1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221
|
-- -*- coding: utf-8 -*-
newPackage(
"GroebnerStrata",
Version => "0.9",
Date => "11 Nov 2021",
Authors => {
{Name => "Mike Stillman", Email => "mike@math.cornell.edu", HomePage => "http://www.math.cornell.edu/~mike/"},
{Name => " Kristine Jones", Email => "kejones84@gmail.com"}},
Headline => "a Macaulay2 package for computing Groebner loci in Hilbert schemes",
PackageImports => {"Elimination"},
DebuggingMode => false
)
export {
"randomPointOnRationalVariety",
"randomPointsOnRationalVariety",
"standardMonomials",
"smallerMonomials",
"tailMonomials",
"findWeightConstraints",
"findWeightVector",
"groebnerFamily",
"groebnerStratum",
"nonminimalMaps",
"Minimalize", -- needed? currently not active, todo: make it active
"linearPart", -- needed?
"AllStandard"
}
----------------------------------------------------------------------------
-- Functions useful when dealing with the components of Groebner strata ----
----------------------------------------------------------------------------
findVariableOccuringToDegreeOne = (J) -> (
-- J is an ideal
-- returns: a variable that occurs to degree one in some J_i, null if none can be found
for x in gens ring J do
for f in J_* do
if degree_x f === 1 then return x;
null
)
randomPointsOnRationalVariety = method()
randomPointsOnRationalVariety(Ideal, ZZ) := List => (I, npts) -> (
-- return a list of npts one row matrices
-- assuming that the variety is rational, and we can detect this.
A := ring I;
kk := coefficientRing A;
H := partition(f -> index leadMonomial f === null, (trim I)_*);
I1 := if H#?true then ideal H#true else trim ideal(0_A); -- ones that do not have linear lead term.
I2 := if H#?false then ideal H#false else trim ideal(0_A) ; -- ones that do.
c := codim I1; -- this is how many non-free variables we will need to add in.
J := trim I1;
L := {};
for i from 1 to c do (
x1 := findVariableOccuringToDegreeOne J;
if x1 === null then error "cannot determine whether the ideal is rational";
-- x1 := select(gens A, x -> degree_x J_0 === 1); -- todo: check the others too, if needed.
-- if #x1 == 0 then error "cannot determine whether the ideal is rational"; -- perhaps: return (I2, I1, J, L);
-- x1 = first x1
J = trim eliminate(J, x1);
L = append(L, x1);
);
if J != 0 then error "internal error: logic is wrong in randomPointsOnRationalVariety";
NONFREE := set L + set flatten entries leadTerm gens I2;
FREE := toList(set gens A - NONFREE);
pts := for i from 0 to npts-1 list (
subs := for x in FREE list x => random kk;
pt := sub(vars A, subs) % trim sub(I, subs);
try lift(pt, kk) else continue
--if liftable(pt, kk) then lift(pt, kk) else continue
);
if #pts == 0 then error "cannot determine whether the ideal is rational";
pts
)
randomPointOnRationalVariety = method()
randomPointOnRationalVariety Ideal := Matrix => I -> first randomPointsOnRationalVariety(I, 1)
-----------------------------------------------
-- Choice of tails on the monomials -----------
-- The choice is usually: the standard monomials smaller than the lead monomial.
-- But, this can be changed to include all standard monomials of the same degree.
-- Typically, this will cause the ring of coefficients to not be graded though.
-----------------------------------------------
smallerMonomials = method()
smallerMonomials(Ideal,RingElement) := List => (M,f) -> (
-- TODO: make sure f is a monomial
-- input: a polynomial in a poly ring R
-- output: an ordered list of standard monomials of R less than f, but of the same
-- degree as (the leadterm of) f.
R := ring M;
d := degree f;
m := flatten entries basis(d,coker gens M);
m = f + sum m;
b := apply(listForm m, t -> R_(first t));
x := position(b, g -> g == f);
drop(b,x+1))
smallerMonomials Ideal := List => M ->
for m in M_* list smallerMonomials(M, m)
standardMonomials = method()
standardMonomials(ZZ,Ideal) :=
standardMonomials(List,Ideal) := (deg,M) -> (
f := sum flatten entries basis(deg, comodule M);
if f == 0 then {}
else (terms f)/leadMonomial
)
standardMonomials Ideal := List => (M) -> (
apply(M_*, f -> standardMonomials(degree f, M))
)
tailMonomials = method(Options => {AllStandard => false})
tailMonomials(Ideal, RingElement) := List => opts -> (M, leadterm) -> (
if opts.AllStandard then standardMonomials(degree leadterm, M) else smallerMonomials(M, leadterm)
)
tailMonomials Ideal := List => opts -> M -> (
if opts.AllStandard then standardMonomials M else smallerMonomials M
)
------------------------------------------------
-- Weight vector constraints -------------------
------------------------------------------------
findHeft1 = (A) -> (
-- A is a matrix such that the weight vector times each column must be positive.
-- result: (List, List): (wtvector, wtvalues).
