1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108
|
-- -*- coding: utf-8-unix -*-
-*
Copyright 2020 Carlos Amendola, Luis David Garcia Puente, Roser Homs Pons,
Olga Kuznetsova, Harshit J Motwani, Elina Robeva and David Swinarski.
You may redistribute this file under the terms of the GNU General Public
License as published by the Free Software Foundation, either version 2 of
the License, or any later version.
*-
newPackage(
"GraphicalModelsMLE",
Version => "1.0",
Date => "April 19, 2022",
Authors => {
{Name=> "Carlos Amendola",
Email=> "carlos.amendola@mis.mpg.de",
HomePage=>"http://www.carlos-amendola.com/"},
{Name => "Luis David Garcia Puente",
Email => "lgarciapuente@coloradocollege.edu",
HomePage => "https://luisgarciapuente.github.io"},
{Name=> "Roser Homs Pons",
Email=> "roser.homs@tum.de",
HomePage=>"https://personal-homepages.mis.mpg.de/homspons/index.html"},
{Name=> "Olga Kuznetsova",
Email=> "kuznetsova.olga@gmail.com",
HomePage=>"https://okuznetsova.com"},
{Name=> "Harshit J Motwani",
Email=> "harshitmotwani2015@gmail.com",
HomePage=>"https://sites.google.com/view/harshitjmotwani/home"},
{Name=> "Elina Robeva",
Email=> "erobeva@gmail.com",
HomePage=>"https://www.math.ubc.ca/~erobeva/"},
{Name=> "David Swinarski",
Email=> "dswinarski@fordham.edu",
HomePage=>"http://faculty.fordham.edu/dswinarski"}
},
Headline => "maximum likelihood estimates for graphical statistical models",
Keywords => {"Algebraic Statistics"},
DebuggingMode => true,
PackageExports => {"GraphicalModels","Graphs","EigenSolver","NumericalAlgebraicGeometry","StatGraphs"}
)
export {
"checkPD",
"checkPSD",
"Solver",--optional argument in solverMLE
"ConcentrationMatrix",-- optional argument in solverMLE
"CovarianceMatrix", -- optional argument in scoreEquations
"Saturate",-- optional argument in scoreEquations and solverMLE
"jacobianMatrixOfRationalFunction",
"MLdegree",
"OptionsEigenSolver",--optional argument in solverMLE
"OptionsNAG4M2",--optional argument in solverMLE
"RealPrecision",--optional argument in solverMLE and scoreEquations
"sampleCovarianceMatrix",
"SampleData",-- optional argument in scoreEquations and solverMLE
"SaturateOptions", -- optional argument in scoreEquations and solverMLE
"scoreEquations",
"solverMLE",
"ZeroTolerance"
}
--**************************--
-- INTERNAL ROUTINES --
--**************************--
--*************************************--
-- Functions (local) used throughout --
--*************************************--
------------------------------------------------------
-- Substitutes a list of points on a list of matrices
-- input - list of points from sols
-- matrix whose entries are variables
-- (expect it to be an inverse of a covariance matrix, Sin)
-- output - list of matrices after substituting these values
------------------------------------------------------
genListMatrix = (L,A) ->
(
T:= for l in L list coordinates(l);
M:= for t in T list substitute(A,matrix{t});
return M
);
----------------------------------------------
-- Selects all argmax for log det K- trace(S*K),
-- where K is an element of the list L.
-- We assume that L is the intersection of the
-- variety of the ideal generated by the Jacobian
-- of critical equations and the cone of PD matrices.
-- input - list L of candidate Sinv matrices (Sinv is Sigma^{-1}) and
-- sample covariance matrix V. Notation in line with scoreEquationsFromCovarianceMatrix
-- output -list of argmax
----------------------------------------------
maxMLE=(L,V)->(
if #L==0 then error("No critical points to evaluate");
if #L==1 then (E:=L_0; maxPt:=log det L_0- trace (V*L_0))
else
(eval:=for Sinv in L list log det Sinv- trace (V*Sinv);
evalReal:=for pt in eval when isReal pt list pt;
if #evalReal==0 then error("No critical point evaluates to a real solution");
maxPt=max evalReal;
indexOptimal:=positions(eval, i ->i== maxPt);
E= for i in indexOptimal list L_i;);
return (maxPt, E)
);
-------------------------------------------
-- scoreEquationsInternal - function that returns
-- both the ideal and the corresponding SInv matrix.
-- The user-facing scoreEquations method returns only
-- the ideal, whereas SInv is used in solverMLE
-------------------------------------------
scoreEquationsInternal={Saturate => true, SaturateOptions => options saturate, SampleData=>true, RealPrecision=>53, CovarianceMatrix => false}>>opts->(R,U)->(
----------------------------------------------------
-- Extract information about the graph
----------------------------------------------------
-- Lambda
L := directedEdgesMatrix R;
-- Psi
P := bidirectedEdgesMatrix R;
-- If the mixedGraph only has undirected part, call specific function for undirected.
if L==0 and P==0 then
return scoreEquationsInternalUndir(R,U,opts);
-- K
K := undirectedEdgesMatrix R;
----------------------------------------------------
-- Create an auxiliary ring and its fraction field
-- which do not have the s variables
----------------------------------------------------
-- create a new ring, lpR, which does not have the s variables
lpR:=coefficientRing(R)[gens R-set support covarianceMatrix R];
-- create its fraction field
FR := frac(lpR);
-----------------------------------------------------
-- Compute Sinv
-----------------------------------------------------
-- Kinv
K=sub(K, FR);
Kinv:=inverse K;
P=sub(P,FR);
--Omega
if K==0 then W:=P else (if P==0 then W=Kinv else W = directSum(Kinv,P));
-- move to FR, the fraction field of lpR
L= sub(L,FR);
-- Sigma
d:=numcols L;
if L==0 then S:=W else (
IdL := inverse (id_(FR^d)-L);
S = (transpose IdL) * W * IdL
);
Sinv := inverse S;
-----------------------------------------------------
-- Compute score equations ideal
----------------------------------------------------
-- Sample covariance matrix
if opts.SampleData then V:= sampleCovarianceMatrix(U) else V=U;
if ring V===RR_53 then V = matrix apply(entries V,r->r/(v->lift(numeric(opts.RealPrecision,v),QQ)));
-- Jacobian of log-likelihood function
C1 := trace(Sinv * V);
C1derivative := jacobianMatrixOfRationalFunction(C1);
LL :=jacobianMatrixOfRationalFunction (det Sinv)*matrix{{1/det(Sinv)}} - C1derivative;
LL=flatten entries(LL);
denoms := apply(#LL, i -> lift(denominator(LL_i), lpR));
J:=ideal apply(#LL, i -> lift(numerator(LL_i),lpR));
--Saturate
if opts.Saturate then (
argSaturate:=opts.SaturateOptions >>newOpts-> args ->(args, newOpts);
for i from 0 to (#denoms-1) do (
if degree denoms_i =={0} then J=J else
J=saturate(argSaturate(J,denoms_i))
);
);
return (J,Sinv);
);
----------------------------------------------------
--scoreEquationsInternalUndir for undirected graphs
----------------------------------------------------
scoreEquationsInternalUndir={Saturate => true, SaturateOptions => options saturate, SampleData=>true, RealPrecision=> 53, CovarianceMatrix => false}>>opts->(R,U)->(
-- Sample covariance matrix
if opts.SampleData then V := sampleCovarianceMatrix(U) else V=U;
if ring V===RR_53 then V = matrix apply(entries V,r->r/(v->lift(numeric(opts.RealPrecision,v),QQ)));
-- Concentration matrix K
K:=undirectedEdgesMatrix R;
-- move to a new ring, lpR, which does not have the s variables
lpR:=coefficientRing(R)[gens R - set support covarianceMatrix R];
K=sub(K,lpR);
J:=ideal{jacobian ideal{determinant(K)}-determinant(K)*jacobian(ideal{trace(K*V)})};
if opts.Saturate then
( argSaturate:=opts.SaturateOptions >>newOpts-> args ->(args, newOpts);
J=saturate(argSaturate(J,ideal{determinant(K)}));
);
return (J,K);
);
-------------------------------------------
-- Method copied from package DeterminantalRepresentations
-------------------------------------------
-----------------------------------------------
-- Method for retrieving the real part of a matrix.
--The code of this function is directly taken from DeterminantalRepresentations package in M2.
