1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100
|
newPackage(
"InverseSystems",
Version => "1.1",
Date => "June 27, 2018",
Authors => {{Name => "David Eisenbud",
Email => "de@msri.org"
},
{Name => "Mats Boij",
Email => "boij@kth.se"}
},
Headline => "equivariant Macaulay inverse systems",
Keywords => {"Commutative Algebra"},
DebuggingMode => false
)
export {"inverseSystem",
"toDividedPowers",
"fromDividedPowers",
"isStandardGradedPolynomialRing",
--option names (symbols):
"DividedPowers",
"toDual",
"fromDual",
"Gorenstein"
}
///
restart
uninstallPackage "InverseSystems"
installPackage "InverseSystems"
check "InverseSystems"
viewHelp InverseSystems
loadPackage("InverseSystems", Reload=>true)
///
isStandardGradedPolynomialRing = method()
isStandardGradedPolynomialRing Ring := R ->(
isField coefficientRing R and
isPolynomialRing R and
all(gens R, v->(degree v)=={1})
)
toDividedPowers = method()
toDividedPowers RingElement := p -> (
--the following routine takes a polynomial and writes it in the divided power basis,
--where a^(n) is represented as a^n.
S := ring p;
sub0 := map(S,S,0_S*vars S);
(monoms, coeffs) := coefficients p;
D := sub0 diff(monoms, transpose monoms);
(flatten entries (monoms*D*coeffs))_0
)
toDividedPowers Matrix := M -> (
--same for all the entries of a matrix
map(target M, source M, (i,j) -> toDividedPowers (M_j_i))
)
fromDividedPowers = method()
fromDividedPowers RingElement := p -> (
--fromDividedPowers takes a polynomial written in the divided power basis,
--where a^(n) is represented as a^n,
--and changes it to a polynomial written in the monomial basis.
S := ring p;
sub0 := map(S,S,0_S*vars S);
(monoms, coeffs) := coefficients p;
D := sub0 diff(monoms, transpose monoms);
(flatten entries (monoms*(inverse D)*coeffs))_0
)
fromDividedPowers Matrix := M -> (
--same for all the elements of a matrix
map(target M, source M, (i,j) -> fromDividedPowers (M_j_i))
)
--fromDual takes a matrix or ring element and returns an ideal or submodule.
fromDual = method(Options=>{DividedPowers => true})
fromDual Matrix := o -> M -> (
R := ring M;
if not isPolynomialRing R then error"fromDual requires a polynomial ring";
M' := compress M;
--handle the case when the input was 0
if numgens source M' == 0 then return matrix{{1_(ring M)}};
if o.DividedPowers === false then M' = toDividedPowers M';
g := lcm first entries compress flatten monomials M';
M'' := contract(transpose M', transpose matrix{{g}});
e := first exponents g;
I := ideal apply(numgens R,i->R_i^(e_i+1));
A := sub(syz(R/I**M''),R);
A|(gens I)**target A
)
fromDual RingElement := o -> f -> fromDual(matrix{{f}}, DividedPowers=> o.DividedPowers)
powers = (d,v) ->
-- v a list of ring elements; d a natural number. Returns the list of powers.
apply(v, x->x^d)
containsDthPowers = method()
containsDthPowers Ideal := I->(
--input is an ideal of dimension 0.
--returns the smallest d such that I contains the d-th
--powers of all the variables.
