1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862
|
-- -*- coding: utf-8 -*-
newPackage(
"HodgeIntegrals",
Version => "1.2.1",
Date => "29 April 2010",
Certification => {
"journal name" => "The Journal of Software for Algebra and Geometry: Macaulay2",
"journal URI" => "http://j-sag.org/",
"article title" => "Intersection numbers on Mbar_{g,n}",
"acceptance date" => "2010-04-17",
"published article URI" => "http://j-sag.org/Volume2/jsag-1-2010.pdf",
"published code URI" => "http://j-sag.org/Volume2/HodgeIntegrals.m2",
"repository code URI" => "https://github.com/Macaulay2/M2/blob/master/M2/Macaulay2/packages/HodgeIntegrals.m2",
"release at publication" => "5169e42924f6675b7eec36596b3eeafd8b718141",
"version at publication" => "1.2.1",
"volume number" => "2",
"volume URI" => "http://j-sag.org/Volume2/"
},
Authors => {
{ Name => "Stephanie Yang",
Email => "stpyang@math.kth.se",
HomePage => "http://www.stephanieyang.com"}
},
Headline => "Hodge integrals on the moduli space of curves",
Keywords => {"Commutative Algebra"},
DebuggingMode => false
)
export {"hodgeRing", "wittenTau", "integral", "kappa", "lambda", "psi", "ch"}
------------------------------------------------------------------------
-- extends the factorial function to a List of ZZ
List ! := a -> product(a, r -> r!)
-- extends the binomial function to Lists of ZZ
--OLD CODE
--binomial (List, List) := ZZ => (n, i) -> (
-- if #n =!= #i then error "expected lists with the same length";
-- product(#n, j -> binomial(n#j, i#j))
-- )
--BETTER CODE
binomial (List, List) := ZZ => (n, i) -> product(n, i, binomial)
-- these two functions allow one to convert between the following
-- expressions for exponents of tau and exponents of psi:
-- <tau_m#1 tau_m#2 ... tau_m#n> = int_M(g, n) psi_1^m#1 ... psi^m#n
-- = < tau_0^a#0 tau_1^a#1 tau_2^a#2 ... >
exponentsToTauList = a -> flatten apply(#a, i -> toList(a#i:i));
tauListToExponents = m -> (
T := tally m;
apply(1 + max keys T, i -> if T#?i then T#i else 0)
)
-- computes all lists of integers which are componentwise at most "a";
-- this function is used to compute the binomial convolution of the
-- wittenTau's, or equivalently the product of the exponential generating
-- functions.
splittings = memoize (
a -> if #a === 1 then apply(1 + a#0, i -> {i})
else flatten apply(1 + a#0, i ->
apply(splittings drop(a, 1), l -> {i}|l)
)
)
-- creates the list corresponding to the i - th standard basis vector in
-- RR^k
ee = memoize ( (i, k) -> apply(k, j -> if j === i then 1 else 0) )
-- computes coefficients in Witten's exponential generating function,
-- specifically, wittenTau(a) := < tau_0^a#0 tau_1^a#1 tau_2^a#2 ...>
-- (using the formula of Liu-Xu)
wittenTau = method();
wittenTau List := QQ => ( memoize (
a -> if any(a, x -> x < 0) then 0/1 else (
-- eliminate trailing zeros in the input list "a"
h := 3 + sum(#a, i -> (i-1)*a#i);
-- initial conditions
if h % 3 != 0 then 0/1
else wittenTau(h//3,a)
)
)
)
wittenTau (ZZ,List) := QQ => ( memoize (
(g,a) -> if any(a, x -> x < 0) then 0/1 else (
-- eliminate trailing zeros in the input list "a"
p := position(a, x -> x > 0, Reverse => true);
if p === null then k := 0 else k = p+1;
a = take(a,k);
-- determine the moduli space parameters
n := sum a;
-- check that the coefficient is nonzero
if 3*g-3+n != sum(#a, i-> i*a#i) then 0/1
-- initial conditions
else if k === 0 or g<0 then 0/1
else if k === 1 then (
if a#0 === 3 then 1/1 else 0/1)
else if g === 0 then (n-3)! / (exponentsToTauList(a))!
else if #select(toList(0..k-2), i -> a#(i+1) > 0) === 1 and a#(k-1) === 1 then 1/((24^g)*g!)
else liuXuCoeff(g,n,k,a)
)
)
)
-- NOTE: keep this function *separate* from the function wittenTau
-- because we are following the algorithm presented in the Liu-Xu
-- paper, and this may change in future versions.