realPartMatrix = A -> matrix apply(entries A, r -> r/realPart)
--**************************--
-- METHODS --
--**************************--
sampleCovarianceMatrix = method(TypicalValue =>Matrix);
sampleCovarianceMatrix(Matrix) := (U) -> (
n := numRows U;
--Convert from integers to rationals if needed
if ring U===ZZ then U=sub(U,QQ);
--Convert matrix into list of row matrices
U = for i to n-1 list U^{i};
--Compute the mean vector
Ubar := matrix{{(1/n)}} * sum(U);
--Compute sample covariance matrix
return ((1/n)*(sum apply(n, i -> (transpose (U#i-Ubar))*(U#i-Ubar))));
);
sampleCovarianceMatrix(List) := (U) -> (
return sampleCovarianceMatrix(matrix U);
);
jacobianMatrixOfRationalFunction = method(TypicalValue =>Matrix);
jacobianMatrixOfRationalFunction(RingElement) := (F) -> (
if not instance(ring F,FractionField) then error "Expected element in a field of fractions";
f:=numerator(F);
g:=denominator(F);
R:=ring(f);
answer:=diff(vars(R), f) * g - diff(vars(R), g)*f;
answer=substitute(answer, ring(F));
return transpose(matrix({{(1/g)^2}})*answer)
);
scoreEquations = method(TypicalValue =>Sequence, Options =>{SampleData => true, Saturate => true, SaturateOptions => options saturate, RealPrecision => 53, CovarianceMatrix => false});
scoreEquations(Ring,Matrix) := opts -> (R, U) -> (
----------------------------------------------------
--Check input
----------------------------------------------------
if not R.?graph then error "Expected a ring created with gaussianRing of a Graph, Bigraph, Digraph or MixedGraph";
if not numRows U==#vertices R.graph then error "Size of sample data does not match the graph.";
if not opts.SampleData then (if not U==transpose U then error "The sample covariance matrix must be symmetric.");
---------------------------------------------------
-- Apply appropriate scoreEquations routine
---------------------------------------------------
if R.graphType===Graph
then (J,Sinv):=scoreEquationsInternalUndir(R,U,opts)
else (J,Sinv)=scoreEquationsInternal(R,U,opts);
if not opts.CovarianceMatrix
then return J
else return (J, inverse Sinv)
;
);
scoreEquations(Matrix,Ring) := opts ->(U,R) -> (
return scoreEquations(R,U,opts);
);
scoreEquations(Ring,List) := opts ->(R, U) -> (
----------------------------------------------------
--Check input
----------------------------------------------------
if not opts.SampleData then error "The sample covariance matrix must be a matrix.";
---------------------------------------------------
-- Call scoreEquations routine with a matrix
---------------------------------------------------
return scoreEquations(R,matrix U,opts);
);
scoreEquations(List,Ring) := opts ->(U,R) -> (
return scoreEquations(R,U,opts);
);
--Allow for graphs as input
scoreEquations(MixedGraph, Matrix) := opts ->(G,U) -> (
return scoreEquations(gaussianRing(G),U,opts);
);
scoreEquations(MixedGraph,List) := opts ->(G,U) -> (
return scoreEquations(gaussianRing(G),U,opts);
);
--All permutations of input for MixedGraphs and other type of graphs
scoreEquations(Graph,List) := opts -> (G, U) -> (
return scoreEquations(mixedGraph (G),U, opts);
);
scoreEquations(Digraph,List) := opts -> (G, U) -> (
return scoreEquations(mixedGraph (G),U, opts);
);
scoreEquations(Bigraph,List) := opts -> (G, U) -> (
return scoreEquations(mixedGraph (G),U, opts);
);
scoreEquations(Graph,Digraph,List) := opts -> (G,D,U) -> (
return scoreEquations(mixedGraph (G,D),U, opts);
);
scoreEquations(Digraph,Graph,List) := opts -> (D,G,U) -> (
return scoreEquations(mixedGraph (D,G),U, opts);
);
scoreEquations(Digraph,Bigraph,List) := opts -> (D,B,U) -> (
return scoreEquations(mixedGraph (D,B),U, opts);
);
scoreEquations(Bigraph,Digraph,List) := opts -> (B,D,U) -> (
return scoreEquations(mixedGraph (B,D),U, opts);
);
scoreEquations(Graph, Bigraph,List) := opts -> (G,B,U) -> (
return scoreEquations(mixedGraph (G,B),U, opts);
);
scoreEquations(Bigraph,Graph,List) := opts -> (B,G,U) -> (
return scoreEquations(mixedGraph (B,G),U, opts);
);
scoreEquations(Graph, Digraph, Bigraph, List) := opts -> (G,D,B,U) -> (
return scoreEquations(mixedGraph (G,D,B),U, opts);
);
scoreEquations(Digraph, Bigraph, Graph, List) := opts -> (D,B,G,U) -> (
return scoreEquations(mixedGraph (D,B,G),U, opts);
);
scoreEquations(Bigraph, Graph, Digraph, List) := opts -> (B,G,D,U) -> (
return scoreEquations(mixedGraph (B,G,D),U, opts);
);
scoreEquations(Graph,Bigraph, Digraph, List) := opts -> (G,B,D,U) -> (
return scoreEquations(mixedGraph (G,B,D),U, opts);
);
scoreEquations(Bigraph, Digraph,Graph, List) := opts -> (B,D,G,U) -> (
return scoreEquations(mixedGraph (B,D,G),U, opts);
);
scoreEquations(Digraph, Graph, Bigraph, List) := opts -> (D,G,B,U) -> (
return scoreEquations(mixedGraph (D,G,B),U, opts);
);
scoreEquations(List,MixedGraph) := opts -> (U,G) -> (
return scoreEquations(G,U, opts);
);
scoreEquations(List,Graph) := opts -> (U,G) -> (
return scoreEquations(mixedGraph (G),U, opts);
);
scoreEquations(List,Digraph) := opts -> (U,G) -> (
return scoreEquations(mixedGraph (G),U, opts);
);
scoreEquations(List,Bigraph) := opts -> (U,G) -> (
return scoreEquations(mixedGraph (G),U, opts);
);
scoreEquations(List,Graph,Digraph) := opts -> (U,G,D) -> (
return scoreEquations(mixedGraph (G,D),U, opts);
);
scoreEquations(List,Digraph,Graph) := opts -> (U,D,G) -> (
return scoreEquations(mixedGraph (D,G),U, opts);
);
scoreEquations(List,Digraph,Bigraph) := opts -> (U,D,B) -> (
return scoreEquations(mixedGraph (D,B),U, opts);
);
scoreEquations(List,Bigraph,Digraph) := opts -> (U,B,D) -> (
return scoreEquations(mixedGraph (B,D),U, opts);
);
scoreEquations(List,Graph, Bigraph) := opts -> (U,G,B) -> (
return scoreEquations(mixedGraph (G,B),U, opts);
);
scoreEquations(List,Bigraph,Graph) := opts -> (U,B,G) -> (
return scoreEquations(mixedGraph (B,G),U, opts);
);
scoreEquations(List,Graph, Digraph, Bigraph) := opts -> (U,G,D,B) -> (
return scoreEquations(mixedGraph (G,D,B),U, opts);
);
scoreEquations(List,Digraph, Bigraph, Graph) := opts -> (U,D,B,G) -> (
return scoreEquations(mixedGraph (D,B,G),U, opts);
);
scoreEquations(List,Bigraph, Graph, Digraph) := opts -> (U,B,G,D) -> (
return scoreEquations(mixedGraph (B,G,D),U, opts);
);
scoreEquations(List,Graph,Bigraph, Digraph) := opts -> (U,G,B,D) -> (
return scoreEquations(mixedGraph (G,B,D),U, opts);
);
scoreEquations(List,Bigraph, Digraph,Graph) := opts -> (U,B,D,G) -> (
return scoreEquations(mixedGraph (B,D,G),U, opts);
);
scoreEquations(List,Digraph, Graph, Bigraph) := opts -> (U,D,G,B) -> (
return scoreEquations(mixedGraph (D,G,B),U, opts);
);
scoreEquations(Graph,Matrix) := opts -> (G, U) -> (
return scoreEquations(mixedGraph (G),U, opts);
);
scoreEquations(Digraph,Matrix) := opts -> (G, U) -> (
return scoreEquations(mixedGraph (G),U, opts);
);
scoreEquations(Bigraph,Matrix) := opts -> (G, U) -> (
return scoreEquations(mixedGraph (G),U, opts);
);
scoreEquations(Graph,Digraph,Matrix) := opts -> (G,D,U) -> (
return scoreEquations(mixedGraph (G,D),U, opts);
);
scoreEquations(Digraph,Graph,Matrix) := opts -> (D,G,U) -> (
return scoreEquations(mixedGraph (D,G),U, opts);
);
scoreEquations(Digraph,Bigraph,Matrix) := opts -> (D,B,U) -> (
return scoreEquations(mixedGraph (D,B),U, opts);
);
scoreEquations(Bigraph,Digraph,Matrix) := opts -> (B,D,U) -> (
return scoreEquations(mixedGraph (B,D),U, opts);
);
scoreEquations(Graph, Bigraph,Matrix) := opts -> (G,B,U) -> (
return scoreEquations(mixedGraph (G,B),U, opts);
);
scoreEquations(Bigraph,Graph,Matrix) := opts -> (B,G,U) -> (
return scoreEquations(mixedGraph (B,G),U, opts);
);
scoreEquations(Graph, Digraph, Bigraph, Matrix) := opts -> (G,D,B,U) -> (
return scoreEquations(mixedGraph (G,D,B),U, opts);
);
scoreEquations(Digraph, Bigraph, Graph, Matrix) := opts -> (D,B,G,U) -> (
return scoreEquations(mixedGraph (D,B,G),U, opts);
);
scoreEquations(Bigraph, Graph, Digraph, Matrix) := opts -> (B,G,D,U) -> (
return scoreEquations(mixedGraph (B,G,D),U, opts);
);
scoreEquations(Graph,Bigraph, Digraph, Matrix) := opts -> (G,B,D,U) -> (
return scoreEquations(mixedGraph (G,B,D),U, opts);
);
scoreEquations(Bigraph, Digraph,Graph, Matrix) := opts -> (B,D,G,U) -> (
return scoreEquations(mixedGraph (B,D,G),U, opts);
);
scoreEquations(Digraph, Graph, Bigraph, Matrix) := opts -> (D,G,B,U) -> (
return scoreEquations(mixedGraph (D,G,B),U, opts);
);
scoreEquations(Matrix,MixedGraph) := opts -> (U,G) -> (
return scoreEquations(G,U, opts);
);
scoreEquations(Matrix,Graph) := opts -> (U,G) -> (
return scoreEquations(mixedGraph (G),U, opts);
);
scoreEquations(Matrix,Digraph) := opts -> (U,G) -> (
return scoreEquations(mixedGraph (G),U, opts);
);
scoreEquations(Matrix,Bigraph) := opts -> (U,G) -> (
return scoreEquations(mixedGraph (G),U, opts);
);
scoreEquations(Matrix,Graph,Digraph) := opts -> (U,G,D) -> (
return scoreEquations(mixedGraph (G,D),U, opts);
);
scoreEquations(Matrix,Digraph,Graph) := opts -> (U,D,G) -> (
return scoreEquations(mixedGraph (D,G),U, opts);
);
scoreEquations(Matrix,Digraph,Bigraph) := opts -> (U,D,B) -> (
return scoreEquations(mixedGraph (D,B),U, opts);
);
scoreEquations(Matrix,Bigraph,Digraph) := opts -> (U,B,D) -> (
return scoreEquations(mixedGraph (B,D),U, opts);
);
scoreEquations(Matrix,Graph, Bigraph) := opts -> (U,G,B) -> (
return scoreEquations(mixedGraph (G,B),U, opts);
);
scoreEquations(Matrix,Bigraph,Graph) := opts -> (U,B,G) -> (
return scoreEquations(mixedGraph (B,G),U, opts);
);
scoreEquations(Matrix,Graph, Digraph, Bigraph) := opts -> (U,G,D,B) -> (
return scoreEquations(mixedGraph (G,D,B),U, opts);
);
scoreEquations(Matrix,Digraph, Bigraph, Graph) := opts -> (U,D,B,G) -> (
return scoreEquations(mixedGraph (D,B,G),U, opts);
);
scoreEquations(Matrix,Bigraph, Graph, Digraph) := opts -> (U,B,G,D) -> (
return scoreEquations(mixedGraph (B,G,D),U, opts);
);
scoreEquations(Matrix,Graph,Bigraph, Digraph) := opts -> (U,G,B,D) -> (
return scoreEquations(mixedGraph (G,B,D),U, opts);
);
scoreEquations(Matrix,Bigraph, Digraph,Graph) := opts -> (U,B,D,G) -> (
return scoreEquations(mixedGraph (B,D,G),U, opts);
);
scoreEquations(Matrix,Digraph, Graph, Bigraph) := opts -> (U,D,G,B) -> (
return scoreEquations(mixedGraph (D,G,B),U, opts);
);
checkPD = method(TypicalValue =>List, Options =>{ZeroTolerance=>1e-10});
checkPD(List) := opts -> (L) -> (
for l in L
list (
if not length (select(eigenvalues l, i->realPart i<= opts.ZeroTolerance
or abs(imaginaryPart i )>opts.ZeroTolerance))==0 then continue;