if dim I != 0 then error"Input ideal must be 0-dimensional";
S := ring I;
v := gens S; -- a list
n := numgens S;
d := min flatten degrees I;
while (matrix{powers(d,v)} % I) != 0 do d = d+1;
d
)
toDual = method(Options => {DividedPowers => true})
toDual (ZZ,Matrix) := Matrix => o-> (d,f) -> (
--given a submodule of a free module S^n, represented by a matrix f,
--returns the annihilator, represented as the matrix of a map to D^n,
--valid up to degree d in each variable
S := ring f;
g := matrix{{product powers(d,gens S)}};
I := ideal powers(d+1,gens S);
R := S/I;
f1 := syz transpose sub(f,R);
m := compress contract(sub(f1,S),g);
if o.DividedPowers === false then m = fromDividedPowers m;
m
)
toDual(ZZ,Ideal) := Matrix => o->(d,I) -> toDual(d,gens I)
toDualTrunc = method(Options => {DividedPowers => true})
toDualTrunc (ZZ,Matrix) := Matrix => o-> (d,f) ->
toDual(d,f | ((target f) ** gens power(ideal vars ring f,d)),
DividedPowers => o.DividedPowers)
inverseSystem = method(Options => {DividedPowers => false})
inverseSystem (ZZ,Matrix) := o-> (d,M) ->
toDual(d,M,DividedPowers => o.DividedPowers)
inverseSystem (ZZ,Ideal) := o-> (d,I) -> inverseSystem(d,gens I,
DividedPowers => o.DividedPowers)
inverseSystem Matrix := o-> M -> (
A := fromDual(M, DividedPowers => o.DividedPowers);
--A is a matrix; want a submodule or ideal
B := image A;
if rank target A == 1 then B = ideal B;
if isHomogeneous B then trim B else B
)
inverseSystem Ideal := o-> I ->
inverseSystem(gens I, DividedPowers => o.DividedPowers)
inverseSystem RingElement := o-> M -> (
A := fromDual(M, DividedPowers => o.DividedPowers);
--A is a matrix; want a submodule or ideal
B := ideal A;
if isHomogeneous B then trim B else B
)
beginDocumentation()
doc ///
Key
InverseSystems
Headline
Macaulay's Inverse Systems
Description
Text
Inverse systems are often used to construct artinian Gorenstein
ideals and modules. For a brief introduction to that application,
see @TO Gorenstein@. Here we give a general introduction.
The graded Hopf algebra dual of the symmetric algebra
$S := k[x_1,\dots,x_n]$ is the divided power algebra
$D$. The dual basis to the monomial basis of $S$
is the basis consisting of monomials of the form
$x_1^{(m_1)} \dots x_n^{(m_n)}$. In characteristic zero,
$S$ and $D$ are isomorphic as algebras, with
isomorphism sending
$x_i^{a}$ to $a!x_i^{(a)}$.
In general the multiplication in $D$ is defined
by the same formulas as in characteristic 0.
For example,
$x_1^{(1)}*x_1^{(1)} = 2*x_1^{(2)}$.
In positive characteristic $D$ and $S$ are not isomorphic; $D$ is not even
a finitely generated algebra.
We will be interested
also in the local versions, where we take power series
in the divided powers. This is the ordinary linear dual of $S$.
We denote it by
$D'$. As an $S$-module, $D'$ is
the injective hull of the simple module
$S/(x_1,\dots,x_n)$.
Since $D$ is the graded dual of $S$, it may also be regarded as an
$S$-module. Any element of $D$ is annihilated by a power
of $mm = (x_1,\dots,x_n)$, so the action of $S$ on
$D$ or $D'$ extends to an action of the power series ring
k[[x_1,\dots,x_n]].
F. S. Macaulay defined the inverse system of an $S'$-submodule M of $D'$ to be
the annihilator I of M in $S'$ (or in $S$). If $M$ is finitely
generated then it is annihilated by some power of $mm$,
and thus I is 0-dimensional.
Inversely, the (local) inverse system of an ideal in $S$
or $S'$ is
by definition the submodule of $D'$ that it annihilates.
In the 1880's these ideas were used by Max Noether, in the
local version, as a substitute for primary decomposition in the
case of what he called multiple points in the plane.
F. S. Macaulay studied and greatly refined Noether's
work, and for example identified the ideals I that are
annihilators of cyclic submodules of $D'$ as the ideals
such that one could do residuation in $S'/I$ --
that is, $S'/I$ is Gorenstein.
Though the global version
has also been studied, we will only
be concerned with the local version.
Any
finitely generated submodule of D' generated by finite
polynomials is actually a submodule of D, and its dual
will have only primary components contained in
$(x_1,\dots,x_n)$ so the distinction
will not be important for us on that side.
However, it is important
to note that when taking the inverse system of an ideal,
only the primary components contained in
$(x_1,\dots,x_n)$ play a role.
%%%%%%%%%%%%%%%%%%%%%%%%
Going from a submodule of D to an ideal of S
(or from a submodule of D^r to a submodule of S^r:
Because D and D' are not finitely generated S-modules
Macaulay2 cannot deal with them directly.
These scripts can only deal with a finitely generated
submodule M of D or D'. Such a module is represented here
by a row matrix, of
ordinary polynomials, whose entries are thought of as
generators of M.
More generally, we represent a finitely generated submodule of $D^r$
as an $r$-rowed matrix M of ordinary polynomials.
In the default behavior
of the script
inverseSystem M = inverseSystem(M, DividedPowers => false)
a monomial $x^a$ is taken to represent
$a!x^{(a)} \in D'$, where, if
$a = (a_1,\dots,a_n)$, then $a! = a_1!*\dots*a_n!$.
