File: HodgeIntegrals.m2

package info (click to toggle)
macaulay2 1.21%2Bds-3
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 133,096 kB
  • sloc: cpp: 110,377; ansic: 16,306; javascript: 4,193; makefile: 3,821; sh: 3,580; lisp: 764; yacc: 590; xml: 177; python: 140; perl: 114; lex: 65; awk: 3
file content (862 lines) | stat: -rw-r--r-- 30,085 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
-- -*- coding: utf-8 -*-
newPackage(
   "HodgeIntegrals",
   Version => "1.2.1",
   Date => "29 April 2010",
   Certification => {
	"journal name" => "The Journal of Software for Algebra and Geometry: Macaulay2",
	"journal URI" => "http://j-sag.org/",
	"article title" => "Intersection numbers on Mbar_{g,n}",
	"acceptance date" => "2010-04-17",
	"published article URI" => "http://j-sag.org/Volume2/jsag-1-2010.pdf",
	"published code URI" => "http://j-sag.org/Volume2/HodgeIntegrals.m2",
	"repository code URI" => "https://github.com/Macaulay2/M2/blob/master/M2/Macaulay2/packages/HodgeIntegrals.m2",
	"release at publication" => "5169e42924f6675b7eec36596b3eeafd8b718141",
	"version at publication" => "1.2.1",
	"volume number" => "2",
	"volume URI" => "http://j-sag.org/Volume2/"
	},
   Authors => {
	 {  Name => "Stephanie Yang",
	    Email => "stpyang@math.kth.se",
	    HomePage => "http://www.stephanieyang.com"}
         },
   Headline => "Hodge integrals on the moduli space of curves",
   Keywords => {"Commutative Algebra"},
   DebuggingMode => false
   )

   export {"hodgeRing", "wittenTau", "integral", "kappa", "lambda", "psi", "ch"}

------------------------------------------------------------------------

-- extends the factorial function to a List of ZZ
List ! := a -> product(a, r -> r!)

-- extends the binomial function to Lists of ZZ

--OLD CODE
--binomial (List, List) := ZZ => (n, i) -> (
--     if #n =!= #i then error "expected lists with the same length";
--     product(#n, j -> binomial(n#j, i#j))
--     )

--BETTER CODE
binomial (List, List) := ZZ => (n, i) -> product(n, i, binomial)

-- these two functions allow one to convert between the following
-- expressions for exponents of tau and exponents of psi:
-- <tau_m#1 tau_m#2 ... tau_m#n> = int_M(g, n) psi_1^m#1 ... psi^m#n
--               = < tau_0^a#0 tau_1^a#1 tau_2^a#2 ... >
exponentsToTauList = a -> flatten apply(#a, i -> toList(a#i:i));
tauListToExponents = m -> (
     T := tally m;
     apply(1 + max keys T, i -> if T#?i then T#i else 0)
     )	 

-- computes all lists of integers which are componentwise at most "a";
-- this function is used to compute the binomial convolution of the
-- wittenTau's, or equivalently the product of the exponential generating
-- functions.
splittings = memoize (
     a -> if #a === 1 then apply(1 + a#0, i -> {i})
     else flatten apply(1 + a#0, i ->
	  apply(splittings drop(a, 1), l -> {i}|l)
	  )
     )

-- creates the list corresponding to the i - th standard basis vector in
-- RR^k
ee = memoize ( (i, k) -> apply(k, j -> if j === i then 1 else 0) )


-- computes coefficients in Witten's exponential generating function,
-- specifically, wittenTau(a) := < tau_0^a#0 tau_1^a#1 tau_2^a#2 ...>
-- (using the formula of Liu-Xu)
wittenTau = method();
wittenTau List := QQ => ( memoize (
     a -> if any(a, x -> x < 0) then 0/1 else (
     	  -- eliminate trailing zeros in the input list "a"
     	  h := 3 + sum(#a, i -> (i-1)*a#i);   
     	  -- initial conditions
     	  if h % 3 != 0 then 0/1
          else wittenTau(h//3,a)
     	  )
     )
)

wittenTau (ZZ,List) := QQ => ( memoize (
     (g,a) -> if any(a, x -> x < 0) then 0/1 else (
     	  -- eliminate trailing zeros in the input list "a"
     	  p := position(a, x -> x > 0, Reverse => true);
     	  if p === null then k := 0 else k = p+1;
     	  a = take(a,k);  
     	  -- determine the moduli space parameters
     	  n := sum a;
	  -- check that the coefficient is nonzero
	  if 3*g-3+n != sum(#a, i-> i*a#i) then 0/1
     	  -- initial conditions   
     	  else if k === 0 or g<0 then 0/1
     	  else if k === 1 then (
	       if a#0 === 3 then 1/1 else 0/1)
	  else if g === 0 then (n-3)! / (exponentsToTauList(a))!
	  else if #select(toList(0..k-2), i -> a#(i+1) > 0) === 1 and a#(k-1) === 1 then 1/((24^g)*g!)
          else liuXuCoeff(g,n,k,a)
     	  )
     )
)