realPartMatrix l)
);
checkPD(Matrix):= opts -> (L)->{
return checkPD({L},opts);
};
checkPSD = method(TypicalValue =>List, Options =>{ZeroTolerance=>1e-10});
checkPSD(List) := opts -> (L) -> (
for l in L
list (
if not length (select(eigenvalues l, i->realPart i< -opts.ZeroTolerance
or abs(imaginaryPart i )>opts.ZeroTolerance))==0 then continue;
realPartMatrix l)
);
checkPSD(Matrix):= opts -> (L)->{
return checkPSD({L},opts);
};
MLdegree = method(TypicalValue =>ZZ);
MLdegree(Ring):= (R) -> (
if not R.?graph then error "Expected gaussianRing created from a graph, digraph, bigraph or mixedGraph";
n:=# vertices R.graph;
J:=scoreEquations(R,random(RR^n,RR^n));
dimJ := dim J;
if dimJ > 0 then error concatenate("the ideal of score equations has dimension ",toString dimJ, " > 0,
so ML degree is not well-defined. The degree of this ideal is ", toString degree J,".");
return degree J;
);
solverMLE = method(TypicalValue =>Sequence, Options =>{SampleData=>true, ConcentrationMatrix=> false, Saturate => true, SaturateOptions => options saturate, Solver=>"EigenSolver", OptionsEigenSolver => options zeroDimSolve, OptionsNAG4M2=> options solveSystem, RealPrecision => 53, ZeroTolerance=>1e-10});
solverMLE(MixedGraph,Matrix) := opts -> (G, U) -> (
return solverMLE(gaussianRing G,U,opts);
);
-- Allow list instead of matrix
solverMLE(MixedGraph,List):= opts ->(G,U) -> (
return solverMLE(gaussianRing G,U,opts);
);
--Allow ring instead of graph
solverMLE(Ring,Matrix):= opts ->(R,U) -> (
-- check input
if not numgens source U ==R.gaussianRingData#nn then error "Size of sample data does not match the graph.";
-- sample covariance matrix
if opts.SampleData then V := sampleCovarianceMatrix(U)
else (V=U;
if not V==transpose V then error "The sample covariance matrix must be symmetric.");
-- generate the ideal of the score equations
if opts.Saturate then (
argSaturate:=opts.SaturateOptions >>newOpts-> args ->(args, SaturateOptions=>newOpts,SampleData=>false);
(J,SInv):=scoreEquationsInternal(argSaturate(R,V));)
else (J,SInv)= scoreEquationsInternal(R,V,Saturate=>false, SampleData=>false);
-- check that the system has finitely many solutions
if dim J =!= 0 then return J
else (
ML:=degree J;
-- solve system
if opts.Solver=="EigenSolver" then(
argES:=opts.OptionsEigenSolver >>newOpts-> args ->(args, newOpts);
sols:=zeroDimSolve(argES(J));
) else (
if opts.Solver=="NAG4M2" then (
sys:= flatten entries gens J;
argNAG4M2:=opts.OptionsNAG4M2 >>newOpts-> args ->(args, newOpts);
sols=solveSystem(argNAG4M2(sys));
)
else error "Accepted solver options are EigenSolver
(which uses function zeroDimSolve) or NAG4M2 (which uses solveSystem). Options should
be given as strings.";
);
--evaluate matrices on solutions
M:=genListMatrix(sols,SInv);
--consider only PD matrices
L:=checkPD (M, ZeroTolerance=>opts.ZeroTolerance);
--find the optimal points
(maxPt, E):=maxMLE(L,V);
if not opts.ConcentrationMatrix then (
if instance(E,List) then E=(for e in E list e=inverse e) else E=inverse E
);
return (maxPt,E,ML));
);
-- Allow ring instead of graph and list instead of matrix
solverMLE(Ring,List):= opts ->(R,U) -> (
-- check input
if not opts.SampleData then error "The sample covariance matrix must be a matrix.";
-- call solverMLE for a matrix
return solverMLE(R,matrix U,opts);
);
-- Permutations of input
solverMLE(Matrix,Ring) := opts -> (U, R) -> (
return solverMLE(R,U, opts);
);
solverMLE(List,Ring) := opts -> (U, R) -> (
return solverMLE(R,U, opts);
);
solverMLE(Graph,List) := opts -> (G, U) -> (
return solverMLE(mixedGraph (G),U, opts);
);
solverMLE(Digraph,List) := opts -> (G, U) -> (
return solverMLE(mixedGraph (G),U, opts);
);
solverMLE(Bigraph,List) := opts -> (G, U) -> (
return solverMLE(mixedGraph (G),U, opts);
);
solverMLE(Graph,Digraph,List) := opts -> (G,D,U) -> (
return solverMLE(mixedGraph (G,D),U, opts);
);
solverMLE(Digraph,Graph,List) := opts -> (D,G,U) -> (
return solverMLE(mixedGraph (D,G),U, opts);
);
solverMLE(Digraph,Bigraph,List) := opts -> (D,B,U) -> (
return solverMLE(mixedGraph (D,B),U, opts);
);
solverMLE(Bigraph,Digraph,List) := opts -> (B,D,U) -> (
return solverMLE(mixedGraph (B,D),U, opts);
);
solverMLE(Graph, Bigraph,List) := opts -> (G,B,U) -> (
return solverMLE(mixedGraph (G,B),U, opts);
);
solverMLE(Bigraph,Graph,List) := opts -> (B,G,U) -> (
return solverMLE(mixedGraph (B,G),U, opts);
);
solverMLE(Graph, Digraph, Bigraph, List) := opts -> (G,D,B,U) -> (
return solverMLE(mixedGraph (G,D,B),U, opts);
);
solverMLE(Digraph, Bigraph, Graph, List) := opts -> (D,B,G,U) -> (
return solverMLE(mixedGraph (D,B,G),U, opts);
);
solverMLE(Bigraph, Graph, Digraph, List) := opts -> (B,G,D,U) -> (
return solverMLE(mixedGraph (B,G,D),U, opts);
);
solverMLE(Graph,Bigraph, Digraph, List) := opts -> (G,B,D,U) -> (
return solverMLE(mixedGraph (G,B,D),U, opts);
);
solverMLE(Bigraph, Digraph,Graph, List) := opts -> (B,D,G,U) -> (
return solverMLE(mixedGraph (B,D,G),U, opts);
);
solverMLE(Digraph, Graph, Bigraph, List) := opts -> (D,G,B,U) -> (
return solverMLE(mixedGraph (D,G,B),U, opts);
);
solverMLE(List,MixedGraph) := opts -> (U,G) -> (
return solverMLE(G,U, opts);
);
solverMLE(List,Graph) := opts -> (U,G) -> (
return solverMLE(mixedGraph (G),U, opts);
);
solverMLE(List,Digraph) := opts -> (U,G) -> (
return solverMLE(mixedGraph (G),U, opts);
);
solverMLE(List,Bigraph) := opts -> (U,G) -> (
return solverMLE(mixedGraph (G),U, opts);
);
solverMLE(List,Graph,Digraph) := opts -> (U,G,D) -> (
return solverMLE(mixedGraph (G,D),U, opts);
);
solverMLE(List,Digraph,Graph) := opts -> (U,D,G) -> (
return solverMLE(mixedGraph (D,G),U, opts);
);
solverMLE(List,Digraph,Bigraph) := opts -> (U,D,B) -> (
return solverMLE(mixedGraph (D,B),U, opts);
);
solverMLE(List,Bigraph,Digraph) := opts -> (U,B,D) -> (
return solverMLE(mixedGraph (B,D),U, opts);
);
solverMLE(List,Graph, Bigraph) := opts -> (U,G,B) -> (
return solverMLE(mixedGraph (G,B),U, opts);
);
solverMLE(List,Bigraph,Graph) := opts -> (U,B,G) -> (
return solverMLE(mixedGraph (B,G),U, opts);
);
solverMLE(List,Graph, Digraph, Bigraph) := opts -> (U,G,D,B) -> (
return solverMLE(mixedGraph (G,D,B),U, opts);
);
solverMLE(List,Digraph, Bigraph, Graph) := opts -> (U,D,B,G) -> (
return solverMLE(mixedGraph (D,B,G),U, opts);
);
solverMLE(List,Bigraph, Graph, Digraph) := opts -> (U,B,G,D) -> (
return solverMLE(mixedGraph (B,G,D),U, opts);
);
solverMLE(List,Graph,Bigraph, Digraph) := opts -> (U,G,B,D) -> (
return solverMLE(mixedGraph (G,B,D),U, opts);
);
solverMLE(List,Bigraph, Digraph,Graph) := opts -> (U,B,D,G) -> (
return solverMLE(mixedGraph (B,D,G),U, opts);
);
solverMLE(List,Digraph, Graph, Bigraph) := opts -> (U,D,G,B) -> (
return solverMLE(mixedGraph (D,G,B),U, opts);
);
solverMLE(Graph,Matrix) := opts -> (G, U) -> (
return solverMLE(mixedGraph (G),U, opts);
);
solverMLE(Digraph,Matrix) := opts -> (G, U) -> (
return solverMLE(mixedGraph (G),U, opts);
);
solverMLE(Bigraph,Matrix) := opts -> (G, U) -> (
return solverMLE(mixedGraph (G),U, opts);
);
solverMLE(Graph,Digraph,Matrix) := opts -> (G,D,U) -> (
return solverMLE(mixedGraph (G,D),U, opts);
);
solverMLE(Digraph,Graph,Matrix) := opts -> (D,G,U) -> (
return solverMLE(mixedGraph (D,G),U, opts);
);
solverMLE(Digraph,Bigraph,Matrix) := opts -> (D,B,U) -> (
return solverMLE(mixedGraph (D,B),U, opts);
);
solverMLE(Bigraph,Digraph,Matrix) := opts -> (B,D,U) -> (
return solverMLE(mixedGraph (B,D),U, opts);
);
solverMLE(Graph, Bigraph,Matrix) := opts -> (G,B,U) -> (
return solverMLE(mixedGraph (G,B),U, opts);
);
solverMLE(Bigraph,Graph,Matrix) := opts -> (B,G,U) -> (
return solverMLE(mixedGraph (B,G),U, opts);
);
solverMLE(Graph, Digraph, Bigraph, Matrix) := opts -> (G,D,B,U) -> (
return solverMLE(mixedGraph (G,D,B),U, opts);
);
solverMLE(Digraph, Bigraph, Graph, Matrix) := opts -> (D,B,G,U) -> (
return solverMLE(mixedGraph (D,B,G),U, opts);
);
solverMLE(Bigraph, Graph, Digraph, Matrix) := opts -> (B,G,D,U) -> (
return solverMLE(mixedGraph (B,G,D),U, opts);
);
solverMLE(Graph,Bigraph, Digraph, Matrix) := opts -> (G,B,D,U) -> (
return solverMLE(mixedGraph (G,B,D),U, opts);
);
solverMLE(Bigraph, Digraph,Graph, Matrix) := opts -> (B,D,G,U) -> (
return solverMLE(mixedGraph (B,D,G),U, opts);
);
solverMLE(Digraph, Graph, Bigraph, Matrix) := opts -> (D,G,B,U) -> (
return solverMLE(mixedGraph (D,G,B),U, opts);
);
solverMLE(Matrix,MixedGraph) := opts -> (U,G) -> (
return solverMLE(G,U, opts);
);
solverMLE(Matrix,Graph) := opts -> (U,G) -> (
return solverMLE(mixedGraph (G),U, opts);
);
solverMLE(Matrix,Digraph) := opts -> (U,G) -> (
return solverMLE(mixedGraph (G),U, opts);
);
solverMLE(Matrix,Bigraph) := opts -> (U,G) -> (
return solverMLE(mixedGraph (G),U, opts);
);
solverMLE(Matrix,Graph,Digraph) := opts -> (U,G,D) -> (
return solverMLE(mixedGraph (G,D),U, opts);
);
solverMLE(Matrix,Digraph,Graph) := opts -> (U,D,G) -> (
return solverMLE(mixedGraph (D,G),U, opts);
);
solverMLE(Matrix,Digraph,Bigraph) := opts -> (U,D,B) -> (
return solverMLE(mixedGraph (D,B),U, opts);
);
solverMLE(Matrix,Bigraph,Digraph) := opts -> (U,B,D) -> (
return solverMLE(mixedGraph (B,D),U, opts);
);
solverMLE(Matrix,Graph, Bigraph) := opts -> (U,G,B) -> (
return solverMLE(mixedGraph (G,B),U, opts);
);
solverMLE(Matrix,Bigraph,Graph) := opts -> (U,B,G) -> (
return solverMLE(mixedGraph (B,G),U, opts);
);
solverMLE(Matrix,Graph, Digraph, Bigraph) := opts -> (U,G,D,B) -> (
return solverMLE(mixedGraph (G,D,B),U, opts);
);
solverMLE(Matrix,Digraph, Bigraph, Graph) := opts -> (U,D,B,G) -> (
return solverMLE(mixedGraph (D,B,G),U, opts);
);
solverMLE(Matrix,Bigraph, Graph, Digraph) := opts -> (U,B,G,D) -> (
return solverMLE(mixedGraph (B,G,D),U, opts);
);
solverMLE(Matrix,Graph,Bigraph, Digraph) := opts -> (U,G,B,D) -> (
return solverMLE(mixedGraph (G,B,D),U, opts);
);
solverMLE(Matrix,Bigraph, Digraph,Graph) := opts -> (U,B,D,G) -> (
return solverMLE(mixedGraph (B,D,G),U, opts);
);
solverMLE(Matrix,Digraph, Graph, Bigraph) := opts -> (U,D,G,B) -> (
return solverMLE(mixedGraph (D,G,B),U, opts);
);
--******************************************--
-- DOCUMENTATION --
--******************************************--
beginDocumentation()
doc ///
Key
GraphicalModelsMLE
Headline
a package for MLE of parameters for Gaussian graphical models
Description
Text
{\bf Graphical Models MLE} is a package for algebraic statistics that broadens the functionalities of @TO GraphicalModels@.