--A := transpose matrix degs;
degs := entries transpose A;
needsPackage "FourierMotzkin";
B := ((value getGlobalSymbol "fourierMotzkin") A)#0;
r := rank source B;
f := (matrix{toList(r:-1)} * transpose B);
if f == 0 then return;
heft := first entries f;
g := gcd heft;
if g > 1 then heft = apply(heft, h -> h // g);
minheft := min heft;
if minheft <= 0 then heft = apply(heft, a -> a - minheft + 1);
heftvals := apply(degs, d -> sum apply(d, heft, times));
if not all(heftvals, d -> d > 0) then return null;
(heft, heftvals)
)
findWeightConstraints = method()
findWeightConstraints(Ideal, List) := Matrix => (M, L) -> (
--input: a monomial ideal M and a list of lists of standard monomials L
--output: a weight vector w (a list of integers of length the # of variables
-- of the ring of M)
--w places the listed generators of M greater than the corresponding standard monomials)
R := ring M;
kk := coefficientRing R;
nv := sum apply(L, s -> #s);
Mlist := M_*;
D := flatten apply(#Mlist, i -> (
m := Mlist_i;
apply(L#i, s -> (
first exponents m - first exponents s))));
transpose matrix D
)
findWeightVector = method ()
findWeightVector(Ideal, List) := (M, L) -> (
--input: a monomial ideal M and a list of lists of standard monomials L
--output: a weight vector w (a list of integers of length the # of variables
-- of the ring of M)
--w places the listed generators of M greater than the corresponding standard monomials)
A := findWeightConstraints(M, L);
findHeft1 A
)
----------------------------------
-- Is the following useful? Determine this and use it, or remove it!
-- both findEliminants, and the version of groebnerFamily that is commented out.
-- Perhaps this should be part of minimizeGroebnerStratum(F, J) -- given family, and ideal
----------------------------------
-*
findEliminants = method()
findEliminants(Ideal,Ideal) := (M,J) -> (
-- input: a monomial ideal M, and the parameter family J
-- output: an ordered pair of lists of indices; the first entry is the variables that
--will be eliminated, the second entry is the variables that will not be eliminated
S := ring J;
SP1 := (gens J) * sub(syz gens M, S);
SP2 := SP1 % sub(M,S);
L1 := trim ideal flatten last coefficients SP2;
L1 = sub(L1,coefficientRing S);
-- set1 will be the variables which are lead terms here:
set1 := sort ((flatten entries leadTerm L1)/index);
set2 := sort toList(set toList(0..numgens coefficientRing S - 1) - set set1);
(set1, set2)
)
groebnerFamily (Ideal, List) := opts -> (M, L) -> (
t := opts.Variable;
wts := findWeightVector(M,L);
if wts === null then error (
"could not find weight vector placing all standard monomials after ideal generators");
(w, wvals) := wts;
R := ring M;
kk := coefficientRing R;
nv := #wvals;
R1 := kk[t_1..t_nv, Degrees => wvals];
U := R1 (monoid[gens R, Join=>false, Degrees => w]);
phi := map(U,R1);
lastv := -1;
Mlist := M_*;
elems := apply(#Mlist, i -> (
m := Mlist_i;
substitute(m,U) + sum apply(L#i, p -> (
lastv = lastv + 1;
phi(R1_lastv) * substitute(p,U)))));
J := ideal elems;
--determining which parameters can be eliminated
(indices1, indices2) := findEliminants(M,J);
gens1 := apply(indices1, i -> (wvals#i, i));
indices1 = apply(rsort gens1, (h,i) -> i);
-- Now make the actual coeff ring:
R2 := kk[(gens R1)_indices1, (gens R1)_indices2,
Degrees => join(wvals_indices1,wvals_indices2),
MonomialOrder => {Lex => (#indices1), #indices2}];
U = R2 (monoid[gens R, Join=>false, Degrees => w]);
f1 := map(R2,R1);
f2 := map(U, ring J, vars U | f1.matrix);
J = f2 J;
J
)
*-
-----------------------------------------
-- Creation of the family itself --------
-- This also creates the ring of parameters,
-- and the ring of the family
-----------------------------------------
groebnerFamily = method (Options => {
AllStandard => false,
Variable => getSymbol "t",
Weights => null -- default: find one (calls findWeightVector)
}
)
groebnerFamily Ideal := opts -> M -> (
L := if opts.AllStandard then standardMonomials M else smallerMonomials M;
groebnerFamily(M, L, opts)
)
groebnerFamily (Ideal, List) := opts -> (M, L) -> (
if all(L, x -> #x == 0) then (
return M;
);
t := opts.Variable;
C := findWeightConstraints(M, L);
if opts.Weights === null then (
wts := findHeft1 C;
if wts === null then error "could not construct a weight vector";
wtvector := first wts;
)
else (
wtvector = opts.Weights;
);
wvals := flatten entries(matrix{wtvector} * C);
R := ring M;
kk := coefficientRing R;
R1 := kk (monoid[gens R,
Join=>false,
Degrees => wtvector,
SkewCommutative => (options R).SkewCommutative
]);
psi := map(R1, R, vars R1);
MU := psi M;
LU := for L1 in L list for m in L1 list psi m;
(MU, LU);
allvars := for i from 0 to numgens MU - 1 list (
lt := MU_i;
for m in LU#i list {degree lt - degree m, m}
);
varlist := flatten allvars;
A1 := kk[t_1..t_#varlist, Degrees => varlist/first];
A := kk[rsort gens A1, Degrees => (rsort gens A1)/degree/first]; -- MonomialOrder => Lex?