This means
that the script should not be used in the default
way unless the characteristic is greater than the highest
degree to which a variable appears.
To make $x^a$ represent $x^{(a)}$,
for example in small characteristics, use
inverseSystem(Matrix, DividedPowers=>true)
(which was and remains the default behavior of the script
"fromDual").
The reason for the default choice is that the
general linear group GL_n(k) acts on both S and D, and
it is reasonable to expect that the operations
defined by inverseSystem should be equivariant. This is
the case for the default setting, but with
DividedPowers=>true it is not the case.
For example,
Example
S = QQ[x,y]
J = inverseSystem x^2
Text
differs only by a linear change of coordinates from the ideal
Example
J' = inverseSystem (x+y)^2
Text
But is has very different properties than the ideal
Example
J'' = inverseSystem(matrix{{(x+y)^2}}, DividedPowers=>true)
betti res J''
Text
With the default behavior (DividedPowers=>false),
inverseSystem is equivariant in a precise sense:
If G is an $n\times n$ invertible scalar matrix, then G defines an automorphism
g: S\to S by change of variables. Also g also acts on 1 x m matrices M, componentwise and
(transpose g)^{-1} (inverseSystem M) = inverseSystem(g M), as illustrated below:
Example
kk = QQ
n = 3
S = kk[a,b,c]
M = matrix{{a^2,b^3+c^3}}
G = random(S^3, S^3)
g = map(S,S,(vars S)*G)
g' = map(S,S,(vars S)*(transpose G))
h = map(S,S,(vars S)*(transpose G)^(-1))
inverseSystem M
g'(inverseSystem g(M))
Text
These may look different, but...
Example
g'(inverseSystem g(M)) == inverseSystem M
Text
Equivalently,
Example
h(inverseSystem M) == inverseSystem g(M)
Text
There is a similar equivariance for the dual action of inverseSystem on ideals.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Going from an ideal of S to a submodule of D,
or from a submodule of S^r to a submodule of D^r.
If $I$ is an ideal of $S$, homogeneous or not,
we regard $I$ as an ideal of $S'$, and similarly with
submodules of S^n. In either case we allow the function
to accept either a submodule or its matrix of generators
(a matrix with target S^n, possibly with generators in
different degrees.
If I is an ideal or a submodule, then
M = inverseSystem(d, I)
M1 = inverseSystem(d, I, DividedPowers => true)
both return 1 x m matrices whose entries are
the minimal generators of
the annihilator of $I$ in $D'$, correct up to degree d.
In the matrix $M$
a term $x^a$
is to be interpreted as
$a! x^{(a)}$, while in the matrix $M1$ it is interpreted
as $x^{(a)}$. Of course the first computation is only
valid if all the powers of variables appearing in the generators
of $I$ are < char k.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%5
The functor
inverseSystem ( -- ) and
inverseSystem (d ,-- )
are inverse contravariant isomorphisms between the categories of
bounded length submodules of D^r and bounded co-length submodules of S^r
(the bound depends on d in an obvious way.)
Example
S = ZZ/101[a,b,c]
M = random(S^{0,1}, S^{-1,-1,-2,-2})
d = 6
N = inverseSystem(d, M)
image M == inverseSystem N
Text
but with a smaller value of d this would not work:
Example
d = 5
N = inverseSystem(d, M)
image M != inverseSystem N
Text
There is at present no direct way to compare
inverseSystem(d, inverseSystem M) and M, since the matrices representing these submodules
are really representing sets of generators in D^r. However, we can
check equality of containment by applying inverseSystem again:
Example
M = random(S^{0,1}, S^{-1,-1,-2,-2})
inverseSystem(inverseSystem(d,gens inverseSystem M)) == inverseSystem M
Text
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Method: To represent finitely generated S-submodule of $D'$
as an S-module we use the map of modules
S/(x_1^d,\dots, x_n^d) -> D' sending $x^a$ to
contract(x^a, product(n, j-> x_i^{d-1})), and its inverse,
which is of course defined only on divided monomials of
small degree.
Caveat
The translations used involve multiplying or dividing by scalars; if the polynomials
involved have maximum degree n, then n! must be invertible for theUsing the tool of translation to make sense.