It computes the maximum likelihood estimates (MLE) of the covariance matrix of Gaussian graphical models associated to loopless mixed graphs(LMG).
The main features of the package are the computation of the @TO sampleCovarianceMatrix@ of sample data,
the ideal generated by @TO scoreEquations@ of log-likelihood functions of Gaussian graphical model,
the @TO MLdegree@ of such models and the MLE for the covariance or concentration matrix via @TO solverMLE@.
For more details on the type of graphical models that are accepted see @TO gaussianRing@.
In particular, for further information about LMG with undirected, directed and bidirected edges, check @TO partitionLMG@.
{\bf References:}
An introduction to key notions such as MLE and ML-degree can be found in the books:
Seth Sullivant, {\em Algebraic statistics}, American Mathematical Society, Vol 194, 2018.
Mathias Drton, Bernd Sturmfels and Seth Sullivant, {\em Lectures on Algebraic Statistics}, Oberwolfach Seminars, Vol 40, Birkhauser, Basel, 2009.
The definition and classification of loopless mixed graphs (LMG) can be found in the paper:
Kayvan Sadeghi and Steffen Lauritzen, {\em Markov properties for mixed graphs}, Bernoulli, 20 (2014), no 2, 676-696.
{\bf Examples:}
Computation of a sample covariance matrix from sample data:
Example
U= matrix{{1,2,1,-1},{2,1,3,0},{-1, 0, 1, 1},{-5, 3, 4, -6}};
sampleCovarianceMatrix(U)
Text
The ideal generated by the score equations of the log-likelihood function of the graphical model associated to the
graph $1\rightarrow 2,1\rightarrow 3,2\rightarrow 3,3\rightarrow 4,3<-> 4$ is computed as follows:
Example
G = mixedGraph(digraph {{1,2},{1,3},{2,3},{3,4}},bigraph{{3,4}});
R = gaussianRing(G);
U = matrix{{6, 10, 1/3, 1}, {3/5, 3, 1/2, 1}, {4/5, 3/2, 9/8, 3/10}, {10/7, 2/3,1, 8/3}};
scoreEquations(R,U)
Text
Computation of the ML-degree of the 4-cycle:
Example
G=graph{{1,2},{2,3},{3,4},{4,1}};
MLdegree(gaussianRing G)
Text
Next compute the MLE for the covariance matrix of the graphical model associated
to the graph $1\rightarrow 3,2\rightarrow 4,3<-> 4,1 - 2$.
The input is the sample covariance instead of the sample data.
Example
G = mixedGraph(digraph {{1,3},{2,4}},bigraph {{3,4}},graph {{1,2}});
V = matrix {{7/20, 13/50, -3/50, -19/100}, {13/50, 73/100, -7/100, -9/100},{-3/50, -7/100, 2/5, 3/50}, {-19/100, -9/100, 3/50, 59/100}};
solverMLE(G,V,SampleData=>false)
Text
As an application of @TO solverMLE@: positive definite matrix completion
Text
Consider the following symmetric matrix with some unknown entries:
Example
R=QQ[x,y];
M=matrix{{115,-13,x,47},{-13,5,7,y},{x,7,27,-21},{47,y,-21,29}}
Text
Unknown entries correspond to the non-edges of the 4-cycle. A positive definite completion of this matrix
is obtained by giving values to x and y and computing the MLE for the covariance matrix in the Gaussian graphical model
given by the 4-cycle. Check @TO solverMLE@ for more details.
Example
G=graph{{1,2},{2,3},{3,4},{1,4}};
V=matrix{{115,-13,-29,47},{-13,5,7,-11},{-29,7,27,-21},{47,-11,-21,29}};
(mx,MLE,ML)=solverMLE(G,V,SampleData=>false)
Caveat
GraphicalModelsMLE requires @TO Graphs@, @TO StatGraphs@ and @TO GraphicalModels@.
In order to use the default numerical solver, it also requires @TO EigenSolver@.
@TO Graphs@ allows the user to create graphs whose vertices are labeled arbitrarily.
However, several functions in GraphicalModels sort the vertices of the graph. Hence, graphs used as input to methods
in GraphicalModelsMLE must have sortable vertex labels, e.g., all numbers or all letters.
@TO StatGraphs@ allows the user to work with objects such as bigraphs and mixedGraphs.
@TO GraphicalModels@ is used to generate @TO gaussianRing@, i.e. rings encoding graph properties.
///
--------------------------------
-- Documentation
--------------------------------
doc ///
Key
sampleCovarianceMatrix
(sampleCovarianceMatrix, List)
(sampleCovarianceMatrix, Matrix)
Headline
sample covariance matrix of observation vectors
Usage
sampleCovarianceMatrix U
Inputs
U:Matrix
or @TO List@ of sample data
Outputs
:Matrix
sample covariance matrix of the sample data
Description
Text
The sample covariance matrix is $S = \frac{1}{n} \sum_{i=1}^{n} (X^{(i)}-\bar{X}) (X^{(i)}-\bar{X})^T$.
Note that for normally distributed random variables, $S$ is the maximum likelihood estimator (MLE) for the
covariance matrix. This is different from the unbiased estimator, which uses a denominator of $n-1$ instead of $n$.
Sample data is input as a matrix or a list.
The rows of the matrix or the elements of the list are observation vectors.
Example
L= {{1,2,1,-1},{2,1,3,0},{-1, 0, 1, 1},{-5, 3, 4, -6}};
sampleCovarianceMatrix(L)
U= matrix{{1,2,1,-1},{2,1,3,0},{-1, 0, 1, 1},{-5, 3, 4, -6}};
sampleCovarianceMatrix(U)
///
doc ///
Key
jacobianMatrixOfRationalFunction
(jacobianMatrixOfRationalFunction,RingElement)
Headline
Jacobian matrix of a rational function
Usage
jacobianMatrixOfRationalFunction(F)
Inputs
F:RingElement
in @TO frac@
Outputs
:Matrix
the Jacobian matrix of a rational function
Description
Text
This function computes the Jacobian matrix of a rational function.
The input is an element in a fraction field.