T := A (monoid R1);
f := map(T, R1, vars T);
idx := 0;
F := ideal for i from 0 to numgens MU - 1 list (
lt := f(MU_i);
lt + sum for m in LU#i list (idx = idx+1; sub(A1_(idx-1),A) * f(m))
);
F
)
--------------------------------------------
-- The ideal defining the Groebner stratum
-- given the Groebner family constructed via
-- `groebnerFamily`
--------------------------------------------
groebnerStratum = method(Options => {
Minimalize => false})
groebnerStratum Ideal := Ideal => opts -> (J) -> (
--input: the ideal of the family.
-- output: the ideal defining the parameter space.
if opts.Minimalize then << "warning: Minimalize=>true, which will likely be the default, is not yet implemented" << endl;
R := ring J;
G := forceGB gens J;
M := leadTerm gens J;
syzM := syz M;
eq := compress((gens J * syzM) % G);
(mons,eqns) := coefficients(eq);
H := ideal lift(eqns,coefficientRing R);
ideal compress generators H
)
linearPart = (f) -> sum select (terms f, t->(
sum first exponents t === 1))
-*
TODO: to be reinstated after M2 1.19
minimalizeFamily = method()
minimalizeFamily (Ideal, Ideal) := (J,H) -> (
R := ring H;
ringgens := flatten entries selectInSubring (1,vars ring H);
newR := (coefficientRing R)[ringgens, Degrees => ringgens/degree];
newringJ := newR( monoid[gens ring J, Join => false, Degrees => degrees(ring J)]);
L := matrix {apply (H_*, f->linearPart f)};
C := getChangeMatrix gb (L, ChangeMatrix => true);
time elimH := trim ideal ((gens H)*C);
D := ideal leadTerm ((gens H)*C);
assert( # unique D_* == numgens D);
newH := compress ((gens H)% elimH);
time newH = trim ideal substitute(newH, newR);
elimH' := promote (elimH, ring J);
newJ := ideal ((gens J) % elimH');
newJ = substitute(newJ, newringJ);
(newJ, newH)
)
*-
-- take an ideal in A[vars], homogeneous, and a ring S (in vars, but with different, often standard, grading)
-- return: free non-minimal resolution, as well as the degree zero maps in the resolution.
nonminimalMaps = method()
nonminimalMaps(Ideal) := Sequence => (F) -> (
T := ring F;
A := coefficientRing T;
T' := first flattenRing T;
F' := sub(F, T');
C := res(F', Strategy => 5); -- must be over a finite field.
-- now let's place this into a new ring, with degree 0 coefficients.
A'' := (coefficientRing A)[gens A, Degrees => {numgens A : 0}];
T'' := A'' [gens T, Join => false];
-- now we want to move C to this ring, to easily find degree 0 maps.
newMaps := new MutableList from toList (length C: null);
newMaps#0 = map(T''^1,, sub(C.dd_1, T''));
for i from 2 to length C do (
f := sub(C.dd_i, T'');
newMaps#(i-1) = map(source newMaps#(i-2),, f);
);
CF := chainComplex toList newMaps; -- this is one thing returned.
-- the other is a list of degree zero maps, indexed via: (homological degree, internal degree).
H := hashTable flatten for lev from 1 to length C list (
set1 := set (degrees CF_lev)/first;
set2 := set (degrees CF_(lev+1))/first;
degs := sort toList(set1 * set2);
for d in degs list (lev+1, d) => (
sub(submatrixByDegrees(CF.dd_(lev+1), d, d), A)
)
);
(CF, H)
)
---------------
--Documentation
----------------
beginDocumentation()
------------
--Front Page
-------------
doc///
Key
GroebnerStrata
Headline
a package for creating families of ideals with the same initial ideal
Description
Text
The {\em GroebnerStrata} package is designed to compute, given a
monomial ideal in a polynomial ring, (and a term order, coming
from the polynomial ring), a family of homogeneous ideals all
with the given monomial ideal as its lead term (initial) ideal.
The {\em GroebnerStrata} package is designed for computing homogeneous
strata and parameter families for monomial ideals in polynomial rings.
In certain instances homogeneous strata can be used to compute local
coordinates on Hilbert Schemes.
Text
Here is an example of the basic use of the package. We compute the Groebner family
of the ideal $(a^2, ab, b^2, ac)$. This is an ideal in a polynomial ring with variables the
same as $S$, and whose coefficient ring is a polynomial ring containing all of the
parameters. The @TO (groebnerStratum, Ideal)@ function returns the ideal in the parameters
of the locus of parameters, for which the given family is a Groebner basis.
