1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944
|
-- -*- coding: utf-8 -*-
newPackage(
"GeometricDecomposability",
Version => "1.1",
Date => "November 1, 2022",
Headline => "A package to check whether ideals are geometrically vertex decomposable",
Authors => {
{
Name => "Mike Cummings",
Email => "cummim5@mcmaster.ca",
HomePage => "https://math.mcmaster.ca/~cummim5/"
},
{
Name => "Adam Van Tuyl",
Email => "vantuyl@math.mcmaster.ca",
HomePage => "https://ms.mcmaster.ca/~vantuyl/"
}
},
Keywords => {"Commutative Algebra"},
PackageImports => {"Depth", "PrimaryDecomposition"}
)
export {
-- methods
"CyI",
"findLexCompatiblyGVDOrders",
"findOneStepGVD",
"getGVDIdeal",
"isGeneratedByIndeterminates",
"isGVD",
"isLexCompatiblyGVD",
"isUnmixed",
"isWeaklyGVD",
"NyI",
"oneStepGVD",
"yInit",
-- options
"CheckCM",
"CheckDegenerate",
"CheckUnmixed",
"IsIdealHomogeneous",
"IsIdealUnmixed",
"OnlyDegenerate",
"OnlyNondegenerate",
"Verbose"
};
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
--
-- METHODS
--
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
CyI = method(TypicalValue => Ideal, Options => {CheckUnmixed => true})
CyI(Ideal, RingElement) := opts -> (I, y) -> (oneStepGVD(I, y, CheckUnmixed=>opts.CheckUnmixed))_1;
--------------------------------------------------------------------------------
findLexCompatiblyGVDOrders = method(TypicalValue => List, Options => {CheckUnmixed => true})
findLexCompatiblyGVDOrders(Ideal) := opts -> I -> (
if isGVDBaseCase I then (
return permutations gens ring I;
);
try (
orders := sort lexOrderHelper({I}, {}, CheckUnmixed=>opts.CheckUnmixed);
truncatedOrders := recursiveFlatten orders;
)
then (
allLexOrders := permutations gens ring I;
validLexOrders := select(allLexOrders, lexOrder -> inTruncatedList(lexOrder, truncatedOrders) );
return validLexOrders;
)
else (
return {};
)
)
--------------------------------------------------------------------------------
findOneStepGVD = method(TypicalValue => List, Options => {CheckUnmixed => true, OnlyNondegenerate => false, OnlyDegenerate => false})
findOneStepGVD(Ideal) := opts -> I -> (
-- returns a list of indeterminates for which there exists a one-step geometric vertex decomposition
if opts.OnlyNondegenerate and opts.OnlyDegenerate then (
error("a geometric vertex decomposition cannot be both degenerate and nondegenerate");
return {};
);
satisfiesOneStep := (I, y, D, ND) -> (
if ND or D then (
oneStep := oneStepGVD(I, y, CheckDegenerate=>true, CheckUnmixed=>opts.CheckUnmixed);
if ND then (
return oneStep_0 and oneStep_3 == "nondegenerate";
) else (
return oneStep_0 and oneStep_3 == "degenerate";
)
);
return (oneStepGVD(I, y, CheckUnmixed=>opts.CheckUnmixed))_0;
);
R := ring I;
indets := support I;
L := for y in indets list (if satisfiesOneStep(I, y, opts.OnlyDegenerate, opts.OnlyNondegenerate) then y else 0);
return delete(0, L);
)
--------------------------------------------------------------------------------
getGVDIdeal = method(TypicalValue => List, Options => {CheckUnmixed => true})
getGVDIdeal(Ideal, List) := opts -> (I, L) -> (
CNs := new HashTable from {
"C" => CyI,
"N" => NyI
};
return accumulate( (i, j) -> CNs#(j_0)(i, j_1, CheckUnmixed=>opts.CheckUnmixed) , prepend(I, L) ); -- last entry is the desired ideal
)
--------------------------------------------------------------------------------
isGeneratedByIndeterminates = method(TypicalValue => Boolean)
isGeneratedByIndeterminates(Ideal) := I -> (
R := ring I;
indeterminates := gens R;
gensI := first entries gens I;
return isSubset(delete(0, gensI), indeterminates);
)
--------------------------------------------------------------------------------
-- [KR, Definition 2.7]
isGVD = method(TypicalValue => Boolean, Options => {CheckCM => "once", CheckUnmixed => true, IsIdealHomogeneous => false, IsIdealUnmixed => false, Verbose => false})
isGVD(Ideal) := opts -> I -> (
if not instance(opts.CheckCM, String) then (
error "value of CheckCM must be a string";
) else (
if not isSubset({opts.CheckCM}, {"always", "once", "never"}) then error ///unknown value of CheckCM, options are "once" (default), "always", "never"///;
);
R := ring I;
printIf(opts.Verbose, toString I);
if I == 0 then (printIf(opts.Verbose, "-- zero ideal"); return true);
if I == 1 then (printIf(opts.Verbose, "-- unit ideal"); return true);
if (isGeneratedByIndeterminates I) then (printIf(opts.Verbose, "-- generated by indeterminates"); return true);
if opts.CheckUnmixed then (
if not opts.IsIdealUnmixed then (
if not (isUnmixed I) then (printIf(opts.Verbose, "-- ideal is not unmixed"); return false);
);
);
x := opts.IsIdealHomogeneous or isHomogeneous(I);
if opts.CheckCM == "once" or opts.CheckCM == "always" then (
if x then (
if (not isCM(R/I)) then (printIf(opts.Verbose, "-- ideal is homogeneous but not Cohen-Macaulay") ; return false);
);
);
CMTable := new HashTable from {
"always" => "always",
"once" => "never",
"never" => "never"
};
-- check all options for y until one works
for y in (support I) do (
printIf(opts.Verbose, "-- decomposing with respect to " | toString y);
(isValid, C, N) := oneStepGVD(I, y, CheckUnmixed=>opts.CheckUnmixed, Verbose=>opts.Verbose);
if not isValid then continue; -- go back to top of for loop
printIf(opts.Verbose, "-- C = " | toString C);
printIf(opts.Verbose, "-- N = " | toString N);
CisGVD := isGVD(C, CheckCM=>CMTable#(opts.CheckCM), CheckUnmixed=>opts.CheckUnmixed, IsIdealHomogeneous=>x, IsIdealUnmixed=>true, Verbose=>opts.Verbose);
NisGVD := isGVD(N, CheckCM=>CMTable#(opts.CheckCM), CheckUnmixed=>opts.CheckUnmixed, IsIdealHomogeneous=>x, IsIdealUnmixed=>true, Verbose=>opts.Verbose);
if (CisGVD and NisGVD) then return true;
);
-- if we are here, no choice of y worked
return false;
)
--------------------------------------------------------------------------------
-- [KR, Definition 2.11]
isLexCompatiblyGVD = method(TypicalValue => Boolean, Options => {CheckCM => "once", CheckUnmixed => true, IsIdealHomogeneous => false, IsIdealUnmixed => false, Verbose => false})
isLexCompatiblyGVD(Ideal, List) := opts -> (I, indetOrder) -> (
if not instance(opts.CheckCM, String) then (
error "value of CheckCM must be a string";
) else (
if not isSubset({opts.CheckCM}, {"always", "once", "never"}) then error ///unknown value of CheckCM, options are "once" (default), "always", "never"///;
);
R := ring I;
printIf(opts.Verbose, toString I);
if I == 0 then (printIf(opts.Verbose, "-- zero ideal"); return true);
if I == 1 then (printIf(opts.Verbose, "-- unit ideal"); return true);
if (isGeneratedByIndeterminates I) then (printIf(opts.Verbose, "-- generated by indeterminates"); return true);
supportIndets := support I;
trimmedOrder := select(indetOrder, i -> member(sub(i, R), supportIndets));
if opts.CheckUnmixed then (
if not opts.IsIdealUnmixed then (
if not (isUnmixed I) then (printIf(opts.Verbose, "-- ideal is not unmixed"); return false);
);
);
x := opts.IsIdealHomogeneous or isHomogeneous(I);
if opts.CheckCM == "once" or opts.CheckCM == "always" then (
if x then (if (not isCM(R/I)) then return false;);
);
CMTable := new HashTable from {
"always" => "always",
"once" => "never",
"never" => "never"
};
-- check next indeterminate in list
y := first trimmedOrder;
remainingOrder := take(trimmedOrder, {1, #trimmedOrder});
printIf(opts.Verbose, "-- decomposing with respect to " | toString y);
(isValid, C, N) := oneStepGVD(I, y, CheckUnmixed=>opts.CheckUnmixed, Verbose=>opts.Verbose);
if not isValid then return false; -- order didn't work
printIf(opts.Verbose, "-- C = " | toString C);
printIf(opts.Verbose, "-- N = " | toString N);
CisGVD := isLexCompatiblyGVD(C, remainingOrder, CheckCM=>CMTable#(opts.CheckCM), CheckUnmixed=>opts.CheckUnmixed, IsIdealHomogeneous=>x, IsIdealUnmixed=>true, Verbose=>opts.Verbose);
NisGVD := isLexCompatiblyGVD(N, remainingOrder, CheckCM=>CMTable#(opts.CheckCM), CheckUnmixed=>opts.CheckUnmixed, IsIdealHomogeneous=>x, IsIdealUnmixed=>true, Verbose=>opts.Verbose);
return (CisGVD and NisGVD);
)
--------------------------------------------------------------------------------
isUnmixed = method(TypicalValue => Boolean)
isUnmixed(Ideal) := I -> (
R := ring I;
D := primaryDecomposition I;
d := apply(D, i -> dim(R/i));
return all(apply(d, i -> (i == d_0)), i -> i); -- list contains only true values
)
--------------------------------------------------------------------------------