Example
R=QQ[x,y];
FR=frac R;
F=1/(x^2+y^2);
jacobianMatrixOfRationalFunction(F)
Example
R=QQ[t_1,t_2,t_3];
FR=frac R;
jacobianMatrixOfRationalFunction( (t_1^2*t_2)/(t_1+t_2^2+t_3^3) )
///
-------------------------------------------------------
-- Documentation scoreEquations -----------------------
-------------------------------------------------------
doc ///
Key
scoreEquations
(scoreEquations, Ring, List)
(scoreEquations, Ring, Matrix)
(scoreEquations, List, Ring)
(scoreEquations, Matrix, Ring)
(scoreEquations, MixedGraph, Matrix)
(scoreEquations, MixedGraph, List)
(scoreEquations, Graph, List)
(scoreEquations, Digraph, List)
(scoreEquations, Bigraph, List)
(scoreEquations, Graph, Digraph,List)
(scoreEquations, Digraph, Graph,List)
(scoreEquations, Digraph, Bigraph, List)
(scoreEquations, Bigraph, Digraph, List)
(scoreEquations, Graph, Bigraph, List)
(scoreEquations, Bigraph, Graph, List)
(scoreEquations, Graph, Digraph, Bigraph, List)
(scoreEquations, Digraph, Bigraph, Graph, List)
(scoreEquations, Bigraph, Graph, Digraph, List)
(scoreEquations, Graph, Bigraph, Digraph, List)
(scoreEquations, Bigraph, Digraph, Graph, List)
(scoreEquations, Digraph, Graph, Bigraph, List)
(scoreEquations, List, MixedGraph)
(scoreEquations, List, Graph)
(scoreEquations, List, Digraph)
(scoreEquations, List, Bigraph)
(scoreEquations, List, Graph, Digraph)
(scoreEquations, List, Digraph,Graph)
(scoreEquations, List, Digraph,Bigraph)
(scoreEquations, List, Bigraph,Digraph)
(scoreEquations, List, Graph, Bigraph)
(scoreEquations, List, Bigraph, Graph)
(scoreEquations, List, Graph, Digraph, Bigraph)
(scoreEquations, List, Digraph, Bigraph, Graph)
(scoreEquations, List, Bigraph, Graph, Digraph)
(scoreEquations, List, Graph, Bigraph, Digraph)
(scoreEquations, List, Bigraph, Digraph, Graph)
(scoreEquations, List, Digraph, Graph, Bigraph)
(scoreEquations, Graph, Matrix)
(scoreEquations, Digraph, Matrix)
(scoreEquations, Bigraph, Matrix)
(scoreEquations, Graph, Digraph,Matrix)
(scoreEquations, Digraph, Graph,Matrix)
(scoreEquations, Digraph, Bigraph, Matrix)
(scoreEquations, Bigraph, Digraph, Matrix)
(scoreEquations, Graph, Bigraph, Matrix)
(scoreEquations, Bigraph, Graph, Matrix)
(scoreEquations, Graph, Digraph, Bigraph, Matrix)
(scoreEquations, Digraph, Bigraph, Graph, Matrix)
(scoreEquations, Bigraph, Graph, Digraph, Matrix)
(scoreEquations, Graph, Bigraph, Digraph, Matrix)
(scoreEquations, Bigraph, Digraph, Graph, Matrix)
(scoreEquations, Digraph, Graph, Bigraph, Matrix)
(scoreEquations, Matrix, MixedGraph)
(scoreEquations, Matrix, Graph)
(scoreEquations, Matrix, Digraph)
(scoreEquations, Matrix, Bigraph)
(scoreEquations, Matrix, Graph, Digraph)
(scoreEquations, Matrix, Digraph,Graph)
(scoreEquations, Matrix, Digraph,Bigraph)
(scoreEquations, Matrix, Bigraph,Digraph)
(scoreEquations, Matrix, Graph, Bigraph)
(scoreEquations, Matrix, Bigraph, Graph)
(scoreEquations, Matrix, Graph, Digraph, Bigraph)
(scoreEquations, Matrix, Digraph, Bigraph, Graph)
(scoreEquations, Matrix, Bigraph, Graph, Digraph)
(scoreEquations, Matrix, Graph, Bigraph, Digraph)
(scoreEquations, Matrix, Bigraph, Digraph, Graph)
(scoreEquations, Matrix, Digraph, Graph, Bigraph)
Headline
score equations of the log-likelihood function of a Gaussian graphical model
Usage
scoreEquations(R,U)
Inputs
R:Ring
defined as a @TO gaussianRing@ of @TO Graph@, or @TO Digraph@, or @TO Bigraph@, or @TO MixedGraph@
U:Matrix
or @TO List@ of sample data.
Alternatively, the input can be the sample covariance @TO Matrix@ by setting the optional input @TO SampleData@ to false
Outputs
:Sequence
consisting either of (Ideal) or (Ideal,Matrix)
where the ideal is generated by the score equations of the log-likelihood
function of the Gaussian model and the matrix is the symbolic covariance
matrix of the model
Description
Text
This function computes the score equations that arise from taking
partial derivatives of the log-likelihood function of the concentration matrix
(the inverse of the covariance matrix) of a Gaussian graphical
statistical model and returns the ideal generated by such equations.
The input of this function is a @TO gaussianRing@ and statistical data.
The latter can be given as a matrix or a list of observations. The rows of the matrix or the elements of the list are observation vectors given as lists.
It is possible to input the sample covariance matrix directly by using the optional input @TO SampleData@.
Example
G = mixedGraph(digraph {{1,2},{1,3},{2,3},{3,4}},bigraph{{3,4}});
R = gaussianRing(G);
U = matrix{{6, 10, 1/3, 1}, {3/5, 3, 1/2, 1}, {4/5, 3/2, 9/8, 3/10}, {10/7, 2/3,1, 8/3}};
JU=scoreEquations(R,U)
V = sampleCovarianceMatrix U
JV=scoreEquations(R,V,SampleData=>false)
Text
@TO SaturateOptions@ allows to use all functionalities of @TO saturate@.
@TO Saturate@ determines whether to saturate. Note that the latter will not
provide the score equations of the model.
Example
G = mixedGraph(digraph {{1,2},{1,3},{2,3},{3,4}},bigraph{{3,4}});
R = gaussianRing(G);
U = matrix{{6, 10, 1/3, 1}, {3/5, 3, 1/2, 1}, {4/5, 3/2, 9/8, 3/10}, {10/7, 2/3,1, 8/3}};
J=scoreEquations(R,U,SaturateOptions => {Strategy => Eliminate})
JnoSat=scoreEquations(R,U,Saturate=>false)
Text
The ML-degree of the model is the degree of the score equations ideal. The ML-degree
of the running example is 1:
Example
G = mixedGraph(digraph {{1,2},{1,3},{2,3},{3,4}},bigraph{{3,4}});
R = gaussianRing(G);
U = matrix{{6, 10, 1/3, 1}, {3/5, 3, 1/2, 1}, {4/5, 3/2, 9/8, 3/10}, {10/7, 2/3,1, 8/3}};
J = scoreEquations(R,U)
dim J, degree J
///
doc ///
Key
CovarianceMatrix
Headline
optional input to output covariance matrix
SeeAlso
scoreEquations
///
doc ///
Key
[scoreEquations,CovarianceMatrix]
Headline
output covariance matrix
Usage
scoreEquations(R,U,CovarianceMatrix=>b)
Inputs
b:Boolean
default is false
Description
Text
@TO [scoreEquations,CovarianceMatrix]@ is set to false by default. If b is true,
@TO scoreEquations@ gives an additional output:
the covariance matrix with rational entries in the same variables as the ideal of score equations.
Example
G = mixedGraph(digraph {{1,2},{1,3},{2,3},{3,4}},bigraph {{3,4}});
R=gaussianRing(G);
U = matrix{{6, 10, 1/3, 1}, {3/5, 3, 1/2, 1}, {4/5, 3/2, 9/8, 3/10}, {10/7, 2/3,1, 8/3}};
(J,Sigma)=scoreEquations(R,U,CovarianceMatrix=>true);
Sigma
SeeAlso
scoreEquations
///
doc ///
Key
Saturate
Headline
optional input whether to saturate
SeeAlso
scoreEquations
solverMLE
///
doc ///
Key
[scoreEquations, Saturate]
Headline
whether to saturate
Usage
scoreEquations(R,U,Saturate=>b)
Inputs
b:Boolean
default is true
Description
Text
@TO [scoreEquations,Saturate]@ is set to true by default. If b is false, saturation is not performed.
Avoiding saturation is only intended for big computations
when saturation cannot be computed or the computational time is very high.
When @TO Saturate@ is set to false, @TO scoreEquations@ might not output the ideal
generated by score equations because of the existence of vanishing denominators.
For graphs with only undirected edges, the ideal of score equations is the saturation of the
outputted ideal by the determinant of the concentration matrix. In the general case,
the ideal of score equations consist of the saturation of the outputted ideal by the product of denominators
of the Jacobian matrix.
For example, in the following case the degree of the ideal prior to saturation already gives the right ML-degree:
Example
G = mixedGraph(digraph {{1,2},{1,3},{2,3},{3,4}},bigraph {{3,4}});
R=gaussianRing(G);
U = matrix{{6, 10, 1/3, 1}, {3/5, 3, 1/2, 1}, {4/5, 3/2, 9/8, 3/10}, {10/7, 2/3,1, 8/3}};
JnoSat=scoreEquations(R,U,Saturate=>false);
dim JnoSat
degree JnoSat
J=scoreEquations(R,U)
degree JnoSat==degree J
SeeAlso
scoreEquations
///
doc ///
Key
[solverMLE, Saturate]
Headline
whether to saturate
Usage
solverMLE(G,U,Saturate=>b)
Inputs
b:Boolean
default is true
Description
Text
@TO [solverMLE,Saturate]@ is set to true by default.
If we set @TO Saturate@ to false in @TO solverMLE@, saturation will not be
performed when computing the score equations of the log-likelihood function,
see @TO [scoreEquations,Saturate]@.
If the ideal returned by @TO scoreEquations@ has positive dimension, @TO solverMLE@
gives this ideal as output.
On the other hand, if we obtain a zero-dimensional ideal in @TO scoreEquations@,
@TO solverMLE@ computes the solutions of this polynomial system and returns:
* the maximal value of the log-likelihood function attained by positive definite matrices
corresponding to such solutions,
* the positive definite matrices where the maximum is attained,
* the degree of the zero-dimensional ideal.
Be aware that this output might not correspond to the right MLE.
Example
G=graph{{1,2},{2,3},{3,4},{1,4}}
U=random(ZZ^4,ZZ^4)
solverMLE(G,U,Saturate=>false)
SeeAlso
solverMLE
scoreEquations
[scoreEquations,Saturate]
///
doc ///
Key
SaturateOptions
Headline
optional input to use options "saturate"
SeeAlso
scoreEquations
solverMLE
Saturate
saturate
///
doc ///
Key
[scoreEquations, SaturateOptions]
Headline
use options from "saturate"
Usage
scoreEquations(R,U,SaturateOptions=>L)
Inputs
L: List
of options to set up saturation. Accepts any option from the function
@TO saturate@
Description
Text
Default @TO SaturateOptions@ in @TO scoreEquations@ are the
default options in @TO saturate@. All optional input in @TO saturate@ is allowed.
Example
G = mixedGraph(digraph {{1,2},{1,3},{2,3},{3,4}},bigraph {{3,4}})
R=gaussianRing(G)
U = matrix{{6, 10, 1/3, 1}, {3/5, 3, 1/2, 1}, {4/5, 3/2, 9/8, 3/10}, {10/7, 2/3,1, 8/3}};
J=scoreEquations(R,U,SaturateOptions => {DegreeLimit=>1, MinimalGenerators => false})
SeeAlso
scoreEquations
Saturate
saturate
solverMLE
///
doc ///
Key
[solverMLE, SaturateOptions]
Headline
use options from "saturate"
Usage
solverMLE(G,U,SaturateOptions=>L)
Inputs
L: List
of options to set up saturation. Accepts any option from the function
@TO saturate@
Description
Text
Default @TO SaturateOptions@ in @TO solverMLE@ are the default options in @TO saturate@.
All optional input in @TO saturate@ is allowed.
Example
G=graph{{1,2},{2,3},{3,4},{1,4}}
U=random(ZZ^4,ZZ^4)
solverMLE(G,U,SaturateOptions => {DegreeLimit=>1, MinimalGenerators => false})
SeeAlso
scoreEquations
Saturate
saturate
solverMLE
///
doc ///
Key
Solver
Headline
optional input to choose numerical solver
SeeAlso
solverMLE
EigenSolver
NumericalAlgebraicGeometry
zeroDimSolve
solveSystem
///
doc ///
Key
[solverMLE, Solver]
Headline
choose numerical solver
Usage
solverMLE(G,U,Solver=>P)
Inputs
P: String
name of the corresponding package
Description
Text
This option allows to choose which numerical solver to use to estimate the critical
points. There are two options: "EigenSolver" or "NAG4M2" (Numerical Algebraic Geometry for Macaulay2).