Example
kk = ZZ/101;
S = kk[a..d];
M = ideal"a2,ab,b2,ac";
F = groebnerFamily M;
netList F_*
J = trim groebnerStratum F
Text
The ideal of the parameter space of all homogeneous ideals with this lead term ideal
is an ideal in 24 variables. Often, these parameter ideals are in too many variables
to easily analyze them. But in this case we can determine the irreducible components
of the ideal $J$. There are two components, of dimensions 8 and 11. Note that they
are both rational varieties.
Example
compsJ = decompose J;
compsJ = compsJ/trim;
compsJ/dim
netList compsJ_0_*
netList compsJ_1_*
Text
This tells us that there are 2 components (at least over the given field).
Their dimensions are 11, 8.
Text
We can find random points on each component, since these components are rational.
Example
pt1 = randomPointOnRationalVariety compsJ_0
pt2 = randomPointOnRationalVariety compsJ_1
F1 = sub(F, (vars S)|pt1)
F2 = sub(F, (vars S)|pt2)
decompose F1
decompose F2
Text
Note, the general element of one component is a plane conic union a point.
(The dimension of the locus of all such is: (choice of plane) + (choice of degree 2 in plane) + choice of point.
This is 3 + 5 + 3 = 11.
The other component consists of two skew lines. This has dimension (choice of line) + (choice of line).
This is 4 + 4 = 8. Also notice that the 2 skew lines do not have to be defined over the
base field, as in this case.
///
--------------
--Functions --
--------------
doc ///
Key
standardMonomials
(standardMonomials, Ideal)
(standardMonomials, List, Ideal)
(standardMonomials, ZZ, Ideal)
Headline
computes standard monomials
Usage
L = standardMonomials M
L = standardMonomials(d, M)
Inputs
M : Ideal
M should be a monomial ideal
d : List
a degree
Outputs
L : List
L is a list of lists of standard monomials for the ideal $M$,
one for each generator of $M$
Description
Text
A monomial $m$ is standard with respect to a monomial ideal $M$
and a generator $g$ of $M$ if $m$ is of the same degree as $g$
but is not an element of $M$.
Inputting an ideal $M$ returns the standard monomials of each of
the given generators of the ideal.
Example
R = ZZ/32003[a..d];
M = ideal (a^2, a*b, b^3, a*c);
L1 = standardMonomials M
standardMonomials({3}, M)
Text
Inputting an integer $d$ (or degree $d$) and an ideal gives the standard
monomials for the specified ideal in degree $d$.
Example
standardMonomials(2, M)
SeeAlso
tailMonomials
smallerMonomials
///
doc ///
Key
smallerMonomials
(smallerMonomials, Ideal)
(smallerMonomials, Ideal, RingElement)
Headline
returns the standard monomials smaller but of the same degree as given monomial(s)
Usage
L = smallerMonomials M
L = smallerMonomials(M, m)
Inputs
M:Ideal
$M$ should be a monomial ideal (an ideal generated by monomials)
m:RingElement
optional,
Outputs
L : List
a list of lists: for each generator $m$ of $M$, the list of all
monomials of the same degree as $m$, not in the monomial ideal
{\bf and} smaller than that generator in the term order of the
ambient ring. If instead $m$ is given, the list of the standard
monomials of the same degree, smaller than $m$, is returned.
Description
Text
Inputting an ideal $M$ returns the smaller monomials of each of
the given generators of the ideal.
Example
R = ZZ/32003[a..d];
M = ideal (a^2, b^2, a*b*c);
L1 = smallerMonomials M
smallerMonomials(M, b^2)
SeeAlso
tailMonomials
standardMonomials
///
doc ///
Key
tailMonomials
(tailMonomials, Ideal)
(tailMonomials, Ideal, RingElement)
[tailMonomials, AllStandard]
Headline
find tail monomials
Usage
L = tailMonomials M
L = tailMonomials(M, m)
Inputs
M:Ideal
$M$ should be a monomial ideal (an ideal generated by monomials)
m:RingElement
optional, only return a single list of the tail monomials for this monomial
AllStandard => Boolean
which monomials should be considered tail monomials of a monomial $m$:
either all standard monomials of a given degree, or all monomials smaller than
$m$ in the given term order (but still of the same degree)
Outputs
L : List
a list of lists: for each generator $m$ of $M$, the list of all tail monomials
If instead $m$ is given, the list of the tail
monomials of $m$ is returned
Description
Text
Inputting an ideal $M$ generated by monomials returns a list of lists
of tail monomials for each generator of $M$ (in the same order).