SeeAlso
inverseSystem
fromDual
toDual
DividedPowers
fromDividedPowers
toDividedPowers
///
doc///
Key
Gorenstein
Headline
Constructing Gorenstein Rings and Modules
Description
Text
Each artinian graded (or local) Gorenstein ring is the inverse system of a unique
element of D, and inverse systems are often used to construct such examples.
(Higher-dimensional Gorenstein rings also correspond to special inverse systems,
though these are not finitely generated submodules of D. See
"The structure of the inverse system of Gorenstein k-algebras"
by Joan Elias and Maria Evelina Rossi, Adv. Math. (2017) 306-327,
for a recent treatment with computational intent.)
For example,
studying artinian Gorenstein rings of codimension 4,
one might consider those corresponding to the sum of n d-th powers of linear
forms. For example with n= 4,5 and d=3:
Example
S = ZZ/101[a,b,c,d]
nPowers = (S, n,d) ->sum(apply(n, j->(random(1,S))^d))
minimalBetti inverseSystem nPowers(S,4,3)
minimalBetti inverseSystem nPowers (S,5,3)
Text
One can also construct self-dual modules with more generators by taking the
inverseSystem of a submodule that is isomorphic to its dual, for example
the image of a symmetric or skew-symmetric matrix:
Example
Msymm = matrix"0,a,b;a,0,c;b,c,0"
Mskew = matrix"0,a,b;-a,0,c;-b,-c,0"
minimalBetti coker gens inverseSystem Msymm
minimalBetti coker gens inverseSystem Mskew
Text
For an interesting series of examples, consider the d-th Hessian matrices
obtained by taking the d-th mixed partials of a form of some degree e>2d. The ranks
of such matrices are connected to the Lefschetz properties of the corresponding
artinian Gorenstein rings, as explained in "The Lefschetz properties",
Springer Lecture Notes in Math. 2080, by
T. Harima,
T. Maeno,
H. Morita,
Y. Numata,
A. Wachi and
J. Watanabe.
Example
Hessian = (d,f) ->(
S = ring f;
B = basis(d,S);
diff(transpose B, diff(B,f))
)
S = ZZ/101[x_1..x_4]
f = nPowers (S,6,4)
minimalBetti coker gens inverseSystem f
minimalBetti coker gens inverseSystem Hessian(1, f)
minimalBetti coker gens inverseSystem Hessian(2, f)
SeeAlso
inverseSystem
///
doc ///
Key
inverseSystem
(inverseSystem, Matrix)
(inverseSystem, Ideal)
(inverseSystem, RingElement)
(inverseSystem, ZZ, Ideal)
(inverseSystem, ZZ, Matrix)
[inverseSystem, DividedPowers]
Headline
Inverse systems with equivariance
Usage
I1 = inverseSystem M
M1 = inverseSystem I
Inputs
M:Matrix
if r rows, then represents a submodule of D'^r
M:RingElement
I:Ideal
Outputs
I1:Ideal
if r=1
I1:Module
submodule of S^r
M1:Matrix
Description
Text
Inverse systems are often used to construct artinian Gorenstein
ideals and modules. For that application
see @TO Gorenstein@.
Let S = k[x_1..x_n] be a standard graded polynomial ring,
and let D be its dual, the divided power algebra,
regarded as an S-module. Let M be an rxm matrix of polynomials,
and let I be an ideal of S.
From a submodule of D^r to a submodule of S^r (or to an ideal, if r=1):
We think of the columns of M as generators of an S-submodule MM of D^r,
and
inverseSystem M returns the annihilator of MM in S^r = Hom_{graded}(D^r,k).
In the default behavior
a monomial $x^a$ in an entry of the matrix M is taken to represent
$a!x^(a) \in D'$, where,
$a = (a_1,\dots,a_n)$ then $a! = a_1!*\dots*a_n!$. Use
inverseSystem(M, DividedPowers => false)
to make the monomials of entries of M represent the dual basis of the monomial basis of S,
that is, the divided powers of the generators of D as an algebra.
From an ideal of S to a submodule of D:
If $I$ is an ideal of $S$, homogeneous or not,
we regard $I$ as an ideal of the localization $S'$ of $S$ at $(x_1,\dots,x_n)$. If $S'/I$ is of
finite length then
M = inverseSystem I
and
M1 = inverseSystem(I, DividedPowers => false)
each return a 1 x m matrix whose entries are
the minimal generators of
the annihilator of $I$ in $D$. In the matrix $M$
a term $x^a$
is to be interpreted as
$a! x^(a)$, while in the matrix $M'$ it is interpreted
as $x^(a)$. Of course the first computation is only
valid if all the powers of variables appearing in the generators
of $I$ are < char k.
