1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842
|
-- -*- coding: utf-8-unix -*-
newPackage(
"KustinMiller",
Version => "1.4",
Date => "May 14, 2012",
Authors => {{Name => "Janko Boehm",
Email => "boehm@mathematik.uni-kl.de",
HomePage => "http://www.math.uni-sb.de/ag/schreyer/jb/"},
{Name => "Stavros Papadakis",
Email => "papadak@math.ist.utl.pt",
HomePage => "http://www.math.ist.utl.pt/~papadak/"}
},
Headline => "unprojection and the Kustin-Miller complex construction",
Keywords => {"Commutative Algebra"},
PackageExports => {"SimplicialComplexes"},
DebuggingMode => true,
Certification => {
"journal name" => "The Journal of Software for Algebra and Geometry: Macaulay2",
"journal URI" => "http://j-sag.org/",
"article title" => "Implementing the Kustin-Miller complex construction",
"acceptance date" => "2012-05-07",
"published article URI" => "http://j-sag.org/Volume4/jsag-2-2012.pdf",
"published code URI" => "http://j-sag.org/Volume4/KustinMiller.m2",
"repository code URI" => "https://github.com/Macaulay2/M2/blob/master/M2/Macaulay2/packages/KustinMiller.m2",
"release at publication" => "a611bb9148103fa0c7908595cc979c66d210bb70",
"version at publication" => "1.4",
"volume number" => "4",
"volume URI" => "http://j-sag.org/Volume4/"
}
)
-------------------------------------------------------------------------------
-*
Copyright [2011] [Janko Boehm, Stavros Papadakis]
This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along with this program; if not, see <http://www.gnu.org/licenses/>
*-
-*
Installation:
Put the file KustinMiller.m2 somewhere into the path of Macaulay2
(usually into the directory .Macaulay2/code inside your home directory, type
path in M2 to see the path) and do inside M2
installPackage "KustinMiller"
This package requires the package SimplicialComplexes.m2 Version 1.2 or higher,
so install this first.
*-
--------------------------------------------------------------------
-- the commands available to the user:
export {
"kustinMillerComplex",
"unprojectionHomomorphism",
"resBE",
"delta",
"isExactRes",
"Tom",
"Jerry",
"Face",
"face",
"isSubface",
"isFaceof"
}
if version#"VERSION" < "1.4" then error "This package was written for Macaulay2 Version 1.4 or higher.";
if (options SimplicialComplexes).Version < "1.2" then error "This package requires the SimplicialComplexes package Version 1.2 or higher."
--------------------------------------------------------------------
-- Code originally located in 'SimplicialComplexes'
Face = new Type of MutableHashTable
vertices Face := List => F -> F.vertices
dim Face := ZZ => F -> -1 + # vertices F
ring Face := Ring => F -> F.ring
net Face := f -> (
v := vertices f;
if #v === 0 then return net({});
horizontalJoin apply(v,j->net(j)|net(" "))
)
Face#{Standard,AfterPrint} = m -> (
n := # vertices m;
if n === 0 then vstr := "empty face";
if n === 1 then vstr = "face with " | n | " vertex";
if n > 1 then vstr = "face with " | n | " vertices";
<< endl;
<< concatenate(interpreterDepth:"o") << lineNumber << " : "
<< vstr|" in "|net(ring m)
<< endl;
)
face = method()
face List := Face => L -> new Face from {
symbol vertices => L,
symbol ring=> ring L#0
}
face(List, PolynomialRing) := Face => (L,R) -> new Face from {
symbol vertices => L,
symbol ring => R
}
face RingElement := m -> face(support m, ring m)
Face == Face := Boolean => (F, G) -> (
# vertices F === # vertices G and set vertices F === set vertices G
)
isSubface = method()
isSubface(Face, Face) := Boolean => (F, G) -> (
isSubset(set vertices F, set vertices G)
)
isFaceOf = method()
isFaceOf(Face, SimplicialComplex) := Boolean => (F, C) -> (
fc := facets C / face;
#(select(1,fc, G -> isSubface(F,G)))>0
)
substitute(Face, PolynomialRing) := (F, R) -> (
v := vertices F;
face(apply(v, j -> sub(j, R)), R)
)
------------------------------------------------------------------------
-- Buchsbaum-Eisenbud resolution of the ideal of submaximal Pfaffians of a
-- skew symmetric matrix, keeping the syzygy matrix skew-symmetric
resBE=method()
resBE Matrix := A -> (
R:=ring A;
p:=gens pfaffians(-1+rank source A,A);
n:=rank source p;
g:=matrix {apply(n,j-> (-1)^(j)*p_(n-j-1)_0)};
chainComplex {g,A,transpose g,map(R^1,R^0,0)})
-------------------------------------------------------------------------
-- Boundary complex of a cyclic polytope
-- for more details on how to create the boundary complex
-- of a cyclic polytope see
-- J. Boehm, S. Papadakis: On the structure of Stanley-Reisner rings associated to cyclic polytopes}, http://arxiv.org/abs/0912.2152, to appear in Osaka J. Math.
