommutative=>true]
F=E^{0,0}
I_1=ideal(e_1*e_2)
I_2=ideal(e_1*e_2*e_3,e_1*e_2*e_4,e_1*e_3*e_4)
M=createModule({I_1,I_2},F)
assert(almostStableModule M==M)
///
----------------------------
-- Test isStronglyStableModule
----------------------------
TEST ///
E=QQ[e_1..e_4,SkewCommutative=>true]
F=E^{0,0}
I_1=ideal(e_1*e_2)
I_2=ideal(e_1*e_2*e_3,e_1*e_2*e_4,e_1*e_3*e_4)
M=createModule({I_1,I_2},F)
assert(isAlmostStronglyStableModule M)
assert(not isStronglyStableModule M)
///
----------------------------
-- Test stronglyStableModule
----------------------------
TEST ///
E=QQ[e_1..e_4,SkewCommutative=>true]
F=E^{0,0}
I_1=ideal(e_1*e_2)
I_2=ideal(e_1*e_2*e_3,e_1*e_2*e_4,e_1*e_3*e_4)
M=createModule({I_1,I_2},F)
Mss=stronglyStableModule M
assert(not isStronglyStableModule M)
assert(isStronglyStableModule Mss)
///
----------------------------
-- Test isStableModule
----------------------------
TEST ///
E=QQ[e_1..e_4,SkewCommutative=>true]
F=E^{0,0}
I_1=ideal(e_1*e_2)
I_2=ideal(e_1*e_2*e_3,e_1*e_2*e_4,e_1*e_3*e_4)
M=createModule({I_1,I_2},F)
assert(isAlmostStableModule M)
assert(not isStableModule M)
///
----------------------------
-- Test stableModule
----------------------------
TEST ///
E=QQ[e_1..e_4,SkewCommutative=>true]
F=E^{0,0}
I_1=ideal(e_1*e_2)
I_2=ideal(e_1*e_2*e_3,e_1*e_2*e_4,e_1*e_3*e_4)
M=createModule({I_1,I_2},F)
Ms=stableModule M
assert(not isStableModule M)
assert(isStableModule Ms)
///
----------------------------
-- Test minimalBettiNumbers
----------------------------
TEST ///
E=QQ[e_1..e_4,SkewCommutative=>true]
F=E^{0,0}
I_1=ideal(e_1*e_2,e_1*e_3,e_2*e_3)
I_2=ideal(e_1*e_2,e_1*e_3)
M_1=createModule({I_1,I_2},F)
J=ideal(join(flatten entries gens I_1,{e_1*e_2*e_3}))
M_2=createModule({J,I_2},F)
assert(M_1==M_2)
assert(minimalBettiNumbers M_1==minimalBettiNumbers M_2)
///
----------------------------
-- Test initialModule
----------------------------
TEST ///
E=QQ[e_1..e_5,SkewCommutative=>true]
F=E^{0,0}
I_1=ideal {e_1*e_2+e_3*e_4*e_5,e_1*e_3+e_4*e_5,e_2*e_3*e_4}
I_2=ideal(e_1*e_2+e_1*e_3,e_4*e_5)
M=createModule({I_1,I_2},F)
inM=initialModule M
assert(isMonomialModule inM)
assert(hilbertSequence M==hilbertSequence inM)
///
----------------------------
-- Test bassNumbers
----------------------------
TEST ///
E=QQ[e_1..e_4,SkewCommutative=>true]
F=E^{0,0}
I_1=ideal(e_1*e_2,e_1*e_3,e_2*e_3)
I_2=ideal(e_1*e_2,e_1*e_3)
M=createModule({I_1,I_2},F)
t=bassNumbers M
assert(t#(1,{2},2)==4)
assert(t#(4,{5},5)==34)
assert(t#(5,{6},6)==50)
///
end
restart
installPackage ("ExteriorIdeals", UserMode=>true, RerunExamples=>true)
installPackage ("ExteriorModules", UserMode=>true, RerunExamples=>true)
loadPackage "ExteriorModules"
viewHelp
|