To make these computations it is necessary to represent some sufficiently
large finitely generated S-submodule of $D$ (this will automatically be
an $S'$-submodule. To do this we use the map of modules
D-> S/(x_1^d,\dots, x_n^d) sending $x^{(a)}$ to
contract(x^a, product(n, j-> x_i^{d-1})), defined only when the variables
in $x^{(a)}$ appear only with powers < d.
Example
setRandomSeed 0
kk = QQ
S = kk[a,b,c]
map(S,S,0_S*vars S)
p = (a+b)^2
q = toDividedPowers p
p' = fromDividedPowers q
p'==p
Text
Here are some codimension 4 Gorenstein rings with different Betti tables,
computed by inverseSystem
from quartic polynomials
Example
kk = ZZ/101
S = kk[a..d]
f1 = matrix"a2b2+c2d2"; -- gives 1,4,6,4,1
f2 = matrix"a2b2+b2c2+c2d2"; --gives 1,4,7,4,1;
f3 = matrix"a2b2+b2c2+c2d2+c2a2"; -- gives 1,4,8,4,1
f4 = matrix"a2b2+b2c2+c2d2+c2a2+a2d2"; --gives 1,4,8,4,1
f5 = matrix"a2b2+b2c2+c2d2+c2a2+a2d2+b2d2+b4"; --gives 1,4,9,4,1
f6 = matrix"a2b2+b2c2+c2d2+c2a2+a2d2+b2d2"; --gives 1,4,10,4,1
F = {f1,f2,f3,f4,f5,f6};
netList (F/(f->betti res inverseSystem f))
Caveat
Because inverseSystem
involves a conversion between the bases of the dual,
it should not be used in the default mode
unless the characteristic is greater than the highest
degree to which a variable appears.
To make $x^a$ represent $x^(a)$,
for example in small characteristics use
inverseSystem(Matrix, DividedPowers=>false)
(which was the default behavior of the old script
"fromDual").
SeeAlso
DividedPowers
fromDividedPowers
toDividedPowers
fromDual
toDual
isStandardGradedPolynomialRing
///
doc ///
Key
DividedPowers
Headline
Option for inverseSystem
Description
Text
Caveat
SeeAlso
inverseSystem
///
doc ///
Key
fromDividedPowers
(fromDividedPowers,Matrix)
(fromDividedPowers,RingElement)
Headline
Translates from divided power monomial basis to ordinary monomial basis
Usage
f1 = fromDividedPowers f
Inputs
f:RingElement
f:Matrix
Outputs
f1:RingElement
f1:Matrix
Description
Text
If f is a polynomial, or a matrix of polynomials, written in the divided power monomial basis, then f1 is the corresponding
object written in the ordinary monomial basis.
Example
S = ZZ/101[x,y]
x^2 == fromDividedPowers (2*x^2)
SeeAlso
toDividedPowers
///
doc ///
Key
toDividedPowers
(toDividedPowers,Matrix)
(toDividedPowers,RingElement)
Headline
Translates to divided power monomial basis from ordinary monomial basis
Usage
f1 = toDividedPowers f
Inputs
f:RingElement
f:Matrix
Outputs
f1:RingElement
f1:Matrix
Description
Text
If f is a polynomial, or a matrix of polynomials, then f1 is the corresponding
object written in the divided power monomial basis, where for example $x^2$ denotes $x^{(2)}$
Example
S = ZZ/101[x,y]
2*x^2 == toDividedPowers (x^2)
SeeAlso
fromDividedPowers
///
doc ///
Key
toDual
(toDual, ZZ, Ideal)
(toDual, ZZ, Matrix)
[toDual,DividedPowers]
Headline
finds the inverse system to an ideal up to a given degree
Usage
M = toDual (ZZ, I)
Inputs
I:Ideal
in a standard graded polynomial ring
Outputs
M:Matrix
interpreted as list of generators of inverse system to I
Description
Text
If I is an ideal, then toDual(d,I) = inverseSystem(d, I).
See the documentation of
InverseSystems for the basic theory and of inverseSystem for the function.
If I is a matrix, then the code first replaces it with the ideal generated by the entries.
Caveat
The Base ring of the input must be a standard graded polynomial ring over a field.