Example
R = ZZ/32003[a..d];
M = ideal (a^2, b^2, a*b*c);
tailMonomials M
tailMonomials(M, AllStandard => true)
tailMonomials(M, b^2)
tailMonomials(M, b^2, AllStandard=>true)
SeeAlso
standardMonomials
smallerMonomials
///
doc ///
Key
findWeightVector
(findWeightVector, Ideal, List)
Headline
returns a weight vector
Usage
(w, h) = findWeightVector (M, L)
Inputs
M : Ideal
M should be a monomial ideal
L : List
a list of lists of standard monomials
Outputs
w : List
w is a weight vector that places the specified generators of M greater than the corresponding
standard monomials, if possible. If not possible, null is returned instead of (w,h)
h : List
h is a list of values for w dotted with the difference of the exponent of
the each standard monomial for each generator and the corresponding
generator, in the order they are listed in L
Description
Text
In the first entry, this command returns a weight vector associated to a
monomial order that places the generators of a monomial ideal $M$ ahead
of standard monomials of the same degree. The second entry is a list of
values for the weight vector dotted with the difference of the exponent
of each standard monomial for each generator and the corresponding
generator.
Example
R = ZZ/32003[a,b,c, d];
M = ideal (a^2, a*b, b^2);
L = smallerMonomials M;
findWeightVector(M,L)
Text
Note that the first generator listed for $M$ is $a^2$, and the first
corresponding standard monomial is $a*c$. The difference of these two
monomials exponent vectors is $(1,0,-1,0)$. This vector dotted with the
weight vector $(2,2,1,1)$ gives the value $1$, which is the first value
in the second list.
Note that the desired term ordering, and hence weight vector, may not exist.
In this case, null is returned.
Example
M = ideal"ab"
L1 = standardMonomials M
findWeightVector(M,L1)
Text
This command is used in the @TO groebnerFamily@ routine.
SeeAlso
groebnerStratum
groebnerFamily
///
doc ///
Key
findWeightConstraints
(findWeightConstraints, Ideal, List)
Headline
returns a matrix of weight constraints
Usage
constraints = findWeightConstraints(M, L)
Inputs
M:Ideal
M should be a monomial ideal
L:List
a list of lists of tail monomials
Outputs
:Matrix
with the constraints on a weight vector for $M$ to be the lead monomial
considering the given tail monomials in $L$.
The number of rows of the matrix is the number of variables in the ring of $M$,
The number of columns is the total size of $L$
Description
Example
R = ZZ/32003[a,b,c, d];
M = ideal (a^2, a*b, b^2);
L = smallerMonomials M;
mat = findWeightConstraints(M,L)
needsPackage "Polyhedra"
dualCone posHull (-mat)
rays oo
posHull mat -- seems wrong?
coneFromHData transpose mat
rays mat
findWeightVector(M,L)
Text
TO BE FINISHED!!
Note that the first generator listed for $M$ is $a^2$, and the first
corresponding standard monomial is $a*c$. The difference of these two
monomials exponent vectors is $(1,0,-1,0)$. This vector dotted with the
weight vector $(2,2,1,1)$ gives the value $1$, which is the first value
in the second list.
Note that the desired term ordering, and hence weight vector, may not exist.
In this case, null is returned.
Example
M = ideal"ab"
L1 = standardMonomials M
findWeightVector(M,L1)
Text
This command is used in the @TO groebnerFamily@ routine.
SeeAlso
groebnerStratum
groebnerFamily
///
doc ///
Key
groebnerFamily
(groebnerFamily, Ideal)
(groebnerFamily, Ideal, List)
[groebnerFamily, AllStandard]
[groebnerFamily, Weights]
[groebnerFamily, Variable]
Headline
computes families of ideals with a specified initial ideal
Usage
J = groebnerFamily M
J = groebnerFamily(M, L)
Inputs
M : Ideal
which is generated by monomials
L : List
a list of lists of standard monomials or smaller standard monomials for
the generators of M
AllStandard => Boolean
Weights => List
Variable => Symbol
or @ofClass String@
Outputs
F : Ideal
the groebner family, an ideal in the polynomial ring over the original
variables and the parameters
Description
Text
Given a monomial ideal $M$ in a polynomial ring $R$, this computes the
parameter families of homogeneous ideals where $M$ could be their initial
ideal. These families are obtained from either the standard monomials to
the generators of $M$, or the standard monomials smaller than the
generators of $M$ but of the same degree as these generators. In the
former case we obtain a family of all ideals where $M$ could be their
initial ideal. In the latter case, we obtain such a family with respect
to a given term order.
Example
R = ZZ/32003[a,b,c,d];
M = ideal (a^2, a*b, b^2)
F = groebnerFamily M
netList F_*
U = ring F
T = coefficientRing U
gens T
gens U
Text
Here, $F$ is the family of homogeneous ideals having $M$ as their initial
ideal, under the term order of the ring of $M$.
The optional argument @TO AllStandard@ is boolean, taking the value
$true$ to compute the family of all homogeneous ideals with a given
initial ideal and the value $false$ to compute the family with respect to
a given order. The default value for this argument is false.
If $L$ is not given, then it is computed using @TO standardMonomials@ (if
AllStandard is true), or @TO smallerMonomials@ (if AllStandard is false).
Example
L = standardMonomials M
F2 = groebnerFamily (M, L)
Text
Note that $F$ and $F_2$ are the same family, in this case.
Text
This function also works if the ring of $M$ is a skew-commutative ring.
This function produces a family of ideals in the exterior algebra.
Similarly, @TO groebnerStratum@ allows one to find the ideal in the commuting coefficient
variables of the family of ideals having $M$ as lead monomial ideal.