liuXuCoeff = memoize (
(g, n, k, a) -> (
--dilaton equation
if a#1 > 0 then (2 * g - 3 + n) * wittenTau(a - ee(1, k))
--string equation
else if a#0 > 0 then sum(k - 1, i -> a#(i + 1) *
wittenTau(a - ee(0, k) + ee(i, k) - ee(i + 1, k)))
--KdV equation plus string equation
else (
d := position(drop(a, 1), x -> x>0) + 1;
a' := (a|{0}) - ee(d, k + 1);
tempCoeff := (
(2*d + 3)/12 *
wittenTau(g - 1, 4*ee(0, k + 1) + ee(d + 1, k + 1) + a') -
(2*g + n - 1)/6 *
wittenTau(g - 1, 3*ee(0, k) + a) +
sum(splittings(a'), b -> binomial(a', b) * (
(2*d + 3) *
wittenTau(2*ee(0, k + 1) + ee(d + 1, k + 1) + b) *
wittenTau(2*ee(0, k + 1) + a' - b) -
(2*g + n - 1) *
wittenTau(ee(0, k + 1) + ee(d, k + 1) + b) *
wittenTau(2*ee(0, k + 1) + a' - b)
)
)
);
return (tempCoeff/(2*g + n - 1)/(2*g + n - 2))
)
)
)
------------------------------------------------------------------------
-- define kappa, lambda, psi, ch
kappa = new IndexedVariableTable
lambda = new IndexedVariableTable
psi = new IndexedVariableTable
ch = new IndexedVariableTable
-- establish a big Ring where all calculations take place
hodgeRing = (g,n) -> (
MAXg := g;
MAXn := 4*g + n - 3;
MAXkappa := 3*MAXg - 3 + MAXn;
MAXlambda := MAXg;
MAXpsi := MAXn;
MAXch := 2*MAXg - 1;
QQ[kappa_1..kappa_MAXkappa, lambda_1..lambda_MAXlambda, psi_1..psi_MAXpsi, ch_1..ch_MAXch,
Degrees => toList splice (1..MAXkappa, 1..MAXlambda, MAXpsi:1, 1..MAXch)]
)
-- multiply the frequencies of all elements of a tally by an integer n
-- original code
-- ZZ * Tally := (n, T) -> new Tally from apply(keys T, x -> (x => (n * T#x)))
-- Here is a better suggestion
ZZ * Tally := (n,T) -> if n == 0 then new Tally else applyValues(T, x->n*x)
-- convert from a List of subscripts or superscript to a monomial
-- <a#0 a#1 .. a#n> -> psi_1^a#0 psi_2^a#1 .. psi_(n + 1)^a#n
-- <a#0 a#1 .. a#n> -> kappa_1^a#0 kappa_2^a#1 .. kappa_(n + 1)^a#n
-- NOTE: beware the shift by 1 in the subscripts
psiListToProduct = psiList -> product(#psiList, i -> psi_(i + 1)^(psiList#i))
kappaListToProduct = kappaList -> product(#kappaList, i -> kappa_(i + 1)^(kappaList#i))
-- calculate Bernoulli numbers
bernoulli = memoize (
n -> if n === 0 then 1 else - sum(n, i -> binomial(n + 1, i) * bernoulli(i)/(n + 1))
)
-- check to see if the codimension of the tautological class
-- equals the dimension of the moduli space
dimCheck = memoize (
(g, n, chKaTauSeq) -> (
chDim := sum(#chKaTauSeq#0, i -> (i + 1) * chKaTauSeq#0#i);
kappaDim := sum(#chKaTauSeq#1, i -> (i + 1) * chKaTauSeq#1#i);
tauDim := sum(chKaTauSeq#2);
3*g - 3 + n === chDim + kappaDim + tauDim)
)
-- convert la_n to an expression in ch_i using the formula
-- sum(1..n, i -> lambda_i) = exp sum((n + 1)//2, i -> (2 * i)! * ch_(2 * i + 1));
-- NOTE: according to Mumford's paper, ch_(2 * i)=0
--
--oldlambdaToCh = memoize (
-- (n, R) -> (
-- ChRing := QQ[ch_1..ch_n, Degrees=>{1..n}];
-- I := ideal basis(n + 1, 2 * n - 1, ChRing);
-- ChRing = ChRing/I;
-- f := sum((n + 1)//2, i -> (2 * i)! * ch_(2 * i + 1));
-- sub(part(n, sum(1..n, i -> (1/i!) * f^i)), R)
-- )
-- )
lambdaToCh = memoize (
(n, R) -> (
tempChRing := QQ[local tempCh_1..local tempCh_n, Degrees=>{1..n}];
I := ideal basis(n + 1, 2 * n - 1, tempChRing);