SeeAlso
InverseSystems
inverseSystem
fromDual
///
doc ///
Key
fromDual
(fromDual, RingElement)
(fromDual, Matrix)
[fromDual,DividedPowers]
Headline
Ideal from inverse system
Usage
M = fromDual f
Inputs
f:Matrix
f:RingElement
Outputs
M:Matrix
whose image is the inverse system
Description
Text
The matrix (or ring element) f is interpreted as an element of the linear dual of
the base polynomial ring, where the monomial in f are interpreted as monomials in the
divided power basis (the dual basis of the monomial basis of ring f. Thus
fromDual f = gens inverseSystem (f, DividedPowers => true).
See the documentation nodes for InverseSystems for the theory, and inverseSystem for
the function. Note that the operation of fromDual is not equivariant with respect
to the general linear group, acting by change of basis. This not a bug, but
follows because fromDual
uses the divided power basis. If equivariant behavior is desired, use
the option DividedPowers=>false (which is the default behavior of
inverseSystem):
Example
S = ZZ/101[x,y]
f1 = x^2
f2 = (x+y)^2
betti res ideal fromDual f1
betti res ideal fromDual f2
betti res (I = ideal fromDual(f2, DividedPowers => false))
I == inverseSystem (f2, DividedPowers => false)
inverseSystem (f2, DividedPowers => true)
ideal fromDual(f2, DividedPowers => false)
ideal fromDual(f2, DividedPowers => true)
Caveat
The Base ring of the input must be a standard graded polynomial ring over a field.
Logically, the output of fromDual should be an ideal, not a matrix, but the original
function was converted from the classic Macaulay, where this distinction was not made.
SeeAlso
InverseSystems
inverseSystem
fromDual
///
doc ///
Key
isStandardGradedPolynomialRing
(isStandardGradedPolynomialRing, Ring)
Headline
Checks whether a ring is a polynomial ring over a field with variables of degree 1
Usage
b = isStandardGradedPolynomialRing R
Inputs
R:Ring
Outputs
b:Boolean
SeeAlso
isPolynomialRing
///
--check that the bounds are right
TEST///
S= QQ[a,b,c]
d= 3
f = product(3,i->S_i^(d-1))
I = ideal apply(3, i->S_i^d)
assert(I == inverseSystem f)
assert (I == inverseSystem inverseSystem(3, I))
///
TEST///
R = ZZ/101[a,b]
assert(isStandardGradedPolynomialRing R)
assert(not isStandardGradedPolynomialRing (R[x]))
assert(not isStandardGradedPolynomialRing (ZZ[x]))
assert(not isStandardGradedPolynomialRing (R[x, Degrees =>{{1,1}}]))
///
--fromDividedPowers and toDividedPowers are inverse to one another
TEST///
setRandomSeed 0
kk = QQ
n = 3
S = kk[a,b,c]
p = (a+b)^2
q = toDividedPowers p
assert(q == 2*a^2+2*a*b+2*b^2)
assert(p ==fromDividedPowers q)
P = (random(S^{0,1},S^{-2,-3}))
Q = fromDividedPowers toDividedPowers P
R = toDividedPowers fromDividedPowers P
assert(P==Q)
assert(P == R)
setRandomSeed 0
kk = QQ
n = 3
S = kk[a,b,c]
g = random(S^3, S^3)
testmap = map(S,S,(vars S)*g)
g == fromDividedPowers toDividedPowers g
g == toDividedPowers fromDividedPowers g
///
--with or without divided powers,
--applying inverseSystem twice should be
--the identity on ideals AND on submodules of the dual, represented as matrices.