-- [KR, Definition 4.6]
isWeaklyGVD = method(TypicalValue => Boolean, Options => {CheckUnmixed => true, IsIdealUnmixed => false, Verbose => false})
isWeaklyGVD(Ideal) := opts -> I -> (
R := ring I;
printIf(opts.Verbose, toString I);
if I == 0 then (printIf(opts.Verbose, "-- zero ideal"); return true);
if I == 1 then (printIf(opts.Verbose, "-- unit ideal"); return true);
if (isGeneratedByIndeterminates I) then (printIf(opts.Verbose, "-- generated by indeterminates"); return true);
if opts.CheckUnmixed then (
if not opts.IsIdealUnmixed then (
if not (isUnmixed I) then (printIf(opts.Verbose, "-- ideal is not unmixed"); return false);
);
);
-- check all options for y until one works
for y in (support I) do (
printIf(opts.Verbose, "-- decomposing with respect to " | toString y);
oneStep := oneStepGVD(I, y, CheckDegenerate=>true, CheckUnmixed=>opts.CheckUnmixed, Verbose=>opts.Verbose);
isValid := oneStep_0;
if not isValid then continue; -- go back to top of for loop
(C, N, degenerateOutput) := (oneStep_1, oneStep_2, oneStep_3);
isDegenerate := (degenerateOutput == "degenerate");
degenerateTable := new HashTable from {true => "degenerate", false => "nondegenerate"};
printIf(opts.Verbose, "-- C = " | toString C);
printIf(opts.Verbose, "-- N = " | toString N);
printIf(opts.Verbose, "-- form a " | degenerateTable#isDegenerate | " geometric vertex decomposition");
if isDegenerate then (
-- degenerate case
if isWeaklyGVD(N, CheckUnmixed=>opts.CheckUnmixed, IsIdealUnmixed=>true, Verbose=>opts.Verbose) then return true else continue;
) else (
-- nondegenerate case
if not (radical(N, Unmixed=>true) == N and isCM(ring N/N)) then continue;
if isWeaklyGVD(C, CheckUnmixed=>opts.CheckUnmixed, IsIdealUnmixed=>true, Verbose=>opts.Verbose) then return true else continue;
)
);
-- if we are here, no choice of y worked
return false;
)
--------------------------------------------------------------------------------
NyI = method(TypicalValue => Ideal, Options => {CheckUnmixed => true})
NyI(Ideal, RingElement) := opts -> (I, y) -> (oneStepGVD(I, y, CheckUnmixed=>opts.CheckUnmixed))_2;
--------------------------------------------------------------------------------
-- [KMY, Theorem 2.1]
oneStepGVD = method(TypicalValue => Sequence, Options => {CheckDegenerate => false, CheckUnmixed => true, Verbose => false})
oneStepGVD(Ideal, RingElement) := opts -> (I, y) -> (
-- set up the rings
indeterminates := switch(0, index y, gens ring y);
remainingIndets := drop(gens ring y, {index y, index y});
cr := coefficientRing ring I;
givenRing := ring I;
lexRing := (cr) monoid([indeterminates, MonomialOrder=>Lex]);
contractedRing := (cr) monoid([remainingIndets]);
-- pull everything into a lex ring
I1 := sub(I, lexRing);
y1 := sub(y, lexRing);
inyForm := sub(yInit(I1, y1), lexRing);
G := first entries gens gb I1;
-- get N_{y,I}
gensN := delete(0, apply(G, g -> isInN(g, y1)));
NyI := ideal(gensN);
-- get C_{y, I} and determine whether the GB is square-free in y
gensC := delete(true, flatten(apply(G, g -> isInC(g, y1))));
squarefree := (number(gensC, i -> (i === false)) == 0); -- square-free is true iff number of `false` in gensC is 0
CyI := ideal(delete(false, gensC));
-- [KR, Lemma 2.6]
if not squarefree then (
printIf(opts.Verbose, "Warning: Gröbner basis not square-free in " | toString y);
return (false, sub(CyI, givenRing), sub(NyI, givenRing));
);
-- check that the intersection holds
-- sub CyI, NyI into lexRing in case either is zero or unit ideal
validOneStep := ( intersect( sub(CyI, lexRing), sub(NyI, lexRing) + ideal(y1) ) == inyForm );
C := sub(CyI, givenRing);
N := sub(NyI, givenRing);
if not validOneStep then (
printIf(opts.Verbose, "Warning: not a valid geometric vertex decomposition");
return (false, C, N);
);
if opts.CheckUnmixed then (
-- check unmixedness of both CyI and NyI
isUnmixedC := isUnmixed C;
isUnmixedN := isUnmixed N;
if not isUnmixedC then (
printIf(opts.Verbose, "Warning: CyI is not unmixed");
);
if not isUnmixedN then (
printIf(opts.Verbose, "Warning: NyI is not unmixed");
);
if not (isUnmixedC and isUnmixedN) then (
return (false, C, N);
);
);
if opts.CheckDegenerate then (
-- degenerate if C == 1 or radical C == radical N
if C == 1 then return (true, C, N, "degenerate");
radC := radical(C, Unmixed=>true);
radN := radical(N, Unmixed=>true);
if (radC == radN) then return (true, C, N, "degenerate");
-- if we are here, we are nondegenerate
return (true, C, N, "nondegenerate");
);
return (true, C, N);
)
--------------------------------------------------------------------------------
-- [KMY, Section 2.1]
yInit = method(TypicalValue => Ideal)
yInit(Ideal, RingElement) := (I, y) -> (
givenRing := ring I;
-- set up the ring
indeterminates := switch(0, index y, gens ring y);
cr := coefficientRing ring I;
initYFormRing := (cr) monoid([indeterminates, MonomialOrder=>ProductOrder{1, #indeterminates - 1}]);
-- get the ideal of initial y-forms using the product order
I = sub(I, initYFormRing);
y = sub(y, initYFormRing);
inyFormIdeal := ideal leadTerm(1,I);
return sub(inyFormIdeal, givenRing);
)
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
--** METHODS (Hidden from users, not exported)
isGVDBaseCase = method(TypicalValue => Boolean)
isGVDBaseCase(Ideal) := I -> (
return (I == 1 or I == 0 or isGeneratedByIndeterminates(I));
)
isInC = method(TypicalValue => List)
isInC(RingElement, RingElement) := (f, y) -> (
-- f is a polynomial, y an indeterminate
if degree(y, f) == 0 then return {true, f};
if degree(y, f) == 1 then return {true, getQ(f, y)};
return {false, getQ(f, y)};
)
isInN = method()
isInN(RingElement, RingElement) := (f, y) -> (
-- f is a polynomial, y an indeterminate
if degree(y, f) == 0 then return f else return 0; -- 0 is a temp value which we remove immediately
)
intersectLists = method(TypicalValue => List)
intersectLists(List) := L -> (
-- L is a list of lists
S := for l in L list (set l);
return toList fold(intersectSets, S)
)
intersectSets = method(TypicalValue => Set)
intersectSets(Set, Set) := (S1, S2) -> (
return S1 * S2;
)
inTruncatedList = method(TypicalValue => Boolean)
inTruncatedList(List, List) := (L, LL) -> (
-- LL is a list of lists
-- return True if: for some list l of length n in LL, the first n terms of L are exactly l
for l in LL do (
n := #l;
if l == take(L, n) then return true;
);
return false;
)
getQ = method(TypicalValue => RingElement)
getQ(RingElement, RingElement) := (f, y) -> (
-- f is of the form q*y^d+r, return q
r := sub(f, y=>0);
qy := f - r;
return sub(qy, y=>1);
)
lexOrderHelper = method(TypicalValue => List, Options => {CheckUnmixed => true})
lexOrderHelper(List, List) := opts -> (idealList, order) -> (
-- remove ideals that are trivially GVD
nontrivialIdeals := select(idealList, i -> not isGVDBaseCase i);
-- if there are none left, return the order
if (#nontrivialIdeals) == 0 then (
return order;
);
-- for each ideal, get the indets which form a oneStepGVD
possibleIndets := apply(nontrivialIdeals, i -> findOneStepGVD(i, CheckUnmixed=>opts.CheckUnmixed));
commonPossibleIndets := intersectLists possibleIndets;
if commonPossibleIndets == {} then return;
-- for each variable, compute the C and N ideals
nextIdeals := for y in commonPossibleIndets list (
flatten apply( nontrivialIdeals, i -> (
oneStep := oneStepGVD(i, y);
{oneStep_1, oneStep_2}
))
);
L := for m from 0 to (#commonPossibleIndets)-1 list (
lexOrderHelper(nextIdeals#m, append(order, commonPossibleIndets#m))
);
return L;
)
printIf = method()
printIf(Boolean, String) := (bool, str) -> (
if bool then print str;
)
recursiveFlatten = method(TypicalValue => List)
recursiveFlatten(List) := L -> (
Lstr := toString L;
if Lstr#2 == "{" then (
return recursiveFlatten flatten L;
)
else (
return L;
)
)
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
--
-- DOCUMENTATION
--
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
beginDocumentation()
--******************************************************************************
-- Documentation for package
--******************************************************************************
doc///
Node
Key
GeometricDecomposability
Headline
a package to check whether ideals are geometrically vertex decomposable
Description
Text
This package includes routines to check whether an ideal is
geometrically vertex decomposable.