Example
kk = ZZ/101
E = kk[a,b,c,d,e,SkewCommutative => true]
I = ideal(a*d,a*c,a*b,b*d*e,b*c*e,b*c*d)
F1 = groebnerFamily I
netList F1_*
F2 = groebnerFamily(I, AllStandard => true)
netList F2_*
J2 = trim groebnerStratum F2
C2 = decompose J2
netList C2_0_*
netList C2_1_*
SeeAlso
groebnerStratum
smallerMonomials
standardMonomials
///
doc ///
Key
groebnerStratum
(groebnerStratum, Ideal)
[groebnerStratum, Minimalize]
Headline
compute the ideal where a given is a Groebner basis
Usage
J = groebnerStratum F
Inputs
F:Ideal
An ideal constructed from @TO groebnerFamily@
Outputs
J : Ideal
the ideal of the Groebner stratum
Description
Text
Given a monomial ideal $M$, this command returns a family of ideals
having $M$ as an initial ideal, and conditions on the parameters so that
the family is flat. If the optional input @TO AllStandard@ is specified
as $true$, the family of all homogeneous ideals having $M$ as an initial
ideal is computed, and if it is specified as $false$ the family of all
homogeneous ideals having $M$ as an initial ideal with respect to the
given term order is computed.
Example
R = ZZ/32003[a,b,c]
M = ideal (a^2, a*b, b^2)
F = groebnerFamily M
J = trim groebnerStratum F
Text
In this example, F is the universal family, and L is the ideal giving the
conditions on the parameters. In general, several of the parameters are
unnecessary. Note that H is an ideal in a ring with far fewer parameters.
This is because a maximal set of eliminable parameters from the original
ideal of conditions on parameters have been eliminated. If the full
ideal in the polynomial ring over all the parameters is desired, set the
optional argument $Minimalize$ to false.
Example
J2 = trim groebnerStratum(F, Minimalize => false)
netList J_*
netList J2_*
Text
Notice that the parameters $t_3$, $t_6$, and $t_9$ are clearly eliminable.
SeeAlso
groebnerFamily
///
doc ///
Key
linearPart
Headline
returns linear part of a polynomial
Usage
l = linearPart(f)
Inputs
f : RingElement
f is a polynomial
Outputs
l : RingElement
l is the sum of the terms of f whose monomial is a variable
Description
Example
R = ZZ/32003[a,b,c];
f = a^2 + 3*b + 5*a*b*c + 2*a +b^2;
linearPart f
Text
If we have a polynomial ring over another polynomial ring, the command
only looks at the exponents on the new set of variables.
Example
S = ZZ/32003[a,b,c][x,y,z];
g = a*b*x + 3*y + a + b^2
linearPart g
Text
Note that in the previous example, {\tt linearPart g} does not include {\tt a} but does include {\tt a*b*x}
///
doc ///
Key
(randomPointsOnRationalVariety, Ideal, ZZ)
randomPointsOnRationalVariety
Headline
find random points on a variety that can be detected to be rational
Usage
randomPointsOnRationalVariety(I, n)
randomPointOnRationalVariety
Inputs
I:Ideal
An ideal in a polynomial ring $S$ over a field, which defines
a prime ideal
n:ZZ
The number of points to generate
Outputs
:List
A list of $n$ one row matrices over the base field of $S$, that are
randomly chosen points on $I$. null is returned in the case when
the routine cannot determine if the variety is rational and irreducible.
Description
Text
Example
kk = ZZ/101;
S = kk[a..f];
I = minors(2, genericSymmetricMatrix(S, 3))
pts = randomPointsOnRationalVariety(I, 4)
for p in pts list sub(I, p) == 0
Example
S = kk[a..d];
F = groebnerFamily ideal"a2,ab,ac,b2"
J = groebnerStratum F;
compsJ = decompose J;
compsJ = compsJ/trim;
#compsJ == 2
compsJ/dim
Text
There are 2 components. We attempt to find points on each of these two components.
We are successful. This indicates that the corresponding varieties are both rational.
Also, if we can find one point, we can find as many as we want.
Example
netList randomPointsOnRationalVariety(compsJ_0, 10)
netList randomPointsOnRationalVariety(compsJ_1, 10)
SeeAlso
(randomPointOnRationalVariety, Ideal)
Caveat
This routine expects the input to represent an irreducible variety
///
doc ///
Key
(randomPointOnRationalVariety, Ideal)
randomPointOnRationalVariety
Headline
find a random point on a variety that can be detected to be rational
Usage
randomPointOnRationalVariety I
randomPointOnRationalVariety
Inputs
I:Ideal
An ideal in a polynomial ring $S$ over a field, which defines
a prime ideal
Outputs
:Matrix
A one row matrix over the base field of $S$, representing a
randomly chosen point on the zero locus of $I$. null is returned in the case when
the routine cannot determine if the variety is rational and irreducible.
Description
Text
As a first example, we find a random point on the Veronese surface in $\PP^5$.