The default and strongly recommended option is "EigenSolver", in which case
the function @TO zeroDimSolve@ is used.
If "NAG4M2" is chosen, then @TO solveSystem@ is used.
Example
G=mixedGraph(graph{{a,b}},digraph{{a,d}},bigraph{{c,d}})
U=matrix{{1, 2, 5, 1}, {5, 3, 2, 1}, {4, 3, 5, 10}, {2, 5,1, 3}};
solverMLE (G,U,Solver=>"EigenSolver")
solverMLE (G,U,Solver=>"NAG4M2")
SeeAlso
solverMLE
EigenSolver
NumericalAlgebraicGeometry
zeroDimSolve
solveSystem
///
doc ///
Key
OptionsEigenSolver
Headline
optional input to use options of "zeroDimSolve" in "EigenSolver"
SeeAlso
solverMLE
EigenSolver
zeroDimSolve
///
doc ///
Key
[solverMLE, OptionsEigenSolver]
Headline
use options of "zeroDimSolve" in "EigenSolver"
Usage
solverMLE(G,U,Solver=>"EigenSolver",OptionsEigenSolver=>L)
Inputs
L: List
of optional inputs in @TO zeroDimSolve@
Description
Text
Default @TO OptionsEigenSolver@ in @TO solverMLE@ are the default options in @TO zeroDimSolve@ in @TO EigenSolver@.
All optional input in @TO zeroDimSolve@ is allowed.
Example
G=mixedGraph(graph{{a,b},{b,c}})
solverMLE(G,matrix{{1,0,0},{0,1,0},{0,0,1}},Solver=>"EigenSolver",OptionsEigenSolver=>{Multiplier =>1, Strategy=>"Stickelberger"})
Text
In fact, since @TO zeroDimSolve@ is the current default numerical solver.
the sintaxis below is enough:
Example
G=mixedGraph(graph{{a,b},{b,c}})
solverMLE(G,matrix{{1,0,0},{0,1,0},{0,0,1}},OptionsEigenSolver=>{Multiplier =>1, Strategy=>"Stickelberger"})
SeeAlso
solverMLE
EigenSolver
zeroDimSolve
///
doc ///
Key
OptionsNAG4M2
Headline
optional parameter to set the parameters of solveSystem in NumericalAlgebraicGeometry
SeeAlso
solverMLE
NumericalAlgebraicGeometry
solveSystem
///
doc ///
Key
[solverMLE, OptionsNAG4M2]
Headline
use options of "solveSystem" in "NumericalAlgebraicGeometry"
Usage
solverMLE(G,U,Solver=>"NAG4M2",OptionsNAG4M2=>L)
Inputs
L: List
of optional inputs to @TO solveSystem@
Description
Text
Default @TO OptionsNAG4M2@ in @TO solverMLE@ when setting @TO [solverMLE,Solver]@
to "NAG4M2" are the default options of @TO solveSystem@ in @TO NumericalAlgebraicGeometry@.
All optional input in @TO solveSystem@ is allowed.
Example
G=mixedGraph(graph{{a,b},{b,c}})
solverMLE(G,matrix{{1,0,0},{0,1,0},{0,0,1}},Solver=>"NAG4M2",OptionsNAG4M2=>{tStep =>.01,numberSuccessesBeforeIncrease => 5})
SeeAlso
solverMLE
NumericalAlgebraicGeometry
solveSystem
///
doc ///
Key
RealPrecision
Headline
optional input to choose the number of decimals used to round to QQ when inputing data in RR
SeeAlso
scoreEquations
solverMLE
///
doc ///
Key
[scoreEquations, RealPrecision]
Headline
the number of bits of precision to use in the computation
Usage
scoreEquations(R,U,RealPrecision=>n)
Inputs
n: ZZ
default is 53
Description
Text
This optional input only applies when the sample data or the sample covariance matrix has real entries.
By default, the precision is 53 (the default precision for real numbers in M2).
Example
G = mixedGraph(digraph {{1,2},{1,3},{2,3},{3,4}},bigraph {{3,4}});
R=gaussianRing(G);
U = matrix{{6.2849049, 10.292875, 1.038475, 1.1845757}, {3.1938475, 3.2573, 1.13847, 1}, {4/5, 3/2, 9/8, 3/10}, {10/7, 2/3,1, 8/3}};
J=scoreEquations(R,U,RealPrecision=>3)
SeeAlso
scoreEquations
///
doc ///
Key
[solverMLE, RealPrecision]
Headline
the number of bits of precision to use in the computation
Usage
solverMLE(G,U,RealPrecision=>n)
Inputs
n: ZZ
default is 53
Description
Text
This optional input only applies when the sample data or the sample covariance matrix has real entries.
By default, the precision is 53 (the default precision for real numbers in M2).
Example
G = mixedGraph(digraph {{1,2},{1,3},{2,3},{3,4}},bigraph {{3,4}});
U = matrix{{6.2849049, 10.292875, 1.038475, 1.1845757}, {3.1938475, 3.2573, 1.13847, 1}, {4/5, 3/2, 9/8, 3/10}, {10/7, 2/3,1, 8/3}};
solverMLE(G,U,RealPrecision=>10)
SeeAlso
scoreEquations
solverMLE
///
doc ///
Key
SampleData
Headline
optional input to allow to input the sample covariance matrix instead of sample data
SeeAlso
scoreEquations
solverMLE
///
doc ///
Key
[scoreEquations, SampleData]
Headline
input sample covariance matrix instead of sample data
Usage
scoreEquations(R,U,SampleData=>b)
Inputs
b: Boolean
default is true
Description
Text
@TO scoreEquations@ requires a matrix or a list of sample data as part of the default input.
Setting @TO [scoreEquations,SampleData]@ to false allows the user to enter a sample
covariance matrix instead of sample data. It must be a symmetric matrix.
Example
G = mixedGraph(digraph {{1,2},{1,3},{2,3},{3,4}},bigraph {{3,4}});
R=gaussianRing(G);
U = matrix{{6, 10, 1/3, 1}, {3/5, 3, 1/2, 1}, {4/5, 3/2, 9/8, 3/10}, {10/7, 2/3,1, 8/3}}
J=scoreEquations(R,U,SampleData=>true)
V=sampleCovarianceMatrix(U)
I=scoreEquations(R,V,SampleData=>false)
SeeAlso
scoreEquations
///
doc ///
Key
[solverMLE, SampleData]
Headline
input sample covariance matrix instead of sample data
Usage
solverMLE(G,U,SampleData=>b)
Inputs
b: Boolean
default is true
Description
Text
@TO solverMLE@ requires a matrix or a list of sample data as part of the default input.
Setting @TO [solverMLE,SampleData]@ to false allows the user to enter a sample
covariance matrix as input. It must be a symmetric matrix.
Example
G=graph{{1,2},{2,3},{3,4},{1,4}}
U=random(ZZ^4,ZZ^4)
solverMLE(G,U,SampleData=>true)
V=sampleCovarianceMatrix(U)
solverMLE(G,V,SampleData=>false)
SeeAlso
scoreEquations
solverMLE
///
doc ///
Key
ConcentrationMatrix
Headline
optional input to output MLE for concentration matrix instead of MLE for covariance matrix
SeeAlso
solverMLE
///
doc ///
Key
[solverMLE, ConcentrationMatrix]
Headline
output MLE for concentration matrix instead of MLE for covariance matrix
Usage
solverMLE(G,U,ConcentrationMatrix=>b)
Inputs
b: Boolean
false by default
Description
Text
By default, @TO solverMLE@ outputs the MLE for the covariance matrix. By providing true as the value for the option
@TO [solverMLE, ConcentrationMatrix]@, @TO solverMLE@ provides the MLE for
the concentration matrix.
Note that both the maximum value attained in the log-likelihood function and
the ML-degree remain the same.
Example
G= mixedGraph(graph{{a,b},{b,c}},digraph {{a,d},{c,e},{f,g}},bigraph {{d,e}})
solverMLE (G, random(QQ^7,QQ^7))
solverMLE (G, random(QQ^7,QQ^7), ConcentrationMatrix=>true)
SeeAlso
solverMLE
///
doc ///
Key
checkPD
(checkPD,List)
(checkPD,Matrix)
Headline
returns positive definite matrices from a list of symmetric matrices
Usage
checkPD(L)
Inputs
L: List
of symmetric matrices, or a single symmetric @TO Matrix@
Outputs
: List
of positive definite matrices
Description
Text
This function takes a list of symmetric matrices (or a single symmetric matrix) and returns the sublist of its positive definite matrices.
If there are no positive definite matrices in the list, it returns an empty list.
Note that the function does not check whether the matrices in the original list are symmetric.
If a matrix contains an imaginary part below the tolerance level, then only
the real part is reported in the output. (See @TO [checkPD, ZeroTolerance]@)
Example
L={matrix{{1,0},{0,1}},matrix{{-2,0},{0,1}},matrix{{sqrt(-1),0},{0,sqrt (-1)}}}
checkPD(L)
///
doc ///
Key
checkPSD
(checkPSD,List)
(checkPSD,Matrix)
Headline
returns positive semidefinite matrices from a list of symmetric matrices
Usage
checkPSD(L)
Inputs
L: List
of symmetric matrices, or a single symmetric @TO Matrix@
Outputs
: List
of positive semidefinite matrices
Description
Text
This function takes a list of symmetric matrices (or a single symmetric matrix) and returns the sublist of its
positive semidefinite matrices.
Note that the function does not check whether the matrices in the original list are symmetric.
If there are no positive semidefinite matrices in the list, it returns an empty list.
Example
L={matrix{{1,0},{0,1}},matrix{{-2,0},{0,1}},matrix{{sqrt(-1),0},{0,sqrt (-1)}},matrix{{0,0},{0,0}}}
checkPSD(L)
///
doc ///
Key
ZeroTolerance
Headline
optional input to set the largest absolute value that should be treated as zero
SeeAlso
checkPD
checkPSD
solverMLE
///
doc ///
Key
[solverMLE, ZeroTolerance]
Headline
optional input to set the largest absolute value that should be treated as zero
Usage
solverMLE(G,U,ZeroTolerance=>n)
Inputs
n: RR
default is 1e-10
Description
Text
After computing the variety of the zero-dimensional ideal of the score equations,
{\tt solverMLE} needs to determine which points lie in the PD cone. A matrix is
assumed to be positive definite if for all eigenvalues e:
- @TO realPart@ e > ZeroTolerance
- @TO abs @ @TO imaginaryPart@ e <= ZeroTolerance
If an MLE matrix contains an imaginary part below the tolerance level, then only
the real part is reported in the output. (See @TO [checkPD, ZeroTolerance]@)
SeeAlso
checkPD
///
doc ///
Key
[checkPD, ZeroTolerance]
Headline
optional input to set the largest absolute value that should be treated as zero
Usage
checkPD(L,ZeroTolerance=>n)
Inputs
n: RR
default is 1e-10
Description
Text
A matrix is assumed to be positive definite if for all eigenvalues e:
- @TO realPart@ e > ZeroTolerance
- @TO abs @ @TO imaginaryPart@ e <= ZeroTolerance
If a matrix contains an imaginary part below the tolerance level, then only
the real part is reported in the output.