Geometrically vertex
decomposable ideals can be viewed as a generalization of the properties
of the Stanley-Reisner ideal of a vertex decomposable simplicial complex.
This family of ideals is based upon the geometric vertex
decomposition property defined by Knutson, Miller, and Yong [KMY]. Klein and Rajchgot
then gave a recursive definition for
geometrically vertex decomposable ideals in [KR] using this notion.
An unmixed ideal $I$ in a polynomial ring $R$ is geometrically vertex
decomposable if it is the zero ideal, the unit ideal, an ideal generated
by indeterminates, or if there is a indeterminate $y$ of $R$ such that
two ideals $C_{y,I}$ and $N_{y,I}$ constructed from $I$ are
both geometrically vertex decomposable. For the complete definition, see
@TO isGVD@.
Observe that a geometrically vertex decomposable ideal is recursively
defined. The complexity of verifying that an ideal is geometrically
vertex decomposable will increase as the number of indeterminates
appearing in the ideal increases.
Acknowledgement
We thank S. Da Silva, P. Klein, J. Rajchgot, and M. Harada for feedback. Cummings
was partially supported by an NSERC USRA. Van Tuyl's research is partially
supported by NSERC Discovery Grant 2019-05412.
References
[CDSRVT] M. Cummings, S. Da Silva, J. Rajchgot, and A. Van Tuyl.
Geometric Vertex Decomposition and Liaison for Toric Ideals of
Graphs. Preprint, @arXiv "2207.06391"@ (2022).
[DSH] S. Da Silva and M. Harada. Regular Nilpotent Hessenberg Varieties,
Gröbner Bases, and Toric Degenerations. Preprint, @arXiv "2207.08573"@ (2022).
[KMY] A. Knutson, E. Miller, and A. Yong. Gröbner Geometry of Vertex
Decompositions and of Flagged Tableaux. J. Reine Angew. Math. 630 (2009)
1–31.
[KR] P. Klein and J. Rajchgot. Geometric Vertex Decomposition and
Liaison. Forum of Math, Sigma, 9 (2021) e70:1-23.
[SM] H. Saremi and A. Mafi. Unmixedness and Arithmetic Properties of
Matroidal Ideals. Arch. Math. 114 (2020) 299–304.
Subnodes
CheckCM
CheckDegenerate
CheckUnmixed
CyI
findLexCompatiblyGVDOrders
findOneStepGVD
getGVDIdeal
isGeneratedByIndeterminates
isGVD
IsIdealHomogeneous
IsIdealUnmixed
isLexCompatiblyGVD
isUnmixed
isWeaklyGVD
NyI
oneStepGVD
OnlyDegenerate
OnlyNondegenerate
Verbose
yInit
///
--******************************************************************************
-- Documentation for functions
--******************************************************************************
doc///
Node
Key
CyI
(CyI, Ideal, RingElement)
Headline
computes the ideal $C_{y,I}$ for a given ideal and indeterminate
Usage
CyI(I, y)
Inputs
I:Ideal
y:RingElement
an indeterminate in the ring
Outputs
:Ideal
Caveat
This method is a shortcut to extract the ideal $C_{y,I}$ as computed
in @TO oneStepGVD@. That is, to compute $C_{y,I}$, {\tt oneStepGVD} is called in the background.
As a result, work is also done in the background to compute $N_{y,I}$ at
the same time, and as such, we encourage calling {\tt oneStepGVD}
directly if we want both the $C_{y,I}$ and $N_{y,I}$ ideals to avoid
performing the same computation twice.
Description
Text
Let $y$ be a variable of the polynomial ring $R = k[x_1,\ldots,x_n]$. A monomial ordering $<$ on $R$ is said to be
{\it $y$-compatible} if the initial term of $f$ satisfies ${\rm in}_<(f) = {\rm in}_<({\rm in}_y(f))$ for all $f \in R$.
Here, ${\rm in}_y(f)$ is the {\it initial $y$-form} of $f$, that is, if $f = \sum_i \alpha_iy^i$ and $\alpha_d \neq 0$
but $\alpha_t = 0$ for all $t >d$, then ${\rm in}_y(f) = \alpha_d y^d$.
Given an ideal $I$ and a $y$-compatible monomial ordering $<$, let $G(I) = \{ g_1,\ldots,g_m\}$ be a Gröbner basis of $I$ with respect to this
ordering. For $i=1,\ldots,m$, write $g_i$ as $g_i = y^{d_i}q_i + r_i$, where $y$ does not divide any term of $q_i$;
that is, ${\rm in}_y(g_i) = y^{d_i}q_i$. Given this setup, the ideal $C_{y,I}$ is given by
$$C_{y,I} = \langle q_1,\ldots,q_m\rangle$$
This functions takes an ideal $I$ and variable $y$, and returns $C_{y,I}$.
The ideal $C_{y,I}$ does not depend upon the choice of the Gröbner basis or
a particular $y$-compatible order (see comment after [KR, Definition 2.3]).
When computing $C_{y,I}$ we use a lexicographical ordering
on $R$ where $y > x_j$ for all $i \neq j$ if $y = x_i$ since this gives us a $y$-compatible order.
The ideal $I$ in the example below is the edge ideal of the complete graph $K_4$.
For more on edge ideals, see the EdgeIdeals package.
Example
R = QQ[a,b,c,d];
I = ideal(a*b, a*c, a*d, b*c, b*d, c*d); -- edge ideal of the complete graph K_4, a chordal graph
CyI(I, b)
L = oneStepGVD(I, b);
L_1 == CyI(I, b) -- CyI is the second element in the list given by oneStepGVD
References
[KR] P. Klein and J. Rajchgot. Geometric Vertex Decomposition and
Liaison. Forum of Math, Sigma, 9 (2021) e70:1-23.
SeeAlso
CheckUnmixed
getGVDIdeal
NyI
oneStepGVD
///
doc///
Node
Key
findLexCompatiblyGVDOrders
(findLexCompatiblyGVDOrders, Ideal)
Headline
finds all lexicographic monomial orders $<$ such that the ideal is $<$-compatibly geometrically vertex decomposable
Usage
findLexCompatiblyGVDOrders I
Inputs
I:Ideal
Outputs
:List
if no order exists, returns {}, otherwise returns {\tt L}, a list containing all the lexicographical orders which work
Description
Text
An ideal $I$ is $<$-compatibly geometrically vertex decomposable if
there exists a (lexicographic) order $<$ such that $I$ is geometrically vertex
decomposable and for every (one-step) geometric vertex decomposition, we
pick $y$ to be the most expensive indeterminate remaining in the ideal according
to $<$ [KR, Definition 2.11].
For the definition of a (one-step) geometric vertex decomposition, see @TO oneStepGVD@.
This method computes all possible lex orders $<$ for which the ideal $I$ is $<$-compatibly
geometrically vertex decomposable.
Example
R = QQ[x,y,z];
I = ideal(x-y, x-z);
findLexCompatiblyGVDOrders I
Text
The ideal in the following example is not square-free with respect to
any indeterminate, so no one-step geometric vertex decomposition exists.
Example
R = QQ[x,y];
I = ideal(x^2-y^2);
findLexCompatiblyGVDOrders I
Caveat
In the ring $k[x_1, \ldots, x_n]$, there are $n!$ possible lexicographic
monomial orders, so this function can be computationally expensive.
References
[KR] P. Klein and J. Rajchgot. Geometric Vertex Decomposition and
Liaison. Forum of Math, Sigma, 9 (2021) e70:1-23.
SeeAlso
CheckUnmixed
isLexCompatiblyGVD
///
doc///
Node
Key
findOneStepGVD
(findOneStepGVD, Ideal)
Headline
for which indeterminates does there exist a geometric vertex decomposition
Usage
findOneStepGVD I
Inputs
I:Ideal
Outputs
:List
Description
Text
Returns a list containing the $y$ for which there exists a @TO oneStepGVD@. In other words, a list
of all the variables $y$ that satisfy ${\rm in}_y(I) = C_{y,I} \cap (N_{y,I} + \langle y \rangle)$.
All indeterminates $y$ which appear in the ideal are checked.
Example
R = QQ[x,y,z]
I = ideal(x-y, x-z)
findOneStepGVD I
Text
The following example is [KR, Example 2.16]. The variable $b$ is
the only indeterminate for which there exists a geometric vertex decomposition.