Example
kk = ZZ/101;
S = kk[a..f];
I = minors(2, genericSymmetricMatrix(S, 3))
pt = randomPointOnRationalVariety I
sub(I, pt) == 0
Example
S = kk[a..d];
F = groebnerFamily ideal"a2,ab,ac,b2"
J = groebnerStratum F
compsJ = decompose J;
compsJ = compsJ/trim;
#compsJ == 2
compsJ/dim
Text
There are 2 components. We attempt to find a point on the first component
Example
pt1 = randomPointOnRationalVariety compsJ_0
F1 = sub(F, (vars S)|pt1)
decompose F1
Text
We attempt to find a point on the second component in parameter space,
and its corresponding ideal.
Example
pt2 = randomPointOnRationalVariety compsJ_1
F2 = sub(F, (vars S)|pt2)
decompose F2
Text
It turns out that this is the ideal of 2 skew lines, just not defined over this field.
SeeAlso
randomPointsOnRationalVariety
Caveat
This routine expects the input to represent an irreducible variety
///
doc ///
Key
nonminimalMaps
(nonminimalMaps, Ideal)
Headline
find the degree zero maps in the Schreyer resolution of an ideal
Usage
(C, H) = nonminimalMaps I
Inputs
I:Ideal
in a polynomial ring $S$ over a base field or coefficient ring
$A$. The lead terms of the generators of $I$ should be the
initial ideal of $I$, and should be monic.
Outputs
C:ChainComplex
A complex over a polynomial ring where any parameters in the base ring are set to have degree 0,
and the variables of the ring of $I$ are set to have degree one.
H:HashTable
Whose keys describe which submatrix in the resolution this is, and whose values are those
submatrices (placed into the original coefficient ring $A$)
Description
Text
The Schreyer resolution of $I$ (which is generally non-minimal) is computed.
The nonminimal parts are the submatrices in this resolution which do not involve
the variables in $S$. They are elements in the base ring $A$. For instance,
{\tt H#(\ell, d)} is the submatrix of the matrix from $C_{\ell+1} \to C_{\ell}$
sending degree $d$ to degree $d$.
Text
The ranks of these matrices for a specific parameter value determine exactly the
minimal Betti table for the ideal $I$, evaluated at that parameter point.
Text
Now for our example.
Example
kk = ZZ/101;
S = kk[a..d];
F = groebnerFamily ideal"a2,ab,ac,b2,bc2,c3"
(C, H) = nonminimalMaps F;
betti(C, Weights => {1,1,1,1})
Text
We see that there are 4 maps that are nonminimal (of sizes $2
\times 4$, $5 \times 2$, $1 \times 3$, and $1 \times 1$).
Example
keys H
H#(2,3)
H#(3,4)
H#(3,5)
H#(4,6)
Text
Let's impose the condition that the map {\tt H#(2,3)} vanishes (so has rank 0).
The Betti diagram of such ideals is not the one for a set of 6 generic points in $\PP^3$.
Example
J = trim(minors(1, H#(2,3)) + groebnerStratum F);
compsJ = decompose J;
#compsJ
pt1 = randomPointOnRationalVariety compsJ_0
pt2 = randomPointOnRationalVariety compsJ_1
F1 = sub(F, (vars S)|pt1)
betti res F1
F2 = sub(F, (vars S)|pt2)
betti res F2
Text
What are the ideals F1 and F2?
Example
netList decompose F1
netList decompose F2
Text
We can determine what these represent. One should be a set of 6 points, where 5 lie
on a plane. The other should be 6 points with 3 points on one line, and the other 3 points
on a skew line.
SeeAlso
randomPointOnRationalVariety
///
///
Key
Headline
Usage
Inputs
Outputs
Description
Text
Example
SeeAlso
///
---------
--Symbols/optional arguments
-------------
doc ///
Key
AllStandard
Headline
boolean option for determining the use of all standard or smaller standard monomials
Description
Text
This is an optional input for the @TO groebnerStratum@ and @TO groebnerFamily@ functions. It takes values $true$ and $false$. When
assigned the value $true$, the functions are computed with respect to all standard monomials for the specified generators. When assigned the
value $false$, the functions are computed with respect to smaller monomials of the same degree as the specified generators but which do not lie in
the ideal.
SeeAlso
groebnerStratum
groebnerFamily
smallerMonomials
standardMonomials
///
doc ///
Key
Minimalize
Headline
boolean option for determining whether excess parameters will be eliminated
Description
Text
This an optional input for the @TO groebnerStratum@ function. It takes values $true$ and $false$. When assigned the value
$true$, eliminable parameters are eliminated to obtain the groebner basin / stratum in a smaller ring. When assigned the
value $false$, no parameters are eliminated, and the groebner basin / stratum is computed in a ring containing all the parameters.
SeeAlso
groebnerStratum
///
--------------------
--Tests
--------------------
TEST ///
-- basic test of the functionality of this package
--
-*
restart
needsPackage "GroebnerStrata"
*-
-- first take a look at generating tails.
kk = ZZ/101
S = kk[a..d]
I = ideal(a^2, a*b, b^2, a*c, c^3, b*c^2)
L = smallerMonomials I
L1 = standardMonomials I
assert(L == L1) -- in this case, standard and smaller are the same.