Example
L={matrix{{10^(-9)+10^(-10)*sqrt(-1),0},{0,10^(-9)+10^(-10)*sqrt (-1)}},
matrix{{10^(-10)+10^(-10)*sqrt(-1),0},{0,10^(-10)+10^(-10)*sqrt (-1)}},
matrix{{1+10^(-10)*sqrt(-1),0},{0,1+10^(-10)*sqrt (-1)}},
matrix{{1-10^(-9)*sqrt(-1),0},{0,1+10^(-9)*sqrt (-1)}}
}
checkPD L
SeeAlso
[checkPSD, ZeroTolerance]
solverMLE
///
doc ///
Key
[checkPSD, ZeroTolerance]
Headline
optional input to set the largest absolute value that should be treated as zero
Usage
checkPD(L,ZeroTolerance=>n)
Inputs
n: RR
default is 1e-10
Description
Text
A matrix is assumed to be positive semidefinite if for all eigenvalues e:
- @TO realPart@ e >= -ZeroTolerance
- @TO abs @ @TO imaginaryPart@ e <= ZeroTolerance
If a matrix contains an imaginary part below the tolerance level, then only
the real part is reported in the output.
Example
L={matrix{{10^(-9)+10^(-10)*sqrt(-1),0},{0,10^(-9)+10^(-10)*sqrt (-1)}},
matrix{{10^(-10)+10^(-10)*sqrt(-1),0},{0,10^(-10)+10^(-10)*sqrt (-1)}},
matrix{{1+10^(-10)*sqrt(-1),0},{0,1+10^(-10)*sqrt (-1)}},
matrix{{1-10^(-9)*sqrt(-1),0},{0,1+10^(-9)*sqrt (-1)}}
}
checkPD L
SeeAlso
[checkPD, ZeroTolerance]
///
doc ///
Key
MLdegree
(MLdegree,Ring)
Headline
ML-degree of a graphical model
Usage
MLdegree(R)
Inputs
R: Ring
defined as a @TO gaussianRing@ of @TO Graph@, or @TO Digraph@, or @TO Bigraph@, or @TO MixedGraph@
Outputs
: ZZ
the ML-degree of the model
Description
Text
This function computes the ML-degree of a graphical model. It takes as input
a @TO gaussianRing@ of a @TO Graph@, or a @TO Digraph@, or a @TO Bigraph@, or a @TO MixedGraph@.
It computes the degree of the score equation ideal given by @TO scoreEquations@
with a random sample data matrix.
We compute the ML-degree of the 4-cycle:
Example
G=graph{{1,2},{2,3},{3,4},{4,1}}
MLdegree(gaussianRing G)
///
doc ///
Key
solverMLE
(solverMLE, Ring, List)
(solverMLE, Ring, Matrix)
(solverMLE, List, Ring)
(solverMLE, Matrix, Ring)
(solverMLE,MixedGraph,List)
(solverMLE, MixedGraph, Matrix)
(solverMLE, Graph, List)
(solverMLE, Digraph, List)
(solverMLE, Bigraph, List)
(solverMLE, Graph, Digraph,List)
(solverMLE, Digraph, Graph,List)
(solverMLE, Digraph, Bigraph, List)
(solverMLE, Bigraph, Digraph, List)
(solverMLE, Graph, Bigraph, List)
(solverMLE, Bigraph, Graph, List)
(solverMLE, Graph, Digraph, Bigraph, List)
(solverMLE, Digraph, Bigraph, Graph, List)
(solverMLE, Bigraph, Graph, Digraph, List)
(solverMLE, Graph, Bigraph, Digraph, List)
(solverMLE, Bigraph, Digraph, Graph, List)
(solverMLE, Digraph, Graph, Bigraph, List)
(solverMLE, List, MixedGraph)
(solverMLE, List, Graph)
(solverMLE, List, Digraph)
(solverMLE, List, Bigraph)
(solverMLE, List, Graph, Digraph)
(solverMLE, List, Digraph,Graph)
(solverMLE, List, Digraph,Bigraph)
(solverMLE, List, Bigraph,Digraph)
(solverMLE, List, Graph, Bigraph)
(solverMLE, List, Bigraph, Graph)
(solverMLE, List, Graph, Digraph, Bigraph)
(solverMLE, List, Digraph, Bigraph, Graph)
(solverMLE, List, Bigraph, Graph, Digraph)
(solverMLE, List, Graph, Bigraph, Digraph)
(solverMLE, List, Bigraph, Digraph, Graph)
(solverMLE, List, Digraph, Graph, Bigraph)
(solverMLE, Graph, Matrix)
(solverMLE, Digraph, Matrix)
(solverMLE, Bigraph, Matrix)
(solverMLE, Graph, Digraph,Matrix)
(solverMLE, Digraph, Graph,Matrix)
(solverMLE, Digraph, Bigraph, Matrix)
(solverMLE, Bigraph, Digraph, Matrix)
(solverMLE, Graph, Bigraph, Matrix)
(solverMLE, Bigraph, Graph, Matrix)
(solverMLE, Graph, Digraph, Bigraph, Matrix)
(solverMLE, Digraph, Bigraph, Graph, Matrix)
(solverMLE, Bigraph, Graph, Digraph, Matrix)
(solverMLE, Graph, Bigraph, Digraph, Matrix)
(solverMLE, Bigraph, Digraph, Graph, Matrix)
(solverMLE, Digraph, Graph, Bigraph, Matrix)
(solverMLE, Matrix, MixedGraph)
(solverMLE, Matrix, Graph)
(solverMLE, Matrix, Digraph)
(solverMLE, Matrix, Bigraph)
(solverMLE, Matrix, Graph, Digraph)
(solverMLE, Matrix, Digraph,Graph)
(solverMLE, Matrix, Digraph,Bigraph)
(solverMLE, Matrix, Bigraph,Digraph)
(solverMLE, Matrix, Graph, Bigraph)
(solverMLE, Matrix, Bigraph, Graph)
(solverMLE, Matrix, Graph, Digraph, Bigraph)
(solverMLE, Matrix, Digraph, Bigraph, Graph)
(solverMLE, Matrix, Bigraph, Graph, Digraph)
(solverMLE, Matrix, Graph, Bigraph, Digraph)
(solverMLE, Matrix, Bigraph, Digraph, Graph)
(solverMLE, Matrix, Digraph, Graph, Bigraph)
Headline
Maximum likelihood estimate of a loopless mixed graph
Usage
solverMLE(G,U)
Inputs
G:Graph
or @ofClass Digraph@, or @ofClass Bigraph@, or @ofClass MixedGraph@
U:Matrix
or @ofClass List@ of sample data.
Alternatively, the sample covariance matrix can be given as input
by setting @TO SampleData@ to false
Outputs
: Sequence
of length 3, whose first element is the maximum value attained in the log-likelihood function (of type @TO RR@),
its second element is the MLE (or MLEs) of the covariance matrix (of types @TO Matrix@ or @TO List@),
and its third element is the ML-degree of the model (of type @TO ZZ@).
By providing true as the value for the option @TO ConcentrationMatrix@, the MLE for the concentration matrix can be given as output.
Description
Text
This function takes as input a @TO2{Graph,"graph"}@, or a @TO2{Digraph,"digraph"}@, or a @TO2{Bigraph,"bigraph"}@ or a @TO2{MixedGraph,"mixed graph"}@ and a list or matrix that encodes, by default, the sample data.
It computes the critical points of the score equations and
selects the maximum value achieved among those that lie in the cone of positive-definite matrices.
The default output is the maximum value in the log-likelihood function, maximum likelihood estimators (MLE) for the covariance matrix
and the ML-degree of the model.
MLE for the concentration matrix can be obtained by setting the optional input @TO ConcentrationMatrix@ to false.
The same optional inputs as in @TO scoreEquations@ can be used, plus extra optional inputs related to
the numerical solver (EigenSolver by default, NAG4M2 alternatively) and its functionalities.
Below we reproduce Example 2.1.13 for the 4-cycle in the book: Mathias Drton, Bernd Sturmfels and Seth Sullivant,
{\em Lectures on Algebraic Statistics}, Oberwolfach Seminars, Vol 40, Birkhauser, Basel, 2009.
Example
G=graph{{1,2},{2,3},{3,4},{1,4}};
U =matrix{{1,2,1,-1},{2,1,3,0},{-1, 0, 1, 1},{-5, 3, 4, -6}};
solverMLE(G,U)
Text
The data sample can also be given as a list:
Example
G=graph{{1,2},{2,3},{3,4},{1,4}};
U = {{1,2,1,-1},{2,1,3,0},{-1, 0, 1, 1},{-5, 3, 4, -6}};
solverMLE(G,U)
Text
In the following example we compute the MLE for the covariance matrix of
the graphical model associated to the graph $1\rightarrow 2,1\rightarrow 3,2\rightarrow 3,3\rightarrow 4,3<-> 4$
In this case we give as input the sample covariance matrix:
Example
G = mixedGraph(digraph {{1,3},{2,4}},bigraph {{3,4}});
S = matrix {{7/20, 13/50, -3/50, -19/100}, {13/50, 73/100, -7/100, -9/100},{-3/50, -7/100, 2/5, 3/50}, {-19/100, -9/100, 3/50, 59/100}};
solverMLE(G,S,SampleData=>false)
Text
Next we provide the MLE for the concentration matrix of the graphical model
associated to the graph $1\rightarrow 3,2\rightarrow 4,3<->4,1 - 2$.
Again the sample covariance matrix is given as input.
Example
G = mixedGraph(digraph {{1,3},{2,4}},bigraph {{3,4}},graph {{1,2}});
S = matrix {{7/20, 13/50, -3/50, -19/100}, {13/50, 73/100, -7/100, -9/100},{-3/50, -7/100, 2/5, 3/50}, {-19/100, -9/100, 3/50, 59/100}};
solverMLE(G,S,SampleData=>false,ConcentrationMatrix=>true)
Text
{\bf Application to positive definite matrix completion problems}
Text
Consider the following symmetric matrix with some unknown entries:
Example
R=QQ[x,y];
M=matrix{{115,-13,x,47},{-13,5,7,y},{x,7,27,-21},{47,y,-21,29}}
Text
Unknown entries correspond to non-edges of the 4-cycle. A positive definite completion of this matrix
is obtained by giving values to x and y and computing the MLE for the covariance matrix in the Gaussian graphical model
given by the 4-cycle. To understand which values of x and y will result in a maximum likelihood estimate,
see Example 12.16 in the book: Mateusz Michalek and Bernd Sturmfels,
{\em Invitation to Nonlinear Algebra}, Graduate Studies in Mathematics, Vol ???, American Mathematical Society, 2021.