-- test whether the list of variables X is contiguous
-- used by contiguousSubsets
isContiguous=method()
isContiguous List := X -> (
if X=={} then return false ;
X1:=sort X;
p2:=X1#-1;
p1:=X1#0;
abs(index p2 - index p1)==#X1-1)
TEST ///
debug KustinMiller
R=QQ[x_1..x_9]
assert(isContiguous {x_2,x_3,x_6,x_4,x_5,x_8,x_7})
assert(not isContiguous {x_1,x_2,x_5,x_3})
///
-- compute the contiguous subsets
-- used by maximalContiguousSubsets
contiguousSubsets=method()
contiguousSubsets List := W ->
select(subsets(W),isContiguous)
TEST ///
debug KustinMiller
R=QQ[x_1..x_6]
assert(contiguousSubsets {x_4,x_5} == {{x_4}, {x_5}, {x_4, x_5}})
assert(contiguousSubsets {x_1,x_2,x_3} == {{x_1}, {x_2}, {x_1, x_2}, {x_3}, {x_2, x_3}, {x_1, x_2, x_3}})
assert(contiguousSubsets {x_1,x_2,x_4} == {{x_1}, {x_2}, {x_1, x_2}, {x_4}})
///
-- given a list L, maximalElements L returns a list containing the maximal
-- elements of L with respect to inclusion
-- used by maximalContiguousSubsets
maximalElements=method()
maximalElements List := L -> (
M:=L;
for j from 0 to #L-1 do (
for jj from j+1 to #L-1 do (
if isSubset(L#j,L#jj) then (M=drop(L,{j,j});break);
if isSubset(L#jj,L#j) then (M=drop(L,{jj,jj});break);
);
);
if #M==#L then return L;
maximalElements M)
TEST ///
debug KustinMiller
R=QQ[x_1..x_10]
assert(maximalElements {{x_1,x_2,x_3},{x_1,x_2},{x_3,x_4},{x_2,x_3,x_4,x_7,x_8}} == {{x_1, x_2, x_3}, {x_2, x_3, x_4, x_7, x_8}})
assert(maximalElements {{x_1,x_2,x_3}, {x_2,x_2,x_3}, {x_1,x_2},{x_3,x_9},{x_6}} == {{x_1, x_2, x_3}, {x_3, x_9}, {x_6}})
assert(maximalElements {{x_2,x_1,x_3}, {x_1,x_2,x_3}, {x_1,x_2},{x_3,x_9},{x_6}} == {{x_1, x_2, x_3}, {x_3, x_9}, {x_6}})
///
-- compute the maximal contiguous subsets of a list of variables
-- used by oddContiguousNonEndsets
maximalContiguousSubsets=method()
maximalContiguousSubsets List :=
maximalElements @@ contiguousSubsets
TEST ///
debug KustinMiller
R=QQ[x_1..x_10]
assert(maximalContiguousSubsets {x_1,x_2,x_4} == {{x_1, x_2}, {x_4}})
assert(maximalContiguousSubsets {x_1,x_2,x_4,x_5,x_7,x_8,x_9} == {{x_1, x_2}, {x_4, x_5}, {x_7, x_8, x_9}})
///
-- test whether a list of variables is an endset
-- used by removeEndsets
isEndset=method()
isEndset List := L ->(
v:=gens ring first L;
member(v#0,L) or member(v#-1,L))
TEST ///
debug KustinMiller
R=QQ[x_1..x_10]
assert(isEndset {x_1,x_2})
assert(isEndset {x_1,x_3})
assert(not isEndset {x_2,x_3})
///
-- remove the endsets from a list of lists of variables
-- used by oddContiguousNonEndsets
removeEndsets=method()
removeEndsets List := L ->
select(L,j->not isEndset j )
TEST ///
debug KustinMiller
R=QQ[x_1..x_10]
assert(removeEndsets {{x_1,x_2},{x_3,x_4}} == {{x_3,x_4}})
assert(removeEndsets {{x_1,x_3},{x_7,x_8}} == {{x_7,x_8}})
assert(removeEndsets maximalContiguousSubsets {x_1,x_2,x_4} == {{x_4}})
assert(removeEndsets maximalContiguousSubsets {x_1,x_2,x_4,x_5,x_7,x_8} == {{x_4, x_5}, {x_7, x_8}})
///
-- compute the odd contiguous non-endsets contained in a list of variables
-- used by isFaceOfCyclicPolytope
oddContiguousNonEndsets=method()
oddContiguousNonEndsets List := L ->(
L1:=removeEndsets maximalContiguousSubsets L;
select(L1,j->odd(#j)))
TEST ///
debug KustinMiller
R=QQ[x_1..x_10]
assert(removeEndsets maximalContiguousSubsets {x_1,x_2,x_4,x_5,x_7,x_8,x_9} == {{x_4, x_5}, {x_7, x_8, x_9}})
assert(oddContiguousNonEndsets {x_1,x_2,x_4,x_5,x_7,x_8,x_9} == {{x_7, x_8, x_9}})
///
-- tests whether W is a face of a cyclic polytope of dimension d
-- used by delta
isFaceOfCyclicPolytope=method()
isFaceOfCyclicPolytope(List,ZZ):=(W,d)->
W=={} or #oddContiguousNonEndsets(W)<=d-#W
TEST ///
debug KustinMiller
R=QQ[x_1..x_10]
assert(isFaceOfCyclicPolytope({x_2,x_3},3))
assert(isFaceOfCyclicPolytope({x_3,x_4},3))
assert(not isFaceOfCyclicPolytope({x_4,x_9},3))
///
-- boundary complex of a cyclic polytope
-- of dimension d on the vertices corresponding to the variables of R
delta=method()
delta(ZZ,PolynomialRing) := (d, R) -> (
L := apply(select(subsets(gens R,d), j -> isFaceOfCyclicPolytope(j,d)),face);
simplicialComplex apply(L, j -> product vertices j)
)
-