-- NOTE: keep this function *separate* from the function wittenTau
-- because we are following the algorithm presented in the Liu-Xu
-- paper, and this may change in future versions.
liuXuCoeff = memoize (
     (g, n, k, a) -> (
	  --dilaton equation
   	  if a#1 > 0 then (2 * g - 3 + n) * wittenTau(a - ee(1, k))
	  --string equation
   	  else if a#0 > 0 then sum(k - 1, i -> a#(i + 1) *
	       wittenTau(a - ee(0, k) + ee(i, k) - ee(i + 1, k)))
   	  --KdV equation plus string equation
   	  else (
	       d := position(drop(a, 1), x -> x>0) + 1;
	       a' := (a|{0}) - ee(d, k + 1);
               tempCoeff := (
		    (2*d + 3)/12 *
	       	    wittenTau(g - 1, 4*ee(0, k + 1) + ee(d + 1, k + 1) + a') -
	       	    (2*g + n - 1)/6 *
	       	    wittenTau(g - 1, 3*ee(0, k) + a) +
	       	    sum(splittings(a'), b -> binomial(a', b) * (
			      (2*d + 3) *
			      wittenTau(2*ee(0, k + 1) + ee(d + 1, k + 1) + b) *
			      wittenTau(2*ee(0, k + 1) + a' - b) -
			      (2*g + n - 1) *
			      wittenTau(ee(0, k + 1) + ee(d, k + 1) + b) *
			      wittenTau(2*ee(0, k + 1) + a' - b)
			      )
     			 )
		    );
	       return (tempCoeff/(2*g + n - 1)/(2*g + n - 2))
	       )
	  )
     )

------------------------------------------------------------------------

-- define kappa, lambda, psi, ch
kappa = new IndexedVariableTable
lambda = new IndexedVariableTable
psi = new IndexedVariableTable
ch = new IndexedVariableTable


-- establish a big Ring where all calculations take place
hodgeRing = (g,n) -> (
     MAXg  := g;
     MAXn  := 4*g + n - 3;
     MAXkappa := 3*MAXg - 3 + MAXn;
     MAXlambda := MAXg;
     MAXpsi := MAXn;
     MAXch := 2*MAXg - 1;
     QQ[kappa_1..kappa_MAXkappa, lambda_1..lambda_MAXlambda, psi_1..psi_MAXpsi, ch_1..ch_MAXch,
     Degrees => toList splice (1..MAXkappa, 1..MAXlambda, MAXpsi:1, 1..MAXch)]
     )


-- multiply the frequencies of all elements of a tally by an integer n
--  original code
--  ZZ * Tally := (n, T) -> new Tally from apply(keys T, x -> (x => (n * T#x)))
-- Here is a better suggestion
ZZ * Tally := (n,T) -> if n == 0 then new Tally else applyValues(T, x->n*x)

-- convert from a List of subscripts or superscript to a monomial
-- <a#0 a#1 .. a#n> -> psi_1^a#0 psi_2^a#1 .. psi_(n + 1)^a#n
-- <a#0 a#1 .. a#n> -> kappa_1^a#0 kappa_2^a#1 .. kappa_(n + 1)^a#n
-- NOTE: beware the shift by 1 in the subscripts
psiListToProduct = psiList -> product(#psiList, i -> psi_(i + 1)^(psiList#i))

kappaListToProduct = kappaList -> product(#kappaList, i -> kappa_(i + 1)^(kappaList#i))


-- calculate Bernoulli numbers
bernoulli = memoize (
     n -> if n === 0 then 1 else - sum(n, i -> binomial(n + 1, i) * bernoulli(i)/(n + 1))
     )


-- check to see if the codimension of the tautological class
-- equals the dimension of the moduli space
dimCheck = memoize (
     (g, n, chKaTauSeq) -> (
	  chDim := sum(#chKaTauSeq#0, i -> (i + 1) * chKaTauSeq#0#i);
	  kappaDim := sum(#chKaTauSeq#1, i -> (i + 1) * chKaTauSeq#1#i);
	  tauDim := sum(chKaTauSeq#2);
	  3*g - 3 + n === chDim + kappaDim + tauDim)
     )