Example
R = QQ[a..f]
I = ideal(b*(c*f - a^2), b*d*e, d*e*(c^2+a*c+d*e+f^2))
findOneStepGVD I
References
[KR] P. Klein and J. Rajchgot. Geometric Vertex Decomposition and
Liaison. Forum of Math, Sigma, 9 (2021) e70:1-23.
SeeAlso
CheckUnmixed
oneStepGVD
OnlyDegenerate
OnlyNondegenerate
///
doc///
Node
Key
getGVDIdeal
(getGVDIdeal, Ideal, List)
Headline
computes the $C_{y,I}$ or $N_{y,I}$ ideal at any point in the GVD recursion tree
Usage
getGVDIdeal(I, L)
Inputs
I:Ideal
L:List
a nested list where each list within {\tt L} is of length two, the
first entry is either "C" or "N" and the second entry is an
indeterminate in the ring
Outputs
:List
Description
Text
The purpose of {\tt getGVDIdeal} is to return the ideal generated
by a sequence of choices of $C$ or $N$ ideals and corresponding
choices of indeterminates $y$.
Given an ideal $I$ and variable $y_1$ in $R = k[x_1,\ldots,x_n]$, we can compute the ideals
$C_{y_1,I}$ and $N_{y_1,I}$ (see @TO isGVD@ for the definition of these ideals). But
then for each of these ideals in the ring $R = k[x_1,\ldots,\hat{y_1},\ldots,x_n]$, we can
then pick a new variable $y_2$ to form the ideals $C_{y_2,C_{y_1,I}}$, $C_{y_2,N_{y_1,I}}$,
$N_{y_2,C_{y_1,I}}$ or $N_{y_2,N_{y_1,I}}$. This process can be continued by now picking a new
variable $y_3$, and finding either the $C$ or $N$ ideals of these ideals.
The input syntax is best explained via example. The following is
[KR, Example 2.16]. We are given the ideal $I$. The input
tells us to first find $C_{y,I}$ of $I$. Then we find $N_{s,C_{y,I}}$.
Example
R = QQ[x,y,z,w,r,s]
I = ideal(y*(z*s - x^2), y*w*r, w*r*(z^2+z*x+w*r+s^2))
getGVDIdeal(I, {{"C", y}, {"N", s}})
References
[KR] P. Klein and J. Rajchgot. Geometric Vertex Decomposition and
Liaison. Forum of Math, Sigma, 9 (2021) e70:1-23.
SeeAlso
CheckUnmixed
CyI
NyI
oneStepGVD
///
doc///
Node
Key
isGeneratedByIndeterminates
(isGeneratedByIndeterminates, Ideal)
Headline
checks whether the ideal is generated by indeterminates
Usage
isGeneratedByIndeterminates I
Inputs
I:Ideal
Outputs
:Boolean
Description
Text
An ideal is generated by indeterminates if the generators are a
(possibly empty) subset of the indeterminates in the ring.
Example
R = QQ[x,y]
isGeneratedByIndeterminates ideal 0
isGeneratedByIndeterminates ideal 1
isGeneratedByIndeterminates ideal(x,y)
isGeneratedByIndeterminates ideal(x*y)
SeeAlso
isGVD
isLexCompatiblyGVD
isWeaklyGVD
///
doc///
Node
Key
isGVD
(isGVD, Ideal)
Headline
checks whether an ideal is geometrically vertex decomposable
Usage
isGVD I
Inputs
I:Ideal
Outputs
:Boolean
Description
Text
This function tests whether a given ideal is geometrically vertex decomposable.
Geometrically vertex decomposable ideals are based upon the geometric vertex
decomposition defined by Knutson, Miller, and Yong [KMY]. Using geometric
vertex decomposition, Klein and Rajchgot gave a recursive definition for
geometrically vertex decomposable ideals in [KR, Definition 2.7]. This definition generalizes the properties
of a square-free monomial ideal whose associated simplicial complex is vertex decomposable.
We include the definition here.
Let $y$ be a variable of the polynomial ring $R = k[x_1,\ldots,x_n]$. A monomial ordering $<$ on $R$ is said to be
{\it $y$-compatible} if the initial term of $f$ satisfies ${\rm in}_<(f) = {\rm in}_<({\rm in}_y(f))$ for all $f \in R$. Here,
${\rm in}_y(f)$ is the {\it initial $y$-form} of $f$, that is, if $f = \sum_i \alpha_iy^i$ and $\alpha_d \neq 0$
but $\alpha_t = 0$ for all $t >d$, then ${\rm in}_y(f) = \alpha_d y^d$.
We set ${\rm in}_y(I) = \langle {\rm in}_y(f) ~|~ f \in I \rangle$ to be the ideal generated by all the initial $y$-forms in $I$.
Given an ideal $I$ and a $y$-compatible monomial ordering $<$, let $G(I) = \{ g_1,\ldots,g_m\}$ be a Gröbner basis of $I$ with respect to this
ordering. For $i=1,\ldots,m$, write $g_i$ as $g_i = y^{d_i}q_i + r_i$, where $y$ does not divide any term of $q_i$;
that is, ${\rm in}_y(g_i) = y^{d_i}q_i$. Given this setup, we define two ideals:
$$C_{y,I} = \langle q_1,\ldots,q_m\rangle$$
and
$$N_{y,I} = \langle q_i ~|~ d_i = 0 \rangle.$$
Recall that an ideal $I$ is {\it unmixed} if all of the associated primes of $I$ have the same height.
An ideal $I$ of $R =k[x_1,\ldots,x_n]$ is {\it geometrically vertex decomposable} if $I$ is unmixed and
(1) $I = \langle 1 \rangle$, or $I$ is generated by a (possibly empty) subset of variables of $R$, or
(2) there is a variable $y = x_i$ in $R$ and a $y$-compatible monomial ordering $<$ such that
$${\rm in}_y(I) = C_{y,I} \cap (N_{y,I} + \langle y \rangle),$$
and the contractions of the
ideals $C_{y,I}$ and $N_{y,I}$ to the ring
$k[x_1,\ldots,\hat{y},\ldots,x_n]$ are geometrically
vertex decomposable.
{\it NOTE:} The ideals $C_{y,I}$ and $N_{y,I}$ do not depend upon the choice of the Gröbner basis or
a particular $y$-compatible order (see comment after [KR, Definition 2.3]).
When computing $C_{y,I}$ and $N_{y,I}$ we use a lexicographical ordering
on $R$ where $y > x_j$ for all $i \neq j$ if $y = x_i$ since this gives us a $y$-compatible order.
Example
R = QQ[a,b,c,d]
f = 3*a*b + 4*b*c+ 16*a*c + 18*d
i = ideal f
isGVD i
Text
Square-free monomial ideals that are geometrically vertex decomposable are precisely those square-free monomial ideals
whose associated simplicial complex are vertex decomposable [KR, Proposition 2.9].
The edge ideal of a chordal graph corresponds to a simplicial
complex that is vertex decomposable (for more, see the EdgeIdeals package). The option {\tt Verbose} shows the intermediate steps; in particular, {\tt Verbose}
displays what variable is being used to test a decomposition, as well as the ideals
$C_{y,I}$ and $N_{y,I}$.
Example
R = QQ[a,b,c,d]
i = ideal(a*b, a*c, a*d, b*c, b*d, c*d) -- edge ideal of a complete graph K_4, a chordal graph
isGVD(i, Verbose=>true)
Text
The following is an example of a toric ideal of graph that is geometrically vertex decomposable, and another example
of a toric ideal of a graph that is not geometrically vertex decomposable. The second ideal is not Cohen-Macaulay, so it
cannot be geometrically vertex decomposable [KR, Corollary 4.5].
For background on toric ideals of graphs, see [CDSRVT, Section 3].
Example
R = QQ[e_1..e_7]
i = ideal(e_2*e_7-e_5*e_6, e_1*e_4-e_2*e_3) -- the toric ideal of a graph
isGVD i
R = QQ[e_1..e_10]
i = ideal(e_1*e_4-e_2*e_3, e_2^2*e_7*e_8*e_9-e_4^2*e_5*e_6*e_10, e_1*e_2*e_7*e_8*e_9-e_3*e_4*e_5*e_6*e_10, e_1^2*e_7*e_8*e_9-e_3^2*e_5*e_6*e_10)
isGVD i
References
[CDSRVT] M. Cummings, S. Da Silva, J. Rajchgot, and A. Van Tuyl.
Geometric Vertex Decomposition and Liaison for Toric Ideals of
Graphs. Preprint, @arXiv "2207.06391"@ (2022).
[KMY] A. Knutson, E. Miller, and A. Yong. Gröbner Geometry of Vertex
Decompositions and of Flagged Tableaux. J. Reine Angew. Math. 630 (2009)
1–31.
[KR] P. Klein and J. Rajchgot. Geometric Vertex Decomposition and
Liaison. Forum of Math, Sigma, 9 (2021) e70:1-23.