Example
G=graph{{1,2},{2,3},{3,4},{1,4}};
V=matrix{{115,-13,-29,47},{-13,5,7,-11},{-29,7,27,-21},{47,-11,-21,29}}
(mx,MLE,ML)=solverMLE(G,V,SampleData=>false)
Text
The MLE of the covariance matrix is the unique positive definite completion of the matrix M such that its inverse, namely the concentration matrix,
has zero's in the entries corresponding to non-edges of the graph.
Observe that all entries of V remain the same in the MLE except for those that correspond to non-edges of the graph.
SeeAlso
checkPD
checkPSD
scoreEquations
jacobianMatrixOfRationalFunction
sampleCovarianceMatrix
///
--******************************************--
-- TESTS --
--******************************************--
TEST /// --test jacobianMatrixOfRationalFunction
R=QQ[x,y];
FR=frac R;
F=1/(x^2+y^2);
M=entries jacobianMatrixOfRationalFunction(F);
N=transpose {{-2*x/(x^2 + y^2)^2,-2*y/(x^2 + y^2)^2 }};
assert(M === N)
///
TEST /// --test jacobianMatrixOfRationalFunction
R=QQ[x_1,x_2,x_3];
FR=frac R;
M=entries jacobianMatrixOfRationalFunction( (x_1^2*x_2)/(x_1+x_2^2+x_3^3) );
N=transpose {{2*x_1*x_2/(x_2^2 + x_3^3 + x_1) - x_1^2*x_2/(x_2^2 + x_3^3 + x_1)^2, -2*x_1^2*x_2^2/(x_2^2 + x_3^3 + x_1)^2 + x_1^2/(x_2^2 + x_3^3 + x_1) , -3*x_1^2*x_2*x_3^2/(x_2^2 + x_3^3 + x_1)^2 }};
assert(M === N)
///
TEST /// --test sampleCovarianceMatrix
M = matrix{{1, 2, 0},{-1, 0, 5/1},{3, 5, 2/1},{-1, -4, 1/1}};
N = sampleCovarianceMatrix(M);
A = matrix {{11/4, 39/8, -1}, {39/8, 171/16, 0}, {-1, 0, 7/2}};
assert(N===A)
///
TEST /// --test sampleCovarianceMatrix with sample of bigger size than the covariance matrix
X = matrix{{36, -3, -25, -36},{-10, 11, -29, -20},{-18, 33, -15, -11},{-42, 0, 20, 43}, {-30, -26, 32, 2},{2, -38, -24, -43}};
Y = sampleCovarianceMatrix(X);
B = matrix {{5621/9, -1037/18, -7835/18, -10565/18}, {-1037/18, 19505/36, -4897/36, 5147/36}, {-7835/18, -4897/36, 20465/36, 18941/36}, {-10565/18, 5147/36, 18941/36, 28889/36}};
assert(Y===B)
///
TEST /// --test sampleCovarianceMatrix with list input
X = {{48,89,27,28},{23,19,29,94},{135,23,44,71},{91,75,24,98}};
Y = sampleCovarianceMatrix(X);
B = matrix {{29147/16, -1313/8, 220, 1609/16}, {-1313/8, 3827/4, -155, -3451/8}, {220, -155, 119/2, -63/4}, {1609/16, -3451/8, -63/4, 12379/16}};
assert(Y===B)
///
TEST /// --test scoreEquations for a mixedGraph with directed and bidirected edges
G = mixedGraph(digraph {{1,2},{1,3},{2,3},{3,4}},bigraph {{3,4}});
R=gaussianRing(G);
U = matrix{{1,2,1,-1},{2,1,3,0},{-1, 0, 1, 1},{-5, 3, 4, -6}};
J=scoreEquations(R,U);
I=ideal(20*p_(3,4)+39,50*p_(4,4)-271,440104*p_(3,3)-742363,230*p_(2,2)-203,16*p_(1,1)-115,5*l_(3,4)+2,110026*l_(2,3)-2575,55013*l_(1,3)-600,115*l_(1,2)+26);
assert(J===I)
///
TEST /// --test scoreEquations for a graph (and random input data)
G=graph{{1,2},{2,3},{3,4},{1,4}};
R=gaussianRing(G);
U=random(ZZ^4,ZZ^4);
J=scoreEquations(R,U);
assert(dim J===0)
assert(degree J===5)
///
TEST /// --score equations of sample data equals score equations of its sample covariance data with SampleData=>false
G = mixedGraph(digraph {{1,2},{1,3},{2,3},{3,4}},bigraph{{3,4}})
R = gaussianRing(G)
U = matrix{{6, 10, 1/3, 1}, {3/5, 3, 1/2, 1}, {4/5, 3/2, 9/8, 3/10}, {10/7, 2/3,1, 8/3}}
JU=scoreEquations(R,U)
RU=ring(JU)
V = sampleCovarianceMatrix U
JV=scoreEquations(R,V,SampleData=>false)
JV=sub(JV,RU)
assert(JU==JV)
///
TEST /// --score equations with elimination strategy equals default saturation strategy
G = mixedGraph(digraph {{1,2},{1,3},{2,3},{3,4}},bigraph{{3,4}})
R = gaussianRing(G)
U = matrix{{6, 10, 1/3, 1}, {3/5, 3, 1/2, 1}, {4/5, 3/2, 9/8, 3/10}, {10/7, 2/3,1, 8/3}}
JU=scoreEquations(R,U)
RU=ring(JU)
J=scoreEquations(R,U,SaturateOptions => {Strategy => Eliminate})
J=sub(J,RU)
assert(J==JU)
///
TEST /// --test checkPD
L={matrix{{1,0},{0,1}},matrix{{-2,0},{0,1}},matrix{{sqrt(-1),0},{0,sqrt (-1)}},matrix{{0.0001*sqrt(-1),0},{0,0.0000001*sqrt (-1)}}};
Y = checkPD(L);
B = {matrix{{1, 0}, {0, 1}}};
assert(Y===B)
///
TEST /// --test ZeroTolerance checkPD
L={matrix{{10^(-9)+10^(-10)*sqrt(-1),0},{0,10^(-9)+10^(-10)*sqrt (-1)}}, matrix{{10^(-10)+10^(-10)*sqrt(-1),0},{0,10^(-10)+10^(-10)*sqrt (-1)}},matrix{{1+10^(-10)*sqrt(-1),0},{0,1+10^(-10)*sqrt (-1)}},matrix{{1-10^(-9)*sqrt(-1),0},{0,1+10^(-9)*sqrt (-1)}}}
assert(checkPD L ==={matrix {{1e-9, 0}, {0, 1e-9}}, sub(matrix {{1, 0}, {0, 1}},RR)})
///
TEST /// --test ZeroTolerance checkPSD
L={matrix{{10^(-9)+10^(-10)*sqrt(-1),0},{0,10^(-9)+10^(-10)*sqrt (-1)}}, matrix{{-10^(-10)+10^(-10)*sqrt(-1),0},{0,-10^(-10)+10^(-10)*sqrt (-1)}},matrix{{1+10^(-10)*sqrt(-1),0},{0,1+10^(-10)*sqrt (-1)}},matrix{{1-10^(-9)*sqrt(-1),0},{0,1+10^(-9)*sqrt (-1)}}}
assert(checkPSD L ==={matrix {{1e-9, 0}, {0, 1e-9}},matrix {{-1e-10, 0}, {0, -1e-10}}, sub(matrix {{1, 0}, {0, 1}},RR)})
///
TEST /// --test checkPSD
L={matrix{{1,0},{0,1}},matrix{{-2,0},{0,1}},matrix{{sqrt(-1),0},{0,sqrt (-1)}},matrix{{0.0001*sqrt(-1),0},{0,0.0000001*sqrt (-1)}},matrix{{0,0},{0,0}}};
Y = checkPSD(L);
B = {matrix{{1, 0}, {0, 1}},matrix{{0,0},{0,0}}};
assert(Y===B)
///
TEST /// --test MLdegree
G=graph{{1,2},{2,3},{3,4},{4,1}}
assert(MLdegree(gaussianRing G)==5)
///
TEST /// --test solverMLE graph
G=graph{{1,2},{2,3},{3,4},{1,4}}
U =matrix{{1,2,1,-1},{2,1,3,0},{-1, 0, 1, 1},{-5, 3, 4, -6}}
(mx,MLE,ML)=solverMLE(G,U)
assert(round(4,mx)==-6.2615)
assert(ML==5)
///
TEST /// --test solverMLE for mixedGraph with directed and bidirected edges
G = mixedGraph(digraph {{1,3},{2,4}},bigraph {{3,4}})
S = matrix {{7/20, 13/50, -3/50, -19/100}, {13/50, 73/100, -7/100, -9/100},{-3/50, -7/100, 2/5, 3/50}, {-19/100, -9/100, 3/50, 59/100}}
(mx,MLE,ML)=solverMLE(G,S,SampleData=>false)
assert(ML==5)
assert(round(5, mx)==-1.14351)
///
TEST /// --test solverMLE for mixedGraph with all kind of edges and concentration matrix
G = mixedGraph(digraph {{1,3},{2,4}},bigraph {{3,4}},graph {{1,2}})
S = matrix {{7/20, 13/50, -3/50, -19/100}, {13/50, 73/100, -7/100, -9/100},{-3/50, -7/100, 2/5, 3/50}, {-19/100, -9/100, 3/50, 59/100}}
(mx,MLE,ML)=solverMLE(G,S,SampleData=>false,ConcentrationMatrix=>true)
assert(ML==5)
assert(round(4,mx)==-.8362)
///
TEST /// --test solverMLE graph with complete test
G=graph{{1,2},{2,3},{3,4},{1,4}}
V =matrix{{5,1,3,2},{1,5,1,6},{3,1,5,1},{2,6,1,5}}
(mx,MLE,ML)=solverMLE(G,V,SampleData=>false,ConcentrationMatrix=>true)
assert(round(4,mx)==-10.1467)
assert(ML==5)
assert(round(6,MLE_(0,1))== -.038900)
assert(round(6,MLE_(3,1))== 0)
///
TEST /// -- test solverMLE with NAG4M2
G=mixedGraph(graph{{a,b}},digraph{{a,d}},bigraph{{c,d}})
U=matrix{{1, 2, 5, 1}, {5, 3, 2, 1}, {4, 3, 5, 10}, {2, 5,1, 3}}
(mx,MLE,ML)= solverMLE (G,U,Solver=>"NAG4M2")
assert(round(5,mx)==-8.4691)
assert(ML==1)
assert(round(6,MLE_(2,0))==0)
assert(round(6,MLE_(1,1))== 1.1875)
assert(round(6,MLE_(3,2))== 3.264929)
///
--------------------------------------
--------------------------------------
end--
--------------------------------------
--------------------------------------
|