-- convert la_n to an expression in ch_i using the formula
-- sum(1..n, i -> lambda_i) = exp sum((n + 1)//2, i -> (2 * i)! * ch_(2 * i + 1));
-- NOTE: according to Mumford's paper, ch_(2 * i)=0
--
--oldlambdaToCh = memoize (
--     (n, R) -> (
--  	  ChRing := QQ[ch_1..ch_n, Degrees=>{1..n}];
--  	  I := ideal basis(n + 1, 2 * n - 1, ChRing);
--  	  ChRing = ChRing/I;
--  	  f := sum((n + 1)//2, i -> (2 * i)! * ch_(2 * i + 1));
--  	  sub(part(n, sum(1..n, i -> (1/i!) * f^i)), R)
--   	  )
--     )

lambdaToCh = memoize (
     (n, R) -> (
  	  tempChRing := QQ[local tempCh_1..local tempCh_n, Degrees=>{1..n}];
  	  I := ideal basis(n + 1, 2 * n - 1, tempChRing);
  	  tempChRing = tempChRing/I;
  	  x := sum((n + 1)//2, i -> (2 * i)! * tempCh_(2 * i + 1));
  	  x = part(n, sum(1..n, i -> (1/i!) * x^i));
          F := map(R,tempChRing,{ch_1..ch_n});
	  F x
   	  )
     )


-- calculate all of the codimension c boundary divisors on M_{g, n}
-- that appear in the Riemann-Roch formula
deltaSet = memoize (
     (g, n, c) -> (
  	  N := set(0..n - 1);
  	  dT := set (0..g) ** set subsets n;
  	  dT = dT - set{0} ** set subsets (n, 0) - set{0} ** set subsets (n, 1);
  	  dT = dT - set{g} ** set subsets (n, n - 1) - set{g} ** set subsets (n, n);
  	  dT = (dT ** set apply(0..c - 1, i -> (i, c - 1 - i))) / splice;
  	  dT = dT / (x -> {(x#0, set x#1, {x#2}), (g - x#0, N - x#1, {x#3})});
  	  dT = dT + set apply(0..c - 1, i -> {(g - 1, N, {i, c - 1 - i})})
  	  )
     )


-- pull back a product of kappa and ch classes to
-- a reducible codimension one or two topological degeneration
splitChKa = memoize (
     chKaList -> (
  	  tempTally := splitChKa(drop(chKaList, 1));
  	  a := first chKaList;
  	  sum(0..a, i -> binomial(a, i) * tempTally / (x -> {{i}|x_0, {a - i}|x_1}))
  	  ),
     {{} => tally {{{}, {}}}}
     )

chKaTally = memoize (
     (chList, kappaList) -> (splitChKa(chList) ** splitChKa(kappaList))/splice)
   

-- compute a tally of all pairs of kappaLists and chLists that arise
-- from a reducible codimension one or two topological degeneration
split = method();
split List := Tally => memoize (
     expList -> if expList === {} then tally {{{}, {}}} else (
	  tmpTally := split drop(expList, 1);
	  a := first expList;
	  sum(a + 1, i -> binomial(a, i) * tmpTally / (x -> {{i} | x_0, {a - i} | x_1})))
     )

split (List, List) := Tally => memoize (
     (chList, kappaList) -> (split(chList) ** split(kappaList)) / toList
     )


-- this append the elements of tauList, indexed by, N to psiList
-- (this is used to calculate codimension one degenerations of pointed curves)
nTauPsi = memoize (
     (N, tauList, psiList) -> apply(toList N, i -> tauList#i) | psiList
     )


-- computes the product of a boundary divisor with
-- a monomial in ch, kappa, or psi classes
dProduct = memoize (
     (delta, chKaTauSeq, KaLaPsChRing) -> (
  	  (g1, N1, p1) := delta#0;
  	  (chList, kappaList, tauList) := chKaTauSeq;
	  -- singular irreducible case
  	  if #delta === 1 then
   	  return (-1)^(p1#0) * klp(g1, #N1 + 2, (chList, kappaList, tauList|p1), KaLaPsChRing)
	  --
  	  else (
   	       (g2, N2, p2) := delta#1;
	       -- exploit symmetry for speed
	       if (g1>g2) or (g1===g2 and member(0, N2)) then (
		    return dProduct(reverse delta, chKaTauSeq, KaLaPsChRing)
		    );
	       ckTally := chKaTally(chList, kappaList);
	       return sum (keys ckTally / (x -> (
			      if dimCheck(g1, #N1 + 1, (x#0#0, x#1#0, nTauPsi(N1, tauList, p1)))
			      then (
			      	   (-1)^(p1#0) * ckTally#x *
			      	   klp(g1, #N1 + 1, (x#0#0, x#1#0, nTauPsi(N1, tauList, p1)), KaLaPsChRing) *
			      	   klp(g2, #N2 + 1, (x#0#1, x#1#1, nTauPsi(N2, tauList, p2)), KaLaPsChRing)
     				   )
			      else 0
			      )
		     	 )
		    )
	       )
      	  )	
     )


deltaProduct = memoize (
     (delta, chKaTauSeq) -> (
	  (g0, N0, p0) := delta#0;
	  (chList, kappaList, tauList) := chKaTauSeq;
	  if #delta === 1 then (-1)^(p0#0) * integral(g0, 2 + #N0, (chList, kappaList, tauList | p0))
	  else (
	       (g1, N1, p1) := delta#1;
	       tmpTally := split(chList, kappaList);
	       sum(keys tmpTally, d -> (
		      	 if dimCheck(g0, #N0 + 1, (d#0#0, d#1#0, nTauPsi(N0, tauList, p0)))
		      	 then (-1)^(p0#0) * tmpTally#d * (
		      	      integral(g0, #N0 + 1, (d#0#0, d#1#0, nTauPsi(N0, tauList, p0))) *
		      	      integral(g1, #N1 + 1, (d#0#1, d#1#1, nTauPsi(N1, tauList, p1)))
		      	      )
		      	 else 0
		      	 )
	    	    )
       	       )
       	  )
     )