tempChRing = tempChRing/I;
x := sum((n + 1)//2, i -> (2 * i)! * tempCh_(2 * i + 1));
x = part(n, sum(1..n, i -> (1/i!) * x^i));
F := map(R,tempChRing,{ch_1..ch_n});
F x
)
)
-- calculate all of the codimension c boundary divisors on M_{g, n}
-- that appear in the Riemann-Roch formula
deltaSet = memoize (
(g, n, c) -> (
N := set(0..n - 1);
dT := set (0..g) ** set subsets n;
dT = dT - set{0} ** set subsets (n, 0) - set{0} ** set subsets (n, 1);
dT = dT - set{g} ** set subsets (n, n - 1) - set{g} ** set subsets (n, n);
dT = (dT ** set apply(0..c - 1, i -> (i, c - 1 - i))) / splice;
dT = dT / (x -> {(x#0, set x#1, {x#2}), (g - x#0, N - x#1, {x#3})});
dT = dT + set apply(0..c - 1, i -> {(g - 1, N, {i, c - 1 - i})})
)
)
-- pull back a product of kappa and ch classes to
-- a reducible codimension one or two topological degeneration
splitChKa = memoize (
chKaList -> (
tempTally := splitChKa(drop(chKaList, 1));
a := first chKaList;
sum(0..a, i -> binomial(a, i) * tempTally / (x -> {{i}|x_0, {a - i}|x_1}))
),
{{} => tally {{{}, {}}}}
)
chKaTally = memoize (
(chList, kappaList) -> (splitChKa(chList) ** splitChKa(kappaList))/splice)
-- compute a tally of all pairs of kappaLists and chLists that arise
-- from a reducible codimension one or two topological degeneration
split = method();
split List := Tally => memoize (
expList -> if expList === {} then tally {{{}, {}}} else (
tmpTally := split drop(expList, 1);
a := first expList;
sum(a + 1, i -> binomial(a, i) * tmpTally / (x -> {{i} | x_0, {a - i} | x_1})))
)
split (List, List) := Tally => memoize (
(chList, kappaList) -> (split(chList) ** split(kappaList)) / toList
)
-- this append the elements of tauList, indexed by, N to psiList
-- (this is used to calculate codimension one degenerations of pointed curves)
nTauPsi = memoize (
(N, tauList, psiList) -> apply(toList N, i -> tauList#i) | psiList
)
-- computes the product of a boundary divisor with
-- a monomial in ch, kappa, or psi classes
dProduct = memoize (
(delta, chKaTauSeq, KaLaPsChRing) -> (
(g1, N1, p1) := delta#0;
(chList, kappaList, tauList) := chKaTauSeq;
-- singular irreducible case
if #delta === 1 then
return (-1)^(p1#0) * klp(g1, #N1 + 2, (chList, kappaList, tauList|p1), KaLaPsChRing)
--
else (
(g2, N2, p2) := delta#1;
-- exploit symmetry for speed
if (g1>g2) or (g1===g2 and member(0, N2)) then (
return dProduct(reverse delta, chKaTauSeq, KaLaPsChRing)
);
ckTally := chKaTally(chList, kappaList);
return sum (keys ckTally / (x -> (
if dimCheck(g1, #N1 + 1, (x#0#0, x#1#0, nTauPsi(N1, tauList, p1)))
then (
(-1)^(p1#0) * ckTally#x *
klp(g1, #N1 + 1, (x#0#0, x#1#0, nTauPsi(N1, tauList, p1)), KaLaPsChRing) *
klp(g2, #N2 + 1, (x#0#1, x#1#1, nTauPsi(N2, tauList, p2)), KaLaPsChRing)
)
else 0
)
)
)
)
)
)
deltaProduct = memoize (
(delta, chKaTauSeq) -> (
(g0, N0, p0) := delta#0;
(chList, kappaList, tauList) := chKaTauSeq;
if #delta === 1 then (-1)^(p0#0) * integral(g0, 2 + #N0, (chList, kappaList, tauList | p0))
else (
(g1, N1, p1) := delta#1;
tmpTally := split(chList, kappaList);
sum(keys tmpTally, d -> (
if dimCheck(g0, #N0 + 1, (d#0#0, d#1#0, nTauPsi(N0, tauList, p0)))
then (-1)^(p0#0) * tmpTally#d * (