TEST///
setRandomSeed 0
S = QQ[a,b]
G = random(S^2,S^2)
GG = map(S,S,(vars S)*G)
GG' = map(S,S,(vars S)*transpose G^-1)
f = a^2
g = b^3
h = GG matrix{{f,g}}
I = ideal h
--the equality for ideals:
assert(I == inverseSystem inverseSystem(3, I))
assert(I == inverseSystem(inverseSystem(4, I, DividedPowers=>true),
DividedPowers =>true
)
)
--The equality for matrices
--since we can't directly compare submodules of the injective hull, we compare them by taking their annihilators:
assert(inverseSystem h == inverseSystem inverseSystem(4,inverseSystem h))
assert(
inverseSystem(h,DividedPowers=>true)
==
inverseSystem(
inverseSystem(4,
inverseSystem(h, DividedPowers=>true),
DividedPowers=>true),DividedPowers =>true)
)
///
--inverseSystem is equivariant on matrices
TEST///
setRandomSeed 0
kk = QQ
n = 3
S = kk[a,b,c]
assert(inverseSystem matrix{{0_S}} == ideal(1_S))
g = random(S^3, S^3)
testmap = map(S,S,(vars S)*g)
testmap' = map(S,S,(vars S)*(dual g)^-1)
f = matrix{{a,b^3}}
f = random(S^1, S^{-2,-2,-3});
assert(inverseSystem testmap' inverseSystem(5,f) ==
inverseSystem inverseSystem(5, (testmap f))
)
///
--inverseSystem is equivariant on 0-dimensional ideals
--(and, up to the given degree, on arbitrary ideals)
TEST///
setRandomSeed 0
kk = QQ
n = 3
S = kk[a,b,c]
g = random(S^3, S^3)
testmap = map(S,S,(vars S)*g)
testmap' = map(S,S,(vars S)*(dual g)^-1)
f = random(S^1, S^{-2,-2,-3});
assert(inverseSystem testmap' inverseSystem(5,f) ==
inverseSystem inverseSystem(5, (testmap f))
)
f = ideal(a,b^3)+(ideal vars S)^4;
assert( inverseSystem testmap' inverseSystem (4,f) ==
inverseSystem inverseSystem (4, testmap f)
)
mm=ideal vars S
f = ideal(a,b^3)
f = ideal random(S^1, S^{-2,-3});
assert(mm^5+inverseSystem testmap' inverseSystem (4,f) ==
mm^5+inverseSystem inverseSystem (4, testmap f)
)
///
TEST///
--the local, that is, inhomogeneous case:
S = QQ[a,b,c]
G = random(S^3,S^3)
GG = map(S,S,(vars S)*G)
M = matrix{{a^2+b^3}}
I1 = inverseSystem M
I2 = inverseSystem GG M
assert(hilbertSeries ideal leadTerm gens gb I1===hilbertSeries ideal leadTerm gens gb I2)
S = QQ[x,y]
I = ideal"x3,xy+y4+y5"+(ideal vars S)^7
M' = inverseSystem(7, I)
assert(I ==inverseSystem M')
M'' = inverseSystem(7,I,DividedPowers => true)
assert(I ==inverseSystem (M'',DividedPowers => true))
assert(M'!= M'')
---
S = QQ[x,y]
I = ideal"x3,xy+y4+y5"+(ideal vars S)^7
M' = inverseSystem(7, I)
assert(I ==inverseSystem M')
M'' = inverseSystem(7,I, DividedPowers => true)
assert(I ==inverseSystem (M'',DividedPowers => true))
assert(M'!= M'')
///
TEST///
kk = ZZ/32003
S = kk[a,b,c]
f = matrix"a3+b3+c3"
assert(fromDual f == fromDual toDual(10,fromDual f))
f = f++f
assert(fromDual f == fromDual toDual(10,fromDual f))
f = random(S^{1,2,3},S^{0,-1,-2})
assert(fromDual f == fromDual toDual(10,fromDual f))
///
TEST ///
setRandomSeed 0
R = ZZ/32003[x_1..x_3];
g = random(R^1, R^{-4})
f = fromDual g
F = res ideal f
assert(apply(4, i->rank F_i) == {1,7,7,1})
///
TEST ///
R = ZZ/101[a..d]
f = matrix{{a^3 + b^3 + c^3 + d^3 + (a+b+c)^3}}
fdual = fromDual f
assert(f == toDual(4, fdual))
///
TEST///
R = ZZ/32003[a..e];
f = matrix{{a^2, b^2, c^2, d^2, e^3, a*d-e^2}}
betti res coker f
g = toDual(1,f)
assert((ideal fromDual g == ideal f) ==false)
g = toDual(2,f)
assert((ideal fromDual g == ideal f) ==true)
g = toDual(3,f)
assert((ideal fromDual g == ideal f) ==true)
///
TEST ///
--a case where the ideal is not 0-dimensional
R = QQ[a,b,c]
f= matrix"a-b,c"
toDual(2,f) == matrix {{a^2+a*b+b^2}}
///
end--
document {
Key => "inverse systems",
"Suppose that R = k[x1,...,xn], and that
E = k[y1,...,yn] is the injective envelop of k. IE, E is given the R-module structure:
x^A . y^B = y^(B-A), if B-A >= 0 in every component, and x^A . y^B = 0 otherwise.",
PARA{},
"If I is an ideal of R, then the submodule I' = Hom_R(R/I,E) of E is called the
(Macaulay) inverse system of I. I is zero-dimensional if and only if I' is finitely generated.",
PARA{},
"This is a dual operation, since I can be recovered as ann_R(I').",
PARA{},
"In Macaulay2, currently the computation of the inverse system I' (toDual) and of the
ideal I from I' (fromDual) are restricted to the situation where I and I' are homogeneous.