-- THE MAIN FUNCTION
integral = (g, n, klpc) -> (
   if (g < 0) or (3 * g - 3 + n < 0) then 0
   else if (klpc == 1) and (3 * g - 3 + n == 0) then 1
   else if (klpc == 1) and (3 * g - 3 + n != 0) then 0
   else (
	-- Set MAX parameters
        KaLaPsChRing := ring (klpc);
	MAXkappa := index lambda_1;
	MAXlambda := index psi_1 - index lambda_1;
	MAXpsi := index ch_1 - index psi_1;
	MAXch := 2*MAXlambda - 1;
	-- add dimension check and warning when the codim of the class != dim of ring
	-- eliminate lambdas and unnecessary other stuff
	kappaImg := splice (kappa_1..kappa_(3 * g - 3 + n), MAXkappa - (3 * g - 3 + n):0);
	lambdaImg := splice (apply(1..g, i -> lambdaToCh (i, KaLaPsChRing)), MAXlambda - g:0);
	psiImg := splice (psi_1..psi_n, MAXpsi - n:0);
	chImg := splice (ch_1..ch_(2 * g - 1), min(MAXch, MAXch - (2 * g - 1)):0);
	--chImg = apply(chImg, x -> sub(x, KaLaPsChRing));
	tempMap := map(KaLaPsChRing, KaLaPsChRing, toList (kappaImg|lambdaImg|psiImg|chImg));
	ckpPoly := tempMap klpc;
	monList := flatten entries (coefficients ckpPoly)_0;
	coeffList := flatten entries (coefficients ckpPoly)_1;
	sum(#terms ckpPoly, i -> (
		  chList := (first exponents monList_i)_{
		       MAXkappa + MAXlambda + MAXpsi..(MAXkappa + MAXlambda + MAXpsi + 2 * g - 1 - 1)};
		  kappaList := (first exponents monList_i)_{0..3 * g - 3 + n - 1};
		  tauList := (first exponents monList_i)_{
		       (MAXkappa + MAXlambda)..(MAXkappa + MAXlambda + n - 1)
		       };
		  coeffList_i * klp(g, n, (chList, kappaList, tauList), KaLaPsChRing)
		  )
	     )
	)
   )

-- inputs the list {g, n, ch, kappa, psi} and computes the klp integral
-- int_M(g, n) chern_0^ch#0 chern_1^ch#1 .. chern_a^ch#a
--             kappa_0^kappa#0 kappa_1^kappa#1 .. kappa_b^kappa#b
--                 psi_1^p#1 psi_2^p#2     .. psi_n^p#n
klp = memoize (
     (g, n, chKaTauSeq, KaLaPsChRing) -> (
          -- Set MAX parameters
          MAXkappa := index lambda_1;
	  MAXlambda := index psi_1 - index lambda_1;
	  MAXpsi := index sub(ch_1,KaLaPsChRing) - index psi_1;
	  MAXch := 2*MAXlambda - 1;
  	  -- define g and n	
  	  if (g < 0) or (3 * g - 3 + n < 0) then return 0;
  	  if not dimCheck(g, n, chKaTauSeq) then return 0;
  	  (chList, kappaList, tauList) := chKaTauSeq;
  	  if not all(tauList, x -> x >= 0) then return 0;
  	  if tauList =!= (sort tauList) then return klp(g, n, (chList, kappaList, sort tauList), KaLaPsChRing);
	  -- dan abramovich's shortcut
	  chDim := sum(#chList, i -> (i + 1) * chList#i);
	  if g===0 then (if chDim>0 then return 0;)
	  else if (g===1) then (if chDim>1 then return 0;)
	  else if chDim>3 * g - 3 then return 0;
	  if g>1 and (sum(#chList, i -> (i + 1) * chList#i) > (3 * g - 3)) then return 0;
  	  -- define chList length c
  	  p := position(chList, r -> r > 0, Reverse => true);
  	  if p === null then c := 0 else c = p + 1;
  	  chList = take(chList, c);
  	  if c > 2 * g then return 0;
  	  --define kappaList length k
  	  p = position(kappaList, r -> r > 0, Reverse => true);
  	  if p === null then k := 0 else k = p + 1;
  	  kappaList = take(kappaList, k);
  	  -- define tauList and set length to n
  	  tauList = tauList | splice{n - length(tauList):0};
  	  -- eliminate ch_c using Riemann-Roch formula (cf. Mumford's paper)
  	  if c > 0 then (
   	       newChList := chList - ee(c - 1, c);
   	       (kappaList, k) = (kappaList|splice{c - k:0}, max(c, k));
   	       val := klp(g, n, (newChList, kappaList + ee(c - 1, k), tauList), KaLaPsChRing);
   	       val = val - sum(n, i -> klp(g, n, (newChList, kappaList, tauList + c * ee(i, n)), KaLaPsChRing));
   	       dSet := deltaSet(g, n, c);
   	       dSet = keys dSet / (x -> dProduct(x, (newChList, kappaList, tauList), KaLaPsChRing));
   	       val = val + 1/2 * sum dSet;
   	       return bernoulli(c + 1)/(c + 1)! * val;
  	       )
  	  -- eliminate kappa_k using push-pull formula
  	  else if k > 0 then (
   	       kappaImg := splice(apply(1..k, i -> kappa_i - psi_(n + 1)^i), MAXkappa - k:0);
   	       lambdaImg := splice(MAXlambda:0);
   	       psiImg := splice (psi_1..psi_n, MAXpsi - n:0);
   	       tempMap := map(KaLaPsChRing, KaLaPsChRing, {splice kappaImg, lambdaImg, psiImg, MAXch:0});
   	       kpmon := kappaListToProduct (kappaList - ee(k - 1, k)) * psiListToProduct(tauList);
   	       return integral(g, n + 1, psi_(n + 1)^(k + 1) * tempMap kpmon);
   	       )
  	  -- call Liu-Xu's function
  	  else (
	       return wittenTau(tauListToExponents(tauList));
	       )
 	  ),
     --base case integral(0,3,1)=1, since M_{0,3} is a point
     {(0, 3, {{0}, {0}, {0, 0}})=>1}
     )