integral(g0, #N0 + 1, (d#0#0, d#1#0, nTauPsi(N0, tauList, p0))) *
integral(g1, #N1 + 1, (d#0#1, d#1#1, nTauPsi(N1, tauList, p1)))
)
else 0
)
)
)
)
)
-- THE MAIN FUNCTION
integral = (g, n, klpc) -> (
if (g < 0) or (3 * g - 3 + n < 0) then 0
else if (klpc == 1) and (3 * g - 3 + n == 0) then 1
else if (klpc == 1) and (3 * g - 3 + n != 0) then 0
else (
-- Set MAX parameters
KaLaPsChRing := ring (klpc);
MAXkappa := index lambda_1;
MAXlambda := index psi_1 - index lambda_1;
MAXpsi := index ch_1 - index psi_1;
MAXch := 2*MAXlambda - 1;
-- add dimension check and warning when the codim of the class != dim of ring
-- eliminate lambdas and unnecessary other stuff
kappaImg := splice (kappa_1..kappa_(3 * g - 3 + n), MAXkappa - (3 * g - 3 + n):0);
lambdaImg := splice (apply(1..g, i -> lambdaToCh (i, KaLaPsChRing)), MAXlambda - g:0);
psiImg := splice (psi_1..psi_n, MAXpsi - n:0);
chImg := splice (ch_1..ch_(2 * g - 1), min(MAXch, MAXch - (2 * g - 1)):0);
--chImg = apply(chImg, x -> sub(x, KaLaPsChRing));
tempMap := map(KaLaPsChRing, KaLaPsChRing, toList (kappaImg|lambdaImg|psiImg|chImg));
ckpPoly := tempMap klpc;
monList := flatten entries (coefficients ckpPoly)_0;
coeffList := flatten entries (coefficients ckpPoly)_1;
sum(#terms ckpPoly, i -> (
chList := (first exponents monList_i)_{
MAXkappa + MAXlambda + MAXpsi..(MAXkappa + MAXlambda + MAXpsi + 2 * g - 1 - 1)};
kappaList := (first exponents monList_i)_{0..3 * g - 3 + n - 1};
tauList := (first exponents monList_i)_{
(MAXkappa + MAXlambda)..(MAXkappa + MAXlambda + n - 1)
};
coeffList_i * klp(g, n, (chList, kappaList, tauList), KaLaPsChRing)
)
)
)
)
-- inputs the list {g, n, ch, kappa, psi} and computes the klp integral
-- int_M(g, n) chern_0^ch#0 chern_1^ch#1 .. chern_a^ch#a
-- kappa_0^kappa#0 kappa_1^kappa#1 .. kappa_b^kappa#b
-- psi_1^p#1 psi_2^p#2 .. psi_n^p#n
klp = memoize (
(g, n, chKaTauSeq, KaLaPsChRing) -> (
-- Set MAX parameters
MAXkappa := index lambda_1;
MAXlambda := index psi_1 - index lambda_1;
MAXpsi := index sub(ch_1,KaLaPsChRing) - index psi_1;
MAXch := 2*MAXlambda - 1;
-- define g and n
if (g < 0) or (3 * g - 3 + n < 0) then return 0;
if not dimCheck(g, n, chKaTauSeq) then return 0;
(chList, kappaList, tauList) := chKaTauSeq;
if not all(tauList, x -> x >= 0) then return 0;
if tauList =!= (sort tauList) then return klp(g, n, (chList, kappaList, sort tauList), KaLaPsChRing);
-- dan abramovich's shortcut
chDim := sum(#chList, i -> (i + 1) * chList#i);
if g===0 then (if chDim>0 then return 0;)
else if (g===1) then (if chDim>1 then return 0;)
else if chDim>3 * g - 3 then return 0;
if g>1 and (sum(#chList, i -> (i + 1) * chList#i) > (3 * g - 3)) then return 0;
-- define chList length c
p := position(chList, r -> r > 0, Reverse => true);
if p === null then c := 0 else c = p + 1;
chList = take(chList, c);
if c > 2 * g then return 0;
--define kappaList length k
p = position(kappaList, r -> r > 0, Reverse => true);
if p === null then k := 0 else k = p + 1;
kappaList = take(kappaList, k);
-- define tauList and set length to n
tauList = tauList | splice{n - length(tauList):0};
-- eliminate ch_c using Riemann-Roch formula (cf. Mumford's paper)
if c > 0 then (