SeeAlso
CheckCM
CheckUnmixed
isGeneratedByIndeterminates
IsIdealHomogeneous
IsIdealUnmixed
isLexCompatiblyGVD
isUnmixed
isWeaklyGVD
oneStepGVD
Verbose
///
doc///
Node
Key
isLexCompatiblyGVD
(isLexCompatiblyGVD, Ideal, List)
Headline
checks whether an ideal is <-compatibly geometrically vertex decomposable for a given order
Usage
isLexCompatiblyGVD(I, L)
Inputs
I:Ideal
L:List
Outputs
:Boolean
Description
Text
An ideal $I$ is $<$-compatibly geometrically vertex decomposable if
there exists a (lexicographic) order $<$ such that $I$ is geometrically vertex
decomposable and for every (one-step) geometric vertex decomposition, we
pick $y$ to be the most expensive indeterminate remaining in the ideal according
to $<$ [KR, Definition 2.11].
For the definition of a (one-step) geometric vertex decomposition, see @TO oneStepGVD@.
This method returns a Boolean value depending upon whether or not
the given ideal is $<$-compatibly geometrically vertex decomposable with
respect to a given ordering lex ordering of the indeterminates.
Compare this function to the command @TO findLexCompatiblyGVDOrders@ which checks all possible lex
orders of the variables in order to find at least one $<$-compatibly lex order.
Below is [KR, Example 2.16], which is an example of an ideal that is not $<$-compatibly geometrically
vertex decomposable. Any permutation of the variables we give in this example will result in {\tt false}.
Example
R = QQ[x,y,z,w,r,s];
I = ideal(y*(z*s - x^2), y*w*r, w*r*(z^2 + z*x + w*r + s^2));
isLexCompatiblyGVD(I, {x,y,z,w,r,s})
isLexCompatiblyGVD(I, {s,x,w,y,r,z}, Verbose=>true)
References
[KR] P. Klein and J. Rajchgot. Geometric Vertex Decomposition and
Liaison. Forum of Math, Sigma, 9 (2021) e70:1-23.
SeeAlso
CheckCM
CheckUnmixed
isGeneratedByIndeterminates
isGVD
IsIdealHomogeneous
IsIdealUnmixed
isUnmixed
isWeaklyGVD
oneStepGVD
Verbose
///
doc///
Node
Key
isUnmixed
(isUnmixed, Ideal)
Headline
checks whether an ideal is unmixed
Usage
isUnmixed I
Inputs
I:Ideal
Outputs
:Boolean
Description
Text
A function that checks whether an ideal $I \subseteq R$ is unmixed, i.e., the ideal $I$
satisfies $\dim(R/I) = \dim(R/P)$ for all associated primes $P \in {\rm Ass}_R(R/I)$.
The following example uses [SM, Example 1.6].
Example
R = QQ[x_1..x_5];
I = ideal(x_1*x_3, x_1*x_4, x_1*x_5, x_2*x_3, x_2*x_4, x_2*x_5);
isUnmixed I
References
[SM] H. Saremi and A. Mafi. Unmixedness and Arithmetic Properties of
Matroidal Ideals. Arch. Math. 114 (2020) 299-304.
SeeAlso
CheckUnmixed
isGVD
IsIdealUnmixed
isLexCompatiblyGVD
isWeaklyGVD
///
doc///
Node
Key
isWeaklyGVD
(isWeaklyGVD, Ideal)
Headline
checks whether an ideal is weakly geometrically vertex decomposable
Usage
isWeaklyGVD I
Inputs
I:Ideal
Outputs
:Boolean
Description
Text
This function tests whether an ideal $I \subseteq k[x_1,\ldots,x_n]$ is weakly geometrically vertex decomposable [KR, Definition 4.6].
See @TO isGVD@ for the definition of the ideals $C_{y,I}$ and $N_{y,I}$ used below. Furthermore, we say that a geometric
vertex decomposition is {\it degenerate} if $C_{y,I} = \langle 1 \rangle$ or if $\sqrt{C_{y,I}} = \sqrt{N_{y,I}}$.
The geometric vertex decomposition is {\it nondegenerate} otherwise.
An ideal $I \subseteq R = k[x_1, \ldots, x_n]$ is {\it weakly geometrically vertex decomposable} if $I$ is unmixed and
(1) $I = \langle 1 \rangle$, or $I$ is generated by a (possibly empty) subset of variables of $R$, or
(2) (Degenerate Case) for some variable $y = x_j$ of $R$, ${\rm in}_y(I) = C_{y,I} \cap (N_{y,I} + \langle y \rangle)$ is
a degenerate geometric vertex decomposition and the contraction of $N_{y,I}$ to the ring $k[x_1,\ldots,\hat{y},\ldots,x_n]$
is weakly geometrically vertex decomposable, or
(3) (Nondegenerate Case) for some variable $y = x_j$ of $R$, ${\rm in}_y(I) = C_{y,I} \cap (N_{y,I} + \langle y \rangle)$ is
a nondegenerate geometric vertex decomposition, the contraction of $C_{y,I}$ to the ring $k[x_1,\ldots,\hat{y},\ldots,x_n]$
is weakly geometrically vertex decomposable, and $N_{y,I}$ is radical and Cohen-Macaulay.
The following example is [KR, Example 4.10]. It is an example of an ideal that is weakly geometrically
vertex decomposable, but not geometrically vertex decomposable.
Example
R = QQ[x,y,z,w,r,s];
I = ideal(y*(z*s - x^2), y*w*r, w*r*(x^2 + s^2 + z^2 + w*r));
isWeaklyGVD I
isGVD I
References
[KR] P. Klein and J. Rajchgot. Geometric Vertex Decomposition and
Liaison. Forum of Math, Sigma, 9 (2021) e70:1-23.
SeeAlso
CheckUnmixed
isGeneratedByIndeterminates
isGVD
IsIdealUnmixed
isLexCompatiblyGVD
isUnmixed
oneStepGVD
Verbose
///
doc///
Node
Key
NyI
(NyI, Ideal, RingElement)
Headline
computes the ideal $N_{y,I}$ for a given ideal and indeterminate
Usage
NyI(I, y)
Inputs
I:Ideal
y:RingElement
an indeterminate in the ring
Outputs
:Ideal
Caveat
This method is a shortcut to extract the ideal $N_{y,I}$ as computed
in @TO oneStepGVD@. That is, to compute $N_{y,I}$, {\tt oneStepGVD} is called in the background.
As a result, work is also done in the background to compute $C_{y,I}$ at
the same time, and as such, we encourage calling {\tt oneStepGVD}
directly if we want both the $C_{y,I}$ and $N_{y,I}$ ideals to avoid
performing the same computation twice.
Description
Text
Let $y$ be a variable of the polynomial ring $R = k[x_1,\ldots,x_n]$. A monomial ordering $<$ on $R$ is said to be
{\it $y$-compatible} if the initial term of $f$ satisfies ${\rm in}_<(f) = {\rm in}_<({\rm in}_y(f))$ for all $f \in R$.
Here,
${\rm in}_y(f)$ is the {\it initial $y$-form} of $f$, that is, if $f = \sum_i \alpha_iy^i$ and $\alpha_d \neq 0$
but $\alpha_t = 0$ for all $t >d$, then ${\rm in}_y(f) = \alpha_d y^d$.
Given an ideal $I$ and a $y$-compatible monomial ordering $<$, let $G(I) = \{ g_1,\ldots,g_m\}$ be a Gröbner basis of $I$ with respect to this
ordering. For $i=1,\ldots,m$, write $g_i$ as $g_i = y^{d_i}q_i + r_i$, where $y$ does not divide any term of $q_i$;
that is, ${\rm in}_y(g_i) = y^{d_i}q_i$. Given this setup, the ideal $N_{y,I}$ is given by
$$N_{y,I} = \langle q_i ~|~ d_i = 0\rangle$$
This functions takes an ideal $I$ and variable $y$, and returns $N_{y,I}$
The ideal $N_{y,I}$ does not depend upon the choice of the Gröbner basis or
a particular $y$-compatible order (see comment after [KR, Definition 2.3]).
When computing $N_{y,I}$ we use a lexicographical ordering
on $R$ where $y > x_j$ for all $i \neq j$ if $y = x_i$ since this gives us a $y$-compatible order.
The ideal $I$ in the example below is the edge ideal of the complete graph $K_4$.
For more on edge ideals, see the EdgeIdeals package.
Example
R = QQ[a,b,c,d];
I = ideal(a*b, a*c, a*d, b*c, b*d, c*d); -- edge ideal of a complete graph K_4, a chordal graph
NyI(I, b)
L = oneStepGVD(I, b);
L_2 == NyI(I, b) -- NyI is the second element in the list given by oneStepGVD
References
[KR] P. Klein and J. Rajchgot. Geometric Vertex Decomposition and
Liaison. Forum of Math, Sigma, 9 (2021) e70:1-23.