beginDocumentation()

document {
     Key => {HodgeIntegrals},
     Headline => "Hodge integrals on the moduli space of curves",
     PARA {
       	  TO "HodgeIntegrals",
       	  TEX ///
	  is a package for evaluating intersection numbers on the Deligne-Mumford moduli space of $n$-pointed stable curves of genus $g$, often denoted ${\bar M}_{g,n}$.
	  This package evaluates integrals of the form
	  $$\int_{{\bar M}_{g,n}} \psi_1^{e_1} ... \psi_n^{e_n} k_1^{f_1} ... k_b^{f_b} \lambda_1^{h_1} ... \lambda_g^{h_g},$$
       	  where the values of $\psi_i$, $k_i$, and $\lambda_i$ are defined as follows:
	  ///,
	  },
     UL {
	  {
	       TEX ///
	       $\psi_i$ is the first Chern class of the $i$-th cotangent line bundle $L_i$,
	       whose value at a fixed curve $(C; p_1,...,p_n)$ is the cotangent space to $C$ at $p_i$.
	       ///,
	       },
	  {
	       TEX ///
	       $k_j$ is the pushforward of $\psi_i^{j+1}$ via the forgetful morphism which forgets the $i$-th marked point.
	       ///,
	       },
	  {
	       TEX ///
	       $\lambda_i$ is the $i$-th Chern class of the Hodge bundle $E$,
	       whose value at a fixed curve $(C; p_1,...,p_n)$ is $H^0(C,K_C)$,
	       or the space of differential one-forms on $C$.
	       ///,
	       },
	  },
     PARA {
	  TEX ///
	  A good introduction to ${\bar M}_{g,n}$ and related spaces can be found in the textbook [HM].
	  Two good references for the algebraic classes $\psi_i$, $k_i$, and $\lambda_i$,
	  as well as their properties, are [AC] and [M].
	  ///,
	  },
     PARA {
	  "This package is modelled after Carel Faber's Maple program ",
	  TT "KaLaPs",
	  ", available for download [F]. For more details on how this package works, please read [Y].",
	  },
     SUBSECTION "References",
     PARA {
	  "[AC] ",
	  "Arbarello, E. and Cornalba, M. ",
	  EM "Combinatorial and algebro-geometric cohomology classes on the moduli spaces of curves",
	  ". J. Algebraic Geom. 5. (1996), no. 4, 705--749."
	  },
     PARA {
	  "[F] ",
	  "Faber, Carel. ",
	  "Maple program for calculating intersection numbers on moduli spaces of curves. Available at ",
	  HREF "http://math.stanford.edu/~vakil/programs/index.html",
	  ".",
	  },
     PARA {
	  "[HM] ",
	  "Harris J., and Morrison, I. ",
	  EM "Moduli of Curves",
	  ", Graduate Texts in Mathematics 187. Springer-Verlag, New York, 1996. ISBN: 0387984291."
	  },   
     PARA {
	  "[V] ",
	  "Vakil, R. ",
	  EM "The moduli space of curves and Gromov-Witten theory",
	  ". Enumerative invariants in algebraic geometry and string theory (Behrend and Manetti eds.), Lecture Notes in Mathematics 1947, Springer, Berlin, 2008."
	  },
     PARA {
	  "[Y] ",
	  "Yang, S., ",
	  EM "Intersection numbers on ",
	  TEX ///${\bar M}_{g,n}$///,
	  ".",
	  },
     SUBSECTION "Contributors",
     PARA {
	  "The following person has generously contributed code or worked on our code.",
	  },
     UL {
	  HREF {"http://www.mast.queensu.ca/~ggsmith/","Greg Smith"},
	  },
     }
     