newChList := chList - ee(c - 1, c);
(kappaList, k) = (kappaList|splice{c - k:0}, max(c, k));
val := klp(g, n, (newChList, kappaList + ee(c - 1, k), tauList), KaLaPsChRing);
val = val - sum(n, i -> klp(g, n, (newChList, kappaList, tauList + c * ee(i, n)), KaLaPsChRing));
dSet := deltaSet(g, n, c);
dSet = keys dSet / (x -> dProduct(x, (newChList, kappaList, tauList), KaLaPsChRing));
val = val + 1/2 * sum dSet;
return bernoulli(c + 1)/(c + 1)! * val;
)
-- eliminate kappa_k using push-pull formula
else if k > 0 then (
kappaImg := splice(apply(1..k, i -> kappa_i - psi_(n + 1)^i), MAXkappa - k:0);
lambdaImg := splice(MAXlambda:0);
psiImg := splice (psi_1..psi_n, MAXpsi - n:0);
tempMap := map(KaLaPsChRing, KaLaPsChRing, {splice kappaImg, lambdaImg, psiImg, MAXch:0});
kpmon := kappaListToProduct (kappaList - ee(k - 1, k)) * psiListToProduct(tauList);
return integral(g, n + 1, psi_(n + 1)^(k + 1) * tempMap kpmon);
)
-- call Liu-Xu's function
else (
return wittenTau(tauListToExponents(tauList));
)
),
--base case integral(0,3,1)=1, since M_{0,3} is a point
{(0, 3, {{0}, {0}, {0, 0}})=>1}
)
beginDocumentation()
document {
Key => {HodgeIntegrals},
Headline => "Hodge integrals on the moduli space of curves",
PARA {
TO "HodgeIntegrals",
TEX ///
is a package for evaluating intersection numbers on the Deligne-Mumford moduli space of $n$-pointed stable curves of genus $g$, often denoted ${\bar M}_{g,n}$.
This package evaluates integrals of the form
$$\int_{{\bar M}_{g,n}} \psi_1^{e_1} ... \psi_n^{e_n} k_1^{f_1} ... k_b^{f_b} \lambda_1^{h_1} ... \lambda_g^{h_g},$$
where the values of $\psi_i$, $k_i$, and $\lambda_i$ are defined as follows:
///,
},
UL {
{
TEX ///
$\psi_i$ is the first Chern class of the $i$-th cotangent line bundle $L_i$,
whose value at a fixed curve $(C; p_1,...,p_n)$ is the cotangent space to $C$ at $p_i$.
///,
},
{
TEX ///
$k_j$ is the pushforward of $\psi_i^{j+1}$ via the forgetful morphism which forgets the $i$-th marked point.
///,
},
{
TEX ///
$\lambda_i$ is the $i$-th Chern class of the Hodge bundle $E$,
whose value at a fixed curve $(C; p_1,...,p_n)$ is $H^0(C,K_C)$,
or the space of differential one-forms on $C$.
///,
},
},
PARA {
TEX ///
A good introduction to ${\bar M}_{g,n}$ and related spaces can be found in the textbook [HM].
Two good references for the algebraic classes $\psi_i$, $k_i$, and $\lambda_i$,
as well as their properties, are [AC] and [M].
///,
},
PARA {
"This package is modelled after Carel Faber's Maple program ",
TT "KaLaPs",
", available for download [F]. For more details on how this package works, please read [Y].",
},
SUBSECTION "References",
PARA {
"[AC] ",
"Arbarello, E. and Cornalba, M. ",
EM "Combinatorial and algebro-geometric cohomology classes on the moduli spaces of curves",
". J. Algebraic Geom. 5. (1996), no. 4, 705--749."
},
PARA {
"[F] ",
"Faber, Carel. ",
"Maple program for calculating intersection numbers on moduli spaces of curves. Available at ",
HREF "http://math.stanford.edu/~vakil/programs/index.html",
".",
},
PARA {
"[HM] ",
"Harris J., and Morrison, I. ",
EM "Moduli of Curves",
", Graduate Texts in Mathematics 187. Springer-Verlag, New York, 1996. ISBN: 0387984291."