SeeAlso
CheckUnmixed
CyI
getGVDIdeal
oneStepGVD
///
doc///
Node
Key
oneStepGVD
(oneStepGVD, Ideal, RingElement)
Headline
computes a geometric vertex decomposition
Usage
oneStepGVD(I, y)
Inputs
I:Ideal
y:RingElement
an indeterminate in the ring
Outputs
:Sequence
containing whether the $C_{y,I}$ and $N_{y,I}$ ideals form
a valid geometric vertex decomposition, these ideals $C_{y,I}$ and $N_{y,I}$, and if
{\tt CheckDegenerate=>true}, whether the one-step decomposition
is degenerate or nondegenerate
Description
Text
This function computes a geometric vertex decomposition of an ideal based upon work of Knutson,
Miller, and Yong [KMY, Theorem 2.1]. Geometric vertex decomposition is the key step in the recursive
definition of geometrically vertex decomposable ideals. The function {\tt oneStepGVD} is repeatedly used by @TO isGVD@ to determine
if an ideal is a geometrically vertex decomposable ideal.
Let $y$ be a variable of the polynomial ring $R = k[x_1,\ldots,x_n]$. A monomial ordering $<$ on $R$ is said to be
{\it $y$-compatible} if the initial term of $f$ satisfies ${\rm in}_<(f) = {\rm in}_<({\rm in}_y(f))$ for all $f \in R$. Here,
${\rm in}_y(f)$ is the {\it initial $y$-form} of $f$, that is, if $f = \sum_i \alpha_iy^i$ and $\alpha_d \neq 0$
but $\alpha_t = 0$ for all $t >d$, then ${\rm in}_y(f) = \alpha_d y^d$.
We set ${\rm in}_y(I) = \langle {\rm in}_y(f) ~|~ f \in I \rangle$ to be the ideal generated by all the initial $y$-forms in $I$.
Given an ideal $I$ and a $y$-compatible monomial ordering $<$, let $G(I) = \{ g_1,\ldots,g_m\}$ be a Gröbner basis of $I$ with respect to this
ordering. For $i=1,\ldots,m$, write $g_i$ as $g_i = y^{d_i}q_i + r_i$, where $y$ does not divide any term of $q_i$;
that is, ${\rm in}_y(g_i) = y^{d_i}q_i$. Given this setup, we define two ideals:
$$C_{y,I} = \langle q_1,\ldots,q_m\rangle$$
and
$$N_{y,I} = \langle q_i ~|~ d_i = 0 \rangle.$$
If ${\rm in}_y(I) = C_{y,I} \cap (N_{y,I} + \langle y \rangle),$
then we call this decomposition a {\it geometric vertex decomposition of $I$}.
Furthermore, we say that a geometric vertex decomposition is {\it degenerate} if
$C_{y,I} = \langle 1 \rangle$ or if $\sqrt{C_{y,I}} = \sqrt{N_{y,I}}$.
The geometric vertex decomposition is {\it nondegenerate} otherwise.
For a given variable $y$, the function {\tt oneStepGVD} returns a sequence, where the first element in the sequence is true or false
depending if the given variable $y$ gives a geometric vertex decomposition of $I$, while the second element is the
ideal $C_{y,I}$ and the third element in the sequence is the ideal $N_{y,I}$.
If {\tt CheckDegenerate=>true}, then there is a fourth element in the output, either "degenerate" or "nondegenerate", corresponding
to whether the geometric vertex decomposition is degenerate.
{\it Note:} The ideals $C_{y,I}$ and $N_{y,I}$ do not depend upon the choice of the Gröbner basis or
a particular $y$-compatible order (see comment after Definition 2.3 of [KR]).
When computing $C_{y,I}$ and $N_{y,I}$ we use a lexicographical ordering
on $R$ where $y > x_j$ for all $i \neq j$ if $y = x_i$ since this gives us a $y$-compatible order.
Example
R = QQ[a,b,c,d]
f = 3*a*b + 4*b*c+ 16*a*c+18*d
i = ideal f
oneStepGVD(i, a)
Text
In the example below, the ideal $I$ is the edge ideal of the complete graph $K_4$. We also check
if the decomposition is degenerate (see @TO CheckDegenerate@).
For more on edge ideals, see the EdgeIdeals package.
Example
R = QQ[a,b,c,d];
i = ideal(a*b, a*c, a*d, b*c, b*d, c*d); -- edge ideal of complete graph K_4, a chordal graph
oneStepGVD(i, c, CheckDegenerate=>true)
Text
The example below is the toric ideal of a graph such that the quotient ring is not Cohen-Macaulay. By [KR, Lemma 2.6], for an ideal $I$
to have a geometric vertex decomposition with respect to the variable $y$, no term of
the Gröbner bases can be divided by $y^2$. In this example, the Gröbner basis of $I$ contains an element with a term
divisible by $e_1^2$. So $I$ does not have a geometric vertex decomposition with respect to $y = e_1$.
For background on toric ideals of graphs, see [CDSRVT, Section 3].
Example
R = QQ[e_1..e_10];
i = ideal(e_1*e_4-e_2*e_3, e_2^2*e_7*e_8*e_9-e_4^2*e_5*e_6*e_10, e_1*e_2*e_7*e_8*e_9-e_3*e_4*e_5*e_6*e_10, e_1^2*e_7*e_8*e_9-e_3^2*e_5*e_6*e_10);
mingens gb i
oneStepGVD(i, e_1)
References
[CDSRVT] M. Cummings, S. Da Silva, J. Rajchgot, and A. Van Tuyl.
Geometric Vertex Decomposition and Liaison for Toric Ideals of
Graphs. Preprint, @arXiv "2207.06391"@ (2022).
[KMY] A. Knutson, E. Miller, and A. Yong. Gröbner Geometry of Vertex
Decompositions and of Flagged Tableaux. J. Reine Angew. Math. 630 (2009)
1–31.
[KR] P. Klein and J. Rajchgot. Geometric Vertex Decomposition and
Liaison. Forum of Math, Sigma, 9 (2021) e70:1-23.
SeeAlso
CheckDegenerate
CheckUnmixed
CyI
getGVDIdeal
isGVD
isLexCompatiblyGVD
isWeaklyGVD
NyI
Verbose
///
doc///
Node
Key
yInit
(yInit, Ideal, RingElement)
Headline
computes the ideal of initial y-forms
Usage
yInit(I, y)
Inputs
I:Ideal
y:RingElement
an indeterminate in the ring
Outputs
:Ideal
Description
Text
Let $y$ be a variable of the polynomial ring $R = k[x_1,\ldots,x_n]$. A monomial ordering $<$ on $R$ is said to be
{\it $y$-compatible} if the initial term of $f$ satisfies ${\rm in}_<(f) = {\rm in}_<({\rm in}_y(f))$ for all $f \in R$. Here,
${\rm in}_y(f)$ is the {\it initial $y$-form} of $f$, that is, if $f = \sum_i \alpha_iy^i$ and $\alpha_d \neq 0$
but $\alpha_t = 0$ for all $t >d$, then ${\rm in}_y(f) = \alpha_d y^d$.
We set ${\rm in}_y(I) = \langle {\rm in}_y(f) ~|~ f \in I \rangle$ to be the ideal generated by all the initial $y$-forms in $I$
This routine computes the ideal of initial $y$-forms ${\rm in}_y(I)$.
For more on the definition of initial $y$-forms or their corresponding ideals, see [KMY, Section 2.1]. The following example is
[KR, Example 2.16].
Example
R = QQ[x,y,z,w,r,s]
I = ideal(y*(z*s - x^2), y*w*r, w*r*(z^2 + z*x + w*r + s^2))
yInit(I, y)
References
[KMY] A. Knutson, E. Miller, and A. Yong. Gröbner Geometry of Vertex
Decompositions and of Flagged Tableaux. J. Reine Angew. Math. 630 (2009)
1–31.
[KR] P. Klein and J. Rajchgot. Geometric Vertex Decomposition and
Liaison. Forum of Math, Sigma, 9 (2021) e70:1-23.
SeeAlso
oneStepGVD
///
--******************************************************************************
-- Documentation for optional inputs
--******************************************************************************
doc///
Node
Key
CheckCM
[isGVD, CheckCM]
[isLexCompatiblyGVD, CheckCM]
Headline
when to perform a Cohen-Macaulay check on the ideal
Description
Text
Whether to check that the ideal is geometrically vertex
decomposable using the result of [KR, Corollary 4.5] which relates the
geometrically vertex decomposable and Cohen-Macaulay properties.
Set {\tt CheckCM=>"once"} to perform this check once (default, only for the
ideal given in the input), {\tt CheckCM=>"always"} check for
the following $C_{y,I}$ and $N_{y,I}$ ideals as well, or
{\tt CheckCM=>"never"}.
References
[KR] P. Klein and J. Rajchgot. Geometric Vertex Decomposition and
Liaison. Forum of Math, Sigma, 9 (2021) e70:1-23.
SeeAlso
isGVD
isLexCompatiblyGVD
///
doc///
Node
Key
CheckDegenerate
[oneStepGVD, CheckDegenerate]
Headline
check whether the geometric vertex decomposition is degenerate
Description
Text
A geometric vertex decomposition is degenerate if
$\sqrt{C_{y,I}} = \sqrt{N_{y,I}}$ or if $C_{y,I} = \langle 1 \rangle$,
and nondegenerate otherwise [KR, Section 2.2].