document {
     Key => {hodgeRing},
     Headline => "create a ring containing algebraic classes on moduli spaces of curves",
     Usage => "hodgeRing(g,n)",
     Inputs => {"g" => ZZ, "n" => ZZ},
     Outputs => {PolynomialRing},
     PARA {
          "The function ",
	  TO "hodgeRing",
	  " must must be called before ",
	  TO "integral",
	  " in order to initialize a ring ",
	  TT "QQ[",
          TEX ///$\psi_1, ..., \psi_a, k_1, ..., k_b, \lambda_1, ..., \lambda_c$///,
          TT "]",
	  " containing variables used by ",
	  TO "integral",
	  ".  The inputs ",
          EM "g",
          " and ",
          EM "n",
          " should be at least as large as the genus and number of points that will used. Overestimating the values of ",
          EM "g",
	  " and ",
	  EM "n",
	  " are fine, but initializing these numbers too small will result in error messages."
       	  },
     SUBSECTION "Caveat",
     PARA {
     	  "The output of ",
	  TT "hodgeRing",
	  " is not a geometric object but a computational one. ",
	  "The intersection numbers are calculated recursively using pullbacks by natural morphisms (c.f., equations (4), (8)--(11), and (13) of [Y]). ",
	  "Rather than initializing a new tautological ring for every step of this recursion, this package provides the function hodgeRing to the user to create a ring large enough to contain all the variables which might be needed, and uses endomorphisms of the master ring instead of natural morphisms between several rings."
	  },
     PARA {
       	  "Here are some examples: ",
     	  },
     EXAMPLE {
     	  "R = hodgeRing (4, 1);",
     	  "integral (1, 1, psi_1)",
     	  "integral (3, 0, lambda_1^6)",
     },
     SUBSECTION "References",
     PARA {
	  "[Y] ",
	  "Yang , S.",
	  EM "Intersection numbers on ",
	  TEX ///${\bar M}_{g,n}$///,
	  ".",
	  },
     SeeAlso => {"HodgeIntegrals", "integral"}
     }

document {
     Key => {integral},
     Headline => "evaluate Hodge integrals",
     Usage => "integral(g, n, klp)",
     Inputs => {"g" => ZZ, "n"=> ZZ},
     Outputs => {QQ},
     PARA {
     	  TEX ///
	  This function computes top intersection numbers among tautological classes on the moduli space of curves.
	  The tautological classes include products of the Mumford-Morita-Miller classes $k_i$,
	  the cotangent line classes $\psi_i$, and the Chern classes and Chern characters, $\lambda_i$ and $ch_i$ of the Hodge bundle.
	  ///,
	  },
     PARA {
	  "The function ",
	  TO "hodgeRing",
	  " must be called previously with values of ",
	  TT "g",
	  " and ",
	  TT "n",
	  " at least as large as those to be used.,"
	  },
     SUBSECTION "Examples",
     	  PARA {
	  TEX ///
	  Here are a few examples illustrating the $\lambda_g$ formula [FP, Theorem 1],
	  $$\int_{{\bar M}_{g,n}} \psi_1^{a_1}...\psi_n^{a_n} \lambda_g= |B_{2g}|(2g+n-3)!(2^{2g-1}-1) / (a_1!...a_n!2^{2g-1}(2g)!),$$
	  where $B_i$ represents the $i$-th Bernoulli number.
	  ///,
	  },
     EXAMPLE {
     	  "R = hodgeRing (3, 3);",
     	  "integral (1, 1, lambda_1)",
     	  "integral (2, 2, psi_1 * psi_2^2 * lambda_2)",
     	  "integral (3, 3, psi_1 * psi_2^2 * psi_3^3 * lambda_3)",
     },
     PARA {
	  "Here are a few more examples.",
	  },
     EXAMPLE {
     	  "R = hodgeRing (4, 0);",
     	  "integral (2, 0, lambda_1^3)",
     	  "integral (3, 0, lambda_1^6)",
     	  "integral (4, 0, lambda_1^9)",
     },
     SUBSECTION "References",
     PARA {
	  "[FP] ",
	  "Faber, C. and Pandharipande, R., ",
	  EM "Hodge integrals, partition matrices, and the ",
	  TEX ///$\lambda_g$///,
	  EM " conjecture. ",
	  "Annals of Mathematics, 156 (2002), 97-124.",
	  },
     SeeAlso => {"HodgeIntegrals","hodgeRing","wittenTau"}
     }