},
PARA {
"[V] ",
"Vakil, R. ",
EM "The moduli space of curves and Gromov-Witten theory",
". Enumerative invariants in algebraic geometry and string theory (Behrend and Manetti eds.), Lecture Notes in Mathematics 1947, Springer, Berlin, 2008."
},
PARA {
"[Y] ",
"Yang, S., ",
EM "Intersection numbers on ",
TEX ///${\bar M}_{g,n}$///,
".",
},
SUBSECTION "Contributors",
PARA {
"The following person has generously contributed code or worked on our code.",
},
UL {
HREF {"http://www.mast.queensu.ca/~ggsmith/","Greg Smith"},
},
}
document {
Key => {hodgeRing},
Headline => "create a ring containing algebraic classes on moduli spaces of curves",
Usage => "hodgeRing(g,n)",
Inputs => {"g" => ZZ, "n" => ZZ},
Outputs => {PolynomialRing},
PARA {
"The function ",
TO "hodgeRing",
" must must be called before ",
TO "integral",
" in order to initialize a ring ",
TT "QQ[",
TEX ///$\psi_1, ..., \psi_a, k_1, ..., k_b, \lambda_1, ..., \lambda_c$///,
TT "]",
" containing variables used by ",
TO "integral",
". The inputs ",
EM "g",
" and ",
EM "n",
" should be at least as large as the genus and number of points that will used. Overestimating the values of ",
EM "g",
" and ",
EM "n",
" are fine, but initializing these numbers too small will result in error messages."
},
SUBSECTION "Caveat",
PARA {
"The output of ",
TT "hodgeRing",
" is not a geometric object but a computational one. ",
"The intersection numbers are calculated recursively using pullbacks by natural morphisms (c.f., equations (4), (8)--(11), and (13) of [Y]). ",
"Rather than initializing a new tautological ring for every step of this recursion, this package provides the function hodgeRing to the user to create a ring large enough to contain all the variables which might be needed, and uses endomorphisms of the master ring instead of natural morphisms between several rings."
},
PARA {
"Here are some examples: ",
},
EXAMPLE {
"R = hodgeRing (4, 1);",
"integral (1, 1, psi_1)",
"integral (3, 0, lambda_1^6)",
},
SUBSECTION "References",
PARA {
"[Y] ",
"Yang , S.",
EM "Intersection numbers on ",
TEX ///${\bar M}_{g,n}$///,
".",
},
SeeAlso => {"HodgeIntegrals", "integral"}
}
document {
Key => {integral},
Headline => "evaluate Hodge integrals",
Usage => "integral(g, n, klp)",
Inputs => {"g" => ZZ, "n"=> ZZ},
Outputs => {QQ},
PARA {
TEX ///
This function computes top intersection numbers among tautological classes on the moduli space of curves.
The tautological classes include products of the Mumford-Morita-Miller classes $k_i$,
the cotangent line classes $\psi_i$, and the Chern classes and Chern characters, $\lambda_i$ and $ch_i$ of the Hodge bundle.
///,
},
PARA {
"The function ",
TO "hodgeRing",
" must be called previously with values of ",
TT "g",
" and ",
TT "n",
" at least as large as those to be used.,"
},
SUBSECTION "Examples",
PARA {
TEX ///
Here are a few examples illustrating the $\lambda_g$ formula [FP, Theorem 1],
$$\int_{{\bar M}_{g,n}} \psi_1^{a_1}...\psi_n^{a_n} \lambda_g= |B_{2g}|(2g+n-3)!(2^{2g-1}-1) / (a_1!...a_n!2^{2g-1}(2g)!),$$
where $B_i$ represents the $i$-th Bernoulli number.
///,
},
EXAMPLE {
"R = hodgeRing (3, 3);",
"integral (1, 1, lambda_1)",
"integral (2, 2, psi_1 * psi_2^2 * lambda_2)",
"integral (3, 3, psi_1 * psi_2^2 * psi_3^3 * lambda_3)",
},
PARA {
"Here are a few more examples.",
},
EXAMPLE {
"R = hodgeRing (4, 0);",
"integral (2, 0, lambda_1^3)",
"integral (3, 0, lambda_1^6)",
"integral (4, 0, lambda_1^9)",
},
SUBSECTION "References",
PARA {
"[FP] ",
"Faber, C. and Pandharipande, R., ",
EM "Hodge integrals, partition matrices, and the ",
TEX ///$\lambda_g$///,
EM " conjecture. ",
"Annals of Mathematics, 156 (2002), 97-124.",
},
SeeAlso => {"HodgeIntegrals","hodgeRing","wittenTau"}
}
document {
Key => {wittenTau,
(wittenTau,List),
(wittenTau,ZZ,List)},
Headline => "Witten tau integrals",
Usage => "wittenTau(g,a), wittenTau(a)",
Inputs => {"g" => ZZ, "a" => List},
Outputs => {QQ},
PARA {
TEX ///
The Witten tau coefficients are top intersection numbers of cotangent line classes on the moduli space of curves.