-- finding weight vector TODO: allow user to try one.
needsPackage "Polyhedra"
matrix{{5,4,3,1}} * rays posHull findWeightConstraints(I, L)
findWeightVector(I, L) -- generates one that is way too big...
matrix{{5,4,3,1}} * findWeightConstraints(I, L)
-- create the ring and family, but no ideal or simplification...
-- generate the family
F = groebnerFamily(I, L, Weights => {5,4,3,1})
F1 = groebnerFamily(I)
isHomogeneous F1
degrees ring F1
degrees ring F
use coefficientRing ring F
use ring F
F = sub(F, {t_14 => 0, t_19 => 0, t_20 => 0})
J = trim groebnerStratum F
///
--Test 0 standard monomials
TEST///
R = ZZ/32003[a..d]
M = ideal (a^2, a*b, b^3, a*c)
L = standardMonomials M
ans = {{b^2, b*c, c^2, a*d, b*d, c*d, d^2}, {b^2, b*c, c^2, a*d, b*d, c*d, d^2}, {b^2*c, b*c^2, c^3, b^2*d, b*c*d, c^2*d, a*d^2, b*d^2, c*d^2, d^3}, {b^2, b*c, c^2, a*d, b*d, c*d, d^2}}
assert (L == ans)
L1 = smallerMonomials M
L1 == L
///
TEST///
R = ZZ/32003[x,y]
M = ideal (x*y)
L = standardMonomials M
assert (L == {{x^2, y^2}})
L1 = smallerMonomials M
assert (L1 == {{y^2}})
///
TEST /// -- findWeightVector
R = ZZ/32003[a..d]
M = ideal (a^2, a*b, b^3, a*c)
L = standardMonomials M
(wt, wtvals) = findWeightVector(M,L)
ans = ({10, 5, 3, 1},
{10, 12, 14, 9, 14, 16, 18, 5, 7, 9,
4, 9, 11, 13, 2, 4, 6, 4, 6, 8, 3,
8, 10, 12, 3, 5, 7, 2, 7, 9, 11})
assert((wt,wtvals) == ans)
///
TEST /// -- findWeightVector
R = ZZ/32003[a,b]
M = ideal (a*b)
L = standardMonomials M
assert(null === findWeightVector(M,L))
///
TEST /// -- findWeightVector
needsPackage "Truncations"
R = ZZ/32003[a..d]
M = ideal (a^2, a*b, b^3, a*c)
M = truncate(5,M)
L = standardMonomials M
time (wt, wtvals) = findWeightVector(M,L)
-- TODO: the following is incorrect now, for some reason.
-- Anyway, we need a better way to get the weight vector, that gives smaller values (I guess).
-- ans = ({10, 5, 3, 1},
-- {10, 12, 14, 9, 14, 16, 18, 5, 7, 9,
-- 4, 9, 11, 13, 2, 4, 6, 4, 6, 8, 3,
-- 8, 10, 12, 3, 5, 7, 2, 7, 9, 11})
-- assert((wt,wtvals) == ans)
///
TEST ///
R = ZZ/32003[a..d]
loadPackage "LexIdeals"
M = lexIdeal(R, {1,4,7,10,13})
M = ideal select(M_*, f -> first degree f <= 4)
hilbertPolynomial(comodule M, Projective=>false)
time F = groebnerFamily M;
netList F_*
time J = groebnerStratum F;
codim J
isHomogeneous J
J = trim J;
netList J_*
///
TEST ///
-- Example: triangle, giving twisted cubic --
kk = ZZ/101
R = kk[a..d]
M = ideal"ab,bc,ca"
standardMonomials M
F = groebnerFamily M
netList F_*
J = groebnerStratum F
trim J
-- TODO: minimize (F,J), then try: (names of rings are not correct though?)
-*
T = ring J; U = ring F
-- Since J is 0, let's see what a random such fiber looks like
phi = map(R,B,(vars R)|random(R^1, R^(numgens A)))
L = phi F
leadTerm L
decompose L
*-
///
TEST ///
-- example in the exterior algebra
kk = ZZ/101
E = kk[a,b,c,d,e,SkewCommutative => true]
I = ideal(a*d,a*c,a*b,b*d*e,b*c*e,b*c*d)
F1 = groebnerFamily I
netList F1_*
F2 = groebnerFamily(I, AllStandard => true)
netList F2_*
assert isHomogeneous F1
assert isHomogeneous F2
J2 = trim groebnerStratum F2;
assert(numgens ring J2 == 24)
J1 = trim groebnerStratum F1;
assert(numgens ring J1 == 23)
C2 = decompose J2;
netList C2_0_*
netList C2_1_*
assert(isHomogeneous C2_0)
assert(isHomogeneous C2_1)
assert(dim C2_0 == 18)
assert(dim C2_1 == 15)
///
end--
restart
uninstallPackage "GroebnerStrata"
restart
loadPackage "GroebnerStrata"
installPackage "GroebnerStrata"
check GroebnerStrata
|