document {
     Key => {wittenTau,
	  (wittenTau,List),
	  (wittenTau,ZZ,List)},
     Headline => "Witten tau integrals",
     Usage => "wittenTau(g,a), wittenTau(a)",
     Inputs => {"g" => ZZ, "a" => List},
     Outputs => {QQ},
     PARA {
	  TEX ///
	  The Witten tau coefficients are top intersection numbers of cotangent line classes on the moduli space of curves.
	  The integral of $\psi_1^{d_1}\psi_2^{d_2}...\psi_n^{d_n}$ on the moduli space of stable $n$-pointed curves of genus $g$ is denoted:
      	  $$\int_{{\bar M}_{g,n}} \psi_1^{d_1}...\psi_n^{d_n} = <\tau_{d_0}\tau_{d_1}...\tau_{d_n}> = <\tau_0^{a_0}\tau_1^{a_1}...\tau_k^{a_k}>.$$
          The list $\{a_0,a_1,...,a_k\}$ is the argument for
	  ///,
	  TT "wittenTau",
	  ". These integrals are computed recursively using the string equation, dilation equation, and an effective genus recursion formula of Liu and Xu [LX].",
	  },	
     PARA {     
     	  "The genus is an optional parameter. If it is omitted, the genus is automatically calculated.",
     	  },
     SUBSECTION "Examples",
     PARA {
	  "Here are some examples illustrating the well-known formula that is a result of Witten's conjecture:",
	  TEX ///
	  $$\int_{{\bar M}_{0,n}} \psi_1^{a_1}...\psi_n^{a_n} = \frac{(n-3)!}{a_1!...a_n!}$$
	  ///,
	  },
     EXAMPLE{
	  "wittenTau (0,{3})",
	  "wittenTau (0,{4, 1, 1})",
	  "wittenTau (0,{5, 0, 2})",
	  },	 
     PARA {
    	  "Here are some additional examples in higher genus.",
	  },
     EXAMPLE{
	  "wittenTau (1,{0,1})",
	  "wittenTau (3,{0,0,0,0,0,1})",
	  "wittenTau (5,{0,0,0,0,0,3})",
	  },	 
     SUBSECTION "References",
     PARA {
	  "[LX] ",
	  "Liu, K. and Xu, H. ",
	  EM "An effective recursion formula for computing intersection numbers",
	  ". Available at ",
	  HREF "http://front.math.ucdavis.edu/0710.5322",
	  },
     SeeAlso => {"HodgeIntegrals","hodgeRing","integral"}
     }

document {
     Key => {ch},
     Headline => "Chern character of the Hodge bundle",
     Usage => "ch_a",
     Inputs => { "a" => ZZ },
     Outputs => { RingElement },
     "This is an element in the ring created by ",
     TT "hodgeRing",
     ". ",
     TEX ///
     It is the $a$-th graded part of the Chern character of the Hodge bundle on ${\bar M}_{g,n}$.
     ///,
     SUBSECTION "Examples",
     PARA {
	  TEX ///
	  Here is a simple example which calculates $\int_{{\bar M}_{1,1}} ch_1$.
	  ///,
	  },
     EXAMPLE{
	  "R = hodgeRing (1, 1);",
	  "ch_1",
	  "integral(1, 1, ch_1)",
	  },	 
     SeeAlso => {"HodgeIntegrals","hodgeRing","integral"}
     }

document {
     Key => {kappa},
     Headline => "Miller-Morita-Mumford classes",
     Usage => "kappa_a",
     Inputs => { "a" => ZZ },
     Outputs => { RingElement },
     "This is an element in the ring created by ",
     TT "hodgeRing",
     ". It is the Miller-Morita-Mumford class discussed in [AC].",
     PARA {
	  TEX ///
	  Here is a simple example which calculates $\int_{{\bar M}_{1,1}} k_1$.
     	  ///,
	  },
     EXAMPLE {
	  "R = hodgeRing (1, 1);",
	  "kappa_1",
	  "integral(1, 1, kappa_1)",
	  },	 
     SUBSECTION "References",
     PARA {
	  "[AC] ",
	  "Arbarello, E. and Cornalba, M. ",
	  EM "Combinatorial and algebro-geometric cohomology classes on the moduli spaces of curves",
	  ". J. Algebraic Geom. 5. (1996), no. 4, 705--749."
	  },
     SeeAlso => {"HodgeIntegrals","hodgeRing","integral"}
     }