The integral of $\psi_1^{d_1}\psi_2^{d_2}...\psi_n^{d_n}$ on the moduli space of stable $n$-pointed curves of genus $g$ is denoted:
$$\int_{{\bar M}_{g,n}} \psi_1^{d_1}...\psi_n^{d_n} = <\tau_{d_0}\tau_{d_1}...\tau_{d_n}> = <\tau_0^{a_0}\tau_1^{a_1}...\tau_k^{a_k}>.$$
The list $\{a_0,a_1,...,a_k\}$ is the argument for
///,
TT "wittenTau",
". These integrals are computed recursively using the string equation, dilation equation, and an effective genus recursion formula of Liu and Xu [LX].",
},
PARA {
"The genus is an optional parameter. If it is omitted, the genus is automatically calculated.",
},
SUBSECTION "Examples",
PARA {
"Here are some examples illustrating the well-known formula that is a result of Witten's conjecture:",
TEX ///
$$\int_{{\bar M}_{0,n}} \psi_1^{a_1}...\psi_n^{a_n} = \frac{(n-3)!}{a_1!...a_n!}$$
///,
},
EXAMPLE{
"wittenTau (0,{3})",
"wittenTau (0,{4, 1, 1})",
"wittenTau (0,{5, 0, 2})",
},
PARA {
"Here are some additional examples in higher genus.",
},
EXAMPLE{
"wittenTau (1,{0,1})",
"wittenTau (3,{0,0,0,0,0,1})",
"wittenTau (5,{0,0,0,0,0,3})",
},
SUBSECTION "References",
PARA {
"[LX] ",
"Liu, K. and Xu, H. ",
EM "An effective recursion formula for computing intersection numbers",
". Available at ",
HREF "http://front.math.ucdavis.edu/0710.5322",
},
SeeAlso => {"HodgeIntegrals","hodgeRing","integral"}
}
document {
Key => {ch},
Headline => "Chern character of the Hodge bundle",
Usage => "ch_a",
Inputs => { "a" => ZZ },
Outputs => { RingElement },
"This is an element in the ring created by ",
TT "hodgeRing",
". ",
TEX ///
It is the $a$-th graded part of the Chern character of the Hodge bundle on ${\bar M}_{g,n}$.
///,
SUBSECTION "Examples",
PARA {
TEX ///
Here is a simple example which calculates $\int_{{\bar M}_{1,1}} ch_1$.
///,
},
EXAMPLE{
"R = hodgeRing (1, 1);",
"ch_1",
"integral(1, 1, ch_1)",
},
SeeAlso => {"HodgeIntegrals","hodgeRing","integral"}
}
document {
Key => {kappa},
Headline => "Miller-Morita-Mumford classes",
Usage => "kappa_a",
Inputs => { "a" => ZZ },
Outputs => { RingElement },
"This is an element in the ring created by ",
TT "hodgeRing",
". It is the Miller-Morita-Mumford class discussed in [AC].",
PARA {
TEX ///
Here is a simple example which calculates $\int_{{\bar M}_{1,1}} k_1$.
///,
},
EXAMPLE {
"R = hodgeRing (1, 1);",
"kappa_1",
"integral(1, 1, kappa_1)",
},
SUBSECTION "References",
PARA {
"[AC] ",
"Arbarello, E. and Cornalba, M. ",
EM "Combinatorial and algebro-geometric cohomology classes on the moduli spaces of curves",
". J. Algebraic Geom. 5. (1996), no. 4, 705--749."
},
SeeAlso => {"HodgeIntegrals","hodgeRing","integral"}
}
document {
Key => {lambda},
Headline => "Chern class of the Hodge bundle",
Usage => "lambda_a",
Inputs => { "a" => ZZ },
Outputs => { RingElement },
"This is an element in the ring created by ",
TT "hodgeRing",
".",
TEX ///
It is the $a$-th Chern class of the Hodge bundle on ${\bar M}_{g,n}$.,
///,
PARA {
TEX ///
Here is a simple example which calculates $\int_{{\bar M}_{1,1}} \lambda_1$.