If {\tt CheckDegenerate=>true}, then {\tt oneStepGVD} returns
a sequence of length four, where the fourth entry is either
{\tt "degenerate"} or {\tt "nondegenerate"}.
Otherwise, {\tt oneStepGVD} does not check whether the geometric
vertex decomposition is degenerate and the sequence in the output has length three.
Note that the degeneracy of a geometric vertex decomposition does not matter
with regards to whether an ideal is geometrically vertex decomposable.
As a result, @TO isGVD@ does not check this. However, the definition
of weakly geometrically vertex decomposable depends the
one-step geometric vertex decomposition at each step is degenerate, so
@TO isWeaklyGVD@ asks for this check.
Example
R = QQ[x,y,z]
I = ideal(x-y, x-z)
oneStepGVD(I, x, CheckDegenerate=>true)
References
[KR] P. Klein and J. Rajchgot. Geometric Vertex Decomposition and
Liaison. Forum of Math, Sigma, 9 (2021) e70:1-23.
SeeAlso
isWeaklyGVD
oneStepGVD
///
doc///
Node
Key
CheckUnmixed
[CyI, CheckUnmixed]
[findLexCompatiblyGVDOrders, CheckUnmixed]
[findOneStepGVD, CheckUnmixed]
[getGVDIdeal, CheckUnmixed]
[isGVD, CheckUnmixed]
[isLexCompatiblyGVD, CheckUnmixed]
[isWeaklyGVD, CheckUnmixed]
[NyI, CheckUnmixed]
[oneStepGVD, CheckUnmixed]
Headline
check whether ideals encountered are unmixed
Description
Text
If set to {\tt false}, the program never checks whether the ideal $I$ or
any $C_{y,I}$ or $N_{y,I}$ ideals are unmixed. Setting {\tt CheckUnmixed=>false}
will speed up computations since it is not performing a check of this condition but comes
at the cost that not all the necessary conditions are checked.
Notice that if {\tt isGVD(I, CheckUnmixed=>false)} returns {\tt false}, then $I$ is
conclusively not geometrically vertex decomposable as there is some other condition
that is not met.
The default value is {\tt true}.
If you know that $I$ is unmixed but want to check unmixedness for $C_{y,I}$, $N_{y,I}$,
and any later ideals, use @TO IsIdealUnmixed@ instead.
The following is not unmixed [SM, Example 1.6] and hence not geometrically vertex
decomposable. However, if we disable the unmixedness check and skip the Cohen-Macaulay check,
{\tt isGVD} returns true.
Example
R = QQ[x_1..x_5]
I = ideal(x_1*x_3, x_1*x_4, x_1*x_5, x_2*x_3, x_2*x_4, x_2*x_5)
isUnmixed I
isGVD(I, CheckCM=>"never", CheckUnmixed=>false)
Caveat
As in the above example, if you set {\tt CheckUnmixed=>false} and you do not already know
that both $I$ is unmixed and all later $C_{y,I}$ and $N_{y,I}$ ideals are unmixed, then the
output of @TO isGVD@ or any other GVD method cannot definitely conclude that $I$ is geometrically
vertex decomposable, as not all of conditions in the definition were checked.
References
[SM] H. Saremi and A. Mafi. Unmixedness and Arithmetic Properties of
Matroidal Ideals. Arch. Math. 114 (2020) 299–304.
SeeAlso
CyI
findLexCompatiblyGVDOrders
findOneStepGVD
getGVDIdeal
isGVD
IsIdealUnmixed
isLexCompatiblyGVD
isUnmixed
isWeaklyGVD
NyI
///
doc///
Node
Key
IsIdealHomogeneous
[isGVD, IsIdealHomogeneous]
[isLexCompatiblyGVD, IsIdealHomogeneous]
Headline
specify whether an ideal is homogeneous
Description
Text
Whether the input ideal is homogeneous, if known.
The value of this input is only checked if {\tt CheckCM=>true}.
SeeAlso
CheckCM
isGVD
isLexCompatiblyGVD
///
doc///
Node
Key
IsIdealUnmixed
[isGVD, IsIdealUnmixed]
[isLexCompatiblyGVD, IsIdealUnmixed]
[isWeaklyGVD, IsIdealUnmixed]
Headline
specify whether an ideal is unmixed
Description
Text
Specify {\tt IsIdealUnmixed=>true} if it is known {\em a priori}
that an ideal is unmixed. In this case, the program will not
check whether the given ideal $I$ is unmixed -- it will assume
that it is unmixed -- but it will check whether $C_{y,I}$ and
$N_{y,I}$ are unmixed, as well as any ideals defined from further
degenerations.
The default value is {\tt false} and in this case, the unmixedness
property will be checked for $I$ and all later ideals.
To always skip the unmixedness check (perhaps you know that
every ideal you will encounter through repeated geometric vertex decompositions
will always be unmixed), use @TO CheckUnmixed@.
SeeAlso
CheckUnmixed
isGVD
isLexCompatiblyGVD
isUnmixed
isWeaklyGVD
///
doc///
Node
Key
OnlyDegenerate
[findOneStepGVD, OnlyDegenerate]
Headline
restrict to degenerate geometric vertex decompositions
Description
Text
Set to {\tt true} to restrict the output of @TO findOneStepGVD@ to return only
the indeterminates for which their geometric vertex decomposition is degenerate.
Default value {\tt false}.
SeeAlso
findOneStepGVD
OnlyNondegenerate
///
doc///
Node
Key
OnlyNondegenerate
[findOneStepGVD, OnlyNondegenerate]
Headline
restrict to nondegenerate geometric vertex decompositions
Description
Text
Set to {\tt true} to restrict the output of @TO findOneStepGVD@ to return only
the indeterminates for which their geometric vertex decomposition is nondegenerate.
Default value {\tt false}.
SeeAlso
findOneStepGVD
OnlyDegenerate
///
doc///
Node
Key
Verbose
[isGVD, Verbose]
[isLexCompatiblyGVD, Verbose]
[isWeaklyGVD, Verbose]
[oneStepGVD, Verbose]
Headline
print additional output
Description
Text
If true, prints intermediate steps taken. Otherwise, prints nothing.
Example
R = QQ[x,y,z]
I = ideal(x-y, x-z)
isGVD I
isGVD(I, Verbose=>true)
SeeAlso
isGVD
isLexCompatiblyGVD
isWeaklyGVD
oneStepGVD
///
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
--
-- TESTS
--
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
-- Test CyI
--------------------------------------------------------------------------------
TEST/// -- [KR, Example 2.16]
R = QQ[x..z,w,r,s];
I = ideal( y*(z*s - x^2), y*w*r, w*r*(z^2 + z*x + w*r + s^2) );
C = CyI(I,y);
assert( CyI(I, y) == ideal(x*z*w*r+z^2*w*r+w^2*r^2+w*r*s^2,w*r,x^2-z*s) )
///
TEST/// -- [KR, Example 4.10]
R = QQ[x..z,w,r,s];
I = ideal( y*(z*s - x^2), y*w*r, w*r*(x^2 + s^2 + z^2 + w*r) );
assert( CyI(I, y) == ideal(z*s-x^2, w*r) )
///
--------------------------------------------------------------------------------
-- Test findLexCompatiblyGVDOrders
--------------------------------------------------------------------------------
TEST///
R = QQ[x,y];
I = ideal(x^2 - y^2);
assert(findLexCompatiblyGVDOrders I == {})
///
TEST///
R = QQ[x..z];
I = ideal(x-y, x-z);
assert( findLexCompatiblyGVDOrders I == {{x, y, z}, {x, z, y}, {y, x, z}, {y, z, x}, {z, x, y}, {z, y, x}} )
///
--------------------------------------------------------------------------------
-- Test findOneStepGVD
--------------------------------------------------------------------------------
TEST///
R = QQ[x..z];
I = ideal(x-y, y-z);
assert( findOneStepGVD I == {x,y,z} )
///
TEST/// -- [KR, Example 2.16]
R = QQ[x..z,w,r,s];
I = ideal( y*(z*s - x^2), y*w*r, w*r*(z^2 + z*x + w*r + s^2) );
assert( findOneStepGVD I == {y} )