document {
     Key => {lambda},
     Headline => "Chern class of the Hodge bundle",
     Usage => "lambda_a",
     Inputs => { "a" => ZZ },
     Outputs => { RingElement },
     "This is an element in the ring created by ",
     TT "hodgeRing",
     ".",
     TEX ///
     It is the $a$-th Chern class of the Hodge bundle on ${\bar M}_{g,n}$.,
     ///,
     PARA {
	  TEX ///
	  Here is a simple example which calculates $\int_{{\bar M}_{1,1}} \lambda_1$.
	  ///,
	  },
     EXAMPLE {
	  "R = hodgeRing (1, 1);",
	  "lambda_1",
	  "integral(1, 1, lambda_1)",
	  },	 
     SeeAlso => {"HodgeIntegrals","hodgeRing","integral"}
     }

document {
     Key => {psi},
     Headline => "cotangent line class",
     Usage => "psi_i",
     Inputs => { "i" => ZZ },
     Outputs => { RingElement },
     "This is an element in the ring created by ",
     TT "hodgeRing",
     ".",
     TEX ///
     It is the $i$-th cotangent line class. Definitions and properties can be found in [AC].
     ///,
     PARA {
	  TEX ///
	  Here is a simple example which calculates $\int_{{\bar M}_{1,1}} \psi_1$.
	  ///,
	  },
     EXAMPLE {
	  "R = hodgeRing (1, 1);",
	  "psi_1",
	  "integral(1, 1, psi_1)",
	  },	 
     SUBSECTION "References",
     PARA {
	  "[AC] ",
	  "Arbarello, E. and Cornalba, M. ",
	  EM "Combinatorial and algebro-geometric cohomology classes on the moduli spaces of curves",
	  ". J. Algebraic Geom. 5. (1996), no. 4, 705--749."
	  },
     SeeAlso => {"HodgeIntegrals","hodgeRing","integral"}
     }

-- Examples from the documentation for hodgeRing
TEST ///
R = hodgeRing (4, 1)
assert(integral (0, 3, 1) == 1)
assert(integral (1, 1, psi_1) == 1/24)
assert(integral (3, 0, lambda_1^6) == 1/90720)
///

-- Examples from the documentation for integral
TEST ///
R = hodgeRing (4, 3);
assert(integral (1, 1, lambda_1) == 1/24)
assert(integral (2, 2, psi_1 * psi_2^2 * lambda_2) == 7/1920)
assert(integral (3, 3, psi_1 * psi_2^2 * psi_3^3 * lambda_3) == 31/16128)
assert(integral (2, 0, lambda_1^3) == 1/2880)
assert(integral (3, 0, lambda_1^6) == 1/90720)
assert(integral (4, 0, lambda_1^9) == 1/113400)
///

-- Examples from the documentation for wittenTau
TEST///
assert(wittenTau (0,{3}) == 1)
assert(wittenTau (0,{4, 1, 1}) == 3)
assert(wittenTau (0,{5, 0, 2}) == 6)
assert(wittenTau (1,{0,1}) == 1/24)
assert(wittenTau (3,{0,0,0,0,0,0,0,1}) == 1/82944)
assert(wittenTau (5,{0,0,0,0,0,3}) == 41873/255467520)
///

-- Examples from the documentation for ch, lambda, kappa, and psi
TEST///
R = hodgeRing (1, 1);
assert(integral(1, 1, ch_1) == 1/24)
assert(integral(1, 1, lambda_1) == 1/24)
assert(integral(1, 1, kappa_1) == 1/24)
assert(integral(1, 1, psi_1) == 1/24)
///

end
--------------------------------------------------------------------------------
restart
uninstallPackage "HodgeIntegrals"
installPackage "HodgeIntegrals"
check "HodgeIntegrals"

loadPackage "HodgeIntegrals";
R = hodgeRing(15,0);
time integral(15,0,kappa_42)
time integral(4,0,lambda_1^9)
time integral(5,0,lambda_1^12)
R = hodgeRing(3,0);
List * List := (A, B) -> apply(A, B, (x, y) -> x * y);
tempFactors = (FactorList, n) -> (
     if #FactorList === 0 then return {splice{n : 1}} else ( 
	  tempList := tempFactors(drop(FactorList, 1), n);
	  a := first FactorList;
	  newList := new List;
	  for i from 1 to n do (
	       aList = splice{i - 1 : 1, a, n - i : 1};
	       newList = append(newList, apply(tempList, x -> aList * x)));
          return flatten newList));
gnList = {{(1,1), (1,2), (0,3)}, {(1,1), (1,1), (0,4)}, {(0,6)}, {(1,3), (0,3)},
         {(1,3), (0,3)}, {(1,2), (0,4)}, {(1,1), (0,5)}};
klpList = {{kappa_3}, {kappa_1, kappa_2}, {kappa_1, kappa_1, kappa_1},
     {kappa_2, lambda_1}, {kappa_1, kappa_1, lambda_1}};
M = matrix table(klpList, gnList, (x,y) -> (sum(tempFactors(x,#y),
	  z-> product(#y, i -> integral(y#i#0, y#i#1, z#i)))));
kernel M