///,
},
EXAMPLE {
"R = hodgeRing (1, 1);",
"lambda_1",
"integral(1, 1, lambda_1)",
},
SeeAlso => {"HodgeIntegrals","hodgeRing","integral"}
}
document {
Key => {psi},
Headline => "cotangent line class",
Usage => "psi_i",
Inputs => { "i" => ZZ },
Outputs => { RingElement },
"This is an element in the ring created by ",
TT "hodgeRing",
".",
TEX ///
It is the $i$-th cotangent line class. Definitions and properties can be found in [AC].
///,
PARA {
TEX ///
Here is a simple example which calculates $\int_{{\bar M}_{1,1}} \psi_1$.
///,
},
EXAMPLE {
"R = hodgeRing (1, 1);",
"psi_1",
"integral(1, 1, psi_1)",
},
SUBSECTION "References",
PARA {
"[AC] ",
"Arbarello, E. and Cornalba, M. ",
EM "Combinatorial and algebro-geometric cohomology classes on the moduli spaces of curves",
". J. Algebraic Geom. 5. (1996), no. 4, 705--749."
},
SeeAlso => {"HodgeIntegrals","hodgeRing","integral"}
}
-- Examples from the documentation for hodgeRing
TEST ///
R = hodgeRing (4, 1)
assert(integral (0, 3, 1) == 1)
assert(integral (1, 1, psi_1) == 1/24)
assert(integral (3, 0, lambda_1^6) == 1/90720)
///
-- Examples from the documentation for integral
TEST ///
R = hodgeRing (4, 3);
assert(integral (1, 1, lambda_1) == 1/24)
assert(integral (2, 2, psi_1 * psi_2^2 * lambda_2) == 7/1920)
assert(integral (3, 3, psi_1 * psi_2^2 * psi_3^3 * lambda_3) == 31/16128)
assert(integral (2, 0, lambda_1^3) == 1/2880)
assert(integral (3, 0, lambda_1^6) == 1/90720)
assert(integral (4, 0, lambda_1^9) == 1/113400)
///
-- Examples from the documentation for wittenTau
TEST///
assert(wittenTau (0,{3}) == 1)
assert(wittenTau (0,{4, 1, 1}) == 3)
assert(wittenTau (0,{5, 0, 2}) == 6)
assert(wittenTau (1,{0,1}) == 1/24)
assert(wittenTau (3,{0,0,0,0,0,0,0,1}) == 1/82944)
assert(wittenTau (5,{0,0,0,0,0,3}) == 41873/255467520)
///
-- Examples from the documentation for ch, lambda, kappa, and psi
TEST///
R = hodgeRing (1, 1);
assert(integral(1, 1, ch_1) == 1/24)
assert(integral(1, 1, lambda_1) == 1/24)
assert(integral(1, 1, kappa_1) == 1/24)
assert(integral(1, 1, psi_1) == 1/24)
///
end
--------------------------------------------------------------------------------
restart
uninstallPackage "HodgeIntegrals"
installPackage "HodgeIntegrals"
check "HodgeIntegrals"
loadPackage "HodgeIntegrals";
R = hodgeRing(15,0);
time integral(15,0,kappa_42)
time integral(4,0,lambda_1^9)
time integral(5,0,lambda_1^12)
R = hodgeRing(3,0);
List * List := (A, B) -> apply(A, B, (x, y) -> x * y);
tempFactors = (FactorList, n) -> (
if #FactorList === 0 then return {splice{n : 1}} else (
tempList := tempFactors(drop(FactorList, 1), n);
a := first FactorList;
newList := new List;
for i from 1 to n do (
aList = splice{i - 1 : 1, a, n - i : 1};
newList = append(newList, apply(tempList, x -> aList * x)));
return flatten newList));
gnList = {{(1,1), (1,2), (0,3)}, {(1,1), (1,1), (0,4)}, {(0,6)}, {(1,3), (0,3)},
{(1,3), (0,3)}, {(1,2), (0,4)}, {(1,1), (0,5)}};
klpList = {{kappa_3}, {kappa_1, kappa_2}, {kappa_1, kappa_1, kappa_1},
{kappa_2, lambda_1}, {kappa_1, kappa_1, lambda_1}};
M = matrix table(klpList, gnList, (x,y) -> (sum(tempFactors(x,#y),
z-> product(#y, i -> integral(y#i#0, y#i#1, z#i)))));
kernel M
|