///
--------------------------------------------------------------------------------
-- Test getGVDIdeal
--------------------------------------------------------------------------------
-- [KR, Example 2.16]
TEST///
R = QQ[x,y,z,w,r,s]
I = ideal(y*(z*s - x^2), y*w*r, w*r*(z^2+z*x+w*r+s^2))
assert(getGVDIdeal(I, {{"C", y}, {"N", s}}) == {ideal(x*z*w*r+z^2*w*r+w^2*r^2+w*r*s^2,w*r,x^2-z*s), ideal(w*r)})
///
--------------------------------------------------------------------------------
-- Test isGeneratedByIndeterminates
--------------------------------------------------------------------------------
TEST///
R = QQ[x,y,z];
I = ideal(x,y);
assert(isGeneratedByIndeterminates I)
///
TEST///
R = QQ[x_1..x_5];
I = ideal(x_1*x_2-x_3*x_4);
assert(not isGeneratedByIndeterminates I)
///
TEST///
R = QQ[a..d];
I = ideal 0;
assert(isGeneratedByIndeterminates I)
///
TEST///
R = QQ[a..d];
I = ideal 1;
assert(not isGeneratedByIndeterminates I)
///
--------------------------------------------------------------------------------
-- Test isGVD
--------------------------------------------------------------------------------
TEST/// -- [KR, Example 2.16]
R = QQ[x,y,z,w,r,s];
I = ideal(y*(z*s - x^2), y*w*r, w*r*(z^2 + z*x + w*r + s^2));
assert(isGVD I)
///
TEST/// -- [KR, Example 4.10]
R = QQ[x,y,z,w,r,s];
I = ideal(y*(z*s - x^2), y*w*r, w*r*(x^2+ z^2 + s^2 + w*r));
assert(not isGVD I)
///
TEST/// -- Toric ideal of the complete bipartite graph K_{3,2}; GVD by [CDSRVT, Theorem 5.8]
loadPackage "Quasidegrees";
R = QQ[e_1..e_6];
A = matrix{
{1,0,0,1,0,0},
{0,1,0,0,1,0},
{0,0,1,0,0,1},
{1,1,1,0,0,0},
{0,0,0,1,1,1}
};
I = toricIdeal(A, R);
assert(isGVD I)
///
TEST/// -- Toric ideal of the graph constructed by connecting two triangles by a bridge of length 2
loadPackage "Quasidegrees";
R = QQ[e_1..e_8];
A = matrix{
{1, 0, 1, 0, 0, 0, 0, 0},
{0, 1, 0, 0, 0, 1, 0, 0},
{0, 0, 0, 1, 0, 0, 1, 0},
{1, 0, 0, 0, 1, 0, 0, 0},
{0, 1, 0, 0, 0, 0, 0, 1},
{0, 0, 1, 1, 1, 0, 0, 0},
{0, 0, 0, 0, 0, 1, 1, 1}
};
I = toricIdeal(A, R);
assert(not isGVD I)
///
TEST/// -- Hessenberg patch ideal corresponding to the $w_0$ chart and Hessenberg function h=(2,3,4,5,6,6), GVD by [DSH, Corollary 5.13]
R = QQ[x_11..x_15, x_21..x_24, x_31..x_33, x_41, x_42, x_51];
A = matrix{
{x_11, x_12, x_13, x_14, x_15, 1},
{x_21, x_22, x_23, x_24, 1, 0},
{x_31, x_32, x_33, 1, 0, 0},
{x_41, x_42, 1, 0, 0, 0},
{x_51, 1, 0, 0, 0, 0},
{1, 0, 0, 0, 0, 0}
};
N = matrix{
{0, 1, 0, 0, 0, 0},
{0, 0, 1, 0, 0, 0},
{0, 0, 0, 1, 0, 0},
{0, 0, 0, 0, 1, 0},
{0 ,0, 0, 0, 0, 1},
{0, 0, 0, 0, 0, 0}
};
X = inverse(A) * N * A;
I = ideal( X_(2,0), X_(3,0), X_(3,1), X_(4,0), X_(4,1), X_(4,2), X_(5,0), X_(5,1), X_(5,2), X_(5,3) );
assert(isGVD I)
///
TEST/// -- not GVD, w = (1,3,2,4), h = (3,3,4,4)
R = QQ[x_21, x_22, x_31, x_41..x_43];
A = matrix{
{1, 0, 0, 0},
{x_21, x_22, 1, 0},
{x_31, 1, 0, 0},
{x_41, x_42, x_43, 1}
};
N = matrix{
{0, 1, 0, 0},
{0, 0, 1, 0},
{0, 0, 0, 1},
{0, 0, 0, 0}
};
X = inverse(A) * N * A;
I = ideal(X_(3,0), X_(3,1));
assert(not isGVD I)
///
-- ~0.75 seconds, might be as quick as we will get for a non-GVD Hessenberg patch ideal
--------------------------------------------------------------------------------
-- Test isLexCompatiblyGVD
--------------------------------------------------------------------------------
TEST///
R = QQ[x,y];
I = ideal(x^2 - y^2);
assert(not isLexCompatiblyGVD(I, {x,y}))
///
TEST///
R = QQ[x..z];
I = ideal(x-y,x-z);
assert(isLexCompatiblyGVD(I, {x,y,z}))
///
--------------------------------------------------------------------------------
-- Test isUnmixed
--------------------------------------------------------------------------------
TEST/// -- Not unmixed by [SM, Example 1.6]
R = QQ[x_1..x_5];
I = ideal(x_1*x_3, x_1*x_4, x_1*x_5, x_2*x_3, x_2*x_4, x_2*x_5);
assert(not isUnmixed I)
///
TEST/// -- Unmixed by [DSH, Corollary 5.13]
R = QQ[x_11..x_15, x_21..x_24, x_31..x_33, x_41, x_42, x_51];
A = matrix{
{x_11, x_12, x_13, x_14, x_15, 1},
{x_21, x_22, x_23, x_24, 1, 0},
{x_31, x_32, x_33, 1, 0, 0},
{x_41, x_42, 1, 0, 0, 0},
{x_51, 1, 0, 0, 0, 0},
{1, 0, 0, 0, 0, 0}
};
N = matrix{
{0, 1, 0, 0, 0, 0},
{0, 0, 1, 0, 0, 0},
{0, 0, 0, 1, 0, 0},
{0, 0, 0, 0, 1, 0},
{0 ,0, 0, 0, 0, 1},
{0, 0, 0, 0, 0, 0}
};
X = inverse(A) * N * A;
I = ideal( X_(2,0), X_(3,0), X_(3,1), X_(4,0), X_(4,1), X_(4,2), X_(5,0), X_(5,1), X_(5,2), X_(5,3) );
assert(isUnmixed I)
///
--------------------------------------------------------------------------------
-- Test isWeaklyGVD
--------------------------------------------------------------------------------
TEST/// -- [KR, Example 4.10]
R = QQ[x,y,z,w,r,s];
I = ideal(y*(z*s - x^2), y*w*r, w*r*(x^2 + s^2 + z^2 + w*r));
assert(isWeaklyGVD I)
///
TEST/// -- not GVD, w = (1,3,2,4), h = (3,3,4,4), will need to verify that it is Weakly GVD by hand
R = QQ[x_21, x_22, x_31, x_41..x_43];
A = matrix{
{1, 0, 0, 0},
{x_21, x_22, 1, 0},
{x_31, 1, 0, 0},
{x_41, x_42, x_43, 1}
};
N = matrix{
{0, 1, 0, 0},
{0, 0, 1, 0},
{0, 0, 0, 1},
{0, 0, 0, 0}
};
X = inverse(A) * N * A;
I = ideal(X_(3,0), X_(3,1));
assert(isWeaklyGVD I)
///
--------------------------------------------------------------------------------
-- Test NyI
--------------------------------------------------------------------------------
TEST/// -- [KR, Example 2.16]
R = QQ[x..z,w,r,s];
I = ideal( y*(z*s - x^2), y*w*r, w*r*(z^2 + z*x + w*r + s^2) );
assert( NyI(I, y) == ideal(x*z*w*r+z^2*w*r+w^2*r^2+w*r*s^2) )
///
TEST/// -- [KR, Example 4.10]
R = QQ[x..z,w,r,s];
I = ideal( y*(z*s - x^2), y*w*r, w*r*(x^2 + s^2 + z^2 + w*r) );
assert( NyI(I, y) == ideal(x^2*w*r+w*r*s^2+z^2*w*r+w^2*r^2) )
///
--------------------------------------------------------------------------------
-- Test oneStepGVD
--------------------------------------------------------------------------------
TEST/// -- [KR, Example 2.16]
R = QQ[x..z,w,r,s];
I = ideal( y*(z*s - x^2), y*w*r, w*r*(z^2 + z*x + w*r + s^2) );
assert( oneStepGVD(I, y, CheckDegenerate=>true) == (true, ideal(x*z*w*r+z^2*w*r+w^2*r^2+w*r*s^2,w*r,x^2-z*s), ideal(x*z*w*r+z^2*w*r+w^2*r^2+w*r*s^2), "nondegenerate") )
///
TEST/// -- [KR, Example 4.10]
R = QQ[x..z,w,r,s];
I = ideal( y*(z*s - x^2), y*w*r, w*r*(x^2 + s^2 + z^2 + w*r) );
assert( oneStepGVD(I, y, CheckDegenerate=>true) == (true, ideal(z*s-x^2, w*r), ideal(x^2*w*r+w*r*s^2+z^2*w*r+w^2*r^2), "nondegenerate") )
///
--------------------------------------------------------------------------------
-- Test yInit
--------------------------------------------------------------------------------
TEST/// -- [KR, Example 2.16]
R = QQ[x..z,w,r,s];
I = ideal( y*(z*s - x^2), y*w*r, w*r*(z^2 + z*x + w*r + s^2) );
assert( yInit(I, y) == ideal(x*z*w*r+z^2*w*r+w^2*r^2+w*r*s^2,y*w*r,y*x^2-y*z*s) )
///
end--
|