As an example, let's compute the ideal corresponding to a cubic.",
EXAMPLE lines ///
R = QQ[a..e];
g = matrix{{a^3+b^3+c^3+d^3+e^3-d^2*e-a*b*c-a*d*e}}
f = fromDual g
I = ideal f
///,
"The resulting ideal is always zero dimensional, and its Cohen-Macaulay type is the
number of generators of the submodule E defined by g. Therefore, if g is a 1 by 1 matrix,
then the resulting ideal is Gorenstein.",
EXAMPLE lines ///
res I
betti oo
///,
PARA{},
"The other direction (starting with an ideal I) is more complicated, since the result may not be finitely generated.
So, we must give an integer d as well as the generators of I:",
EXAMPLE lines ///
toDual(3,f)
///,
"The integer d has two interpretations. The most general is that the (finitely generated)
intersection of I' and the submodule generated by y1^d ... yn^d is returned.
If the ideal I is zero dimensional, d should be an integer such that x^(d+1) is in I = image f for
every variable x.",
EXAMPLE lines ///
f = matrix{{a*b,c*d,e^2}}
toDual(1,f)
toDual(2,f)
toDual(3,f)
g = toDual(4,f)
fromDual g
///,
SeeAlso => {toDual, fromDual}
},
restart
loadPackage("InverseSystems", Reload =>true)
uninstallPackage("InverseSystems")
installPackage("InverseSystems")
check "InverseSystems"
viewHelp InverseSystems
cubic = (g,r) -> (
--make the sum of r cubes in g-2 variables
x := symbol x;
S := ZZ/101[x_0..x_(g-3)];
sum(r, i-> if i<=g-3 then x_i^3 else ((random(S^1,S^{-1}))_0_0)^3)
)
cubic(6,3)
betti res inverseSystem cubic(6,5)
g= 9
netList apply(toList(g-2..2*g-4), j-> betti res inverseSystem cubic(g,j))
-------code from Mats
modFromDual Matrix := Matrix => (F) -> (
S := ring F;
d := max for m in first entries compress flatten monomials F list sum first exponents m;
L := matrix {{1_S}};
for i from 1 to d+1 do L = L | gens power(ideal vars S,i);
pM := (L ** id_(target F)) * syz sub(contract((transpose L) * L,transpose F),vars S-vars S);
presentation prune trim coker pM
)
newToDual (ZZ,Matrix) := Matrix => (d,f) -> (
S := ring f;
g := product apply(generators S, v -> v^d);
I := ideal for i to -1 + numgens S list S_i^(d+1);
R := S / I;
transpose contract(
transpose mingens image (sub(gens ker sub(transpose f,R),S)),
map(S^{degree g},S^1,matrix{{g}})))
newToDualTrunc (ZZ,Matrix) := Matrix => (d,f) -> (
newToDual (d,f | ((target f) ** gens power(ideal vars ring f,d)))
)
doc ///
Key
newFromDual
Headline
computes the submodule annihilating an inverse system
Usage
N = newFromDual(F)
Inputs
F:Matrix
F is a matrix where the columns are the generators of an inverse system in
the inverse system of a free module.
Outputs
N:Matrix
N is a presentation matrix for the module that has F as its inverse system.
Description
Text
Example
F = matrix(QQ[x,y,z],{{x^4,y^4},{z^4,x^2*y^2}})
N = newFromDual(F)
Text
The command {\tt newFromDual} extends the command {\tt fromDual} so that it also
works for modules.
///
doc ///
Key
newToDual
Headline
computes the inverse system of a given module
Usage
F = newFromDual(d,N)
Inputs
d:ZZ
N:Matrix
d is an integer specifying a particular degree for the truncation of the inverse
system to be computed. (Needed since it is in general not finitely generated)
N is a presentation matrix for a module over a polynomial ring.
Outputs
F:Matrix
The columns of F are generators of the intersection of the inverse
system of the module presented by N with the inverse system generated by a the
d:th power of the product of the variables.
Description
Text
Example
N = matrix(QQ[x,y,z],{{x^4,y^4},{z^4,x^2*y^2}})
F = newToDual(5,N)
Text
The command {\tt newToDual} extends the command {\tt toDual} so that it also
works for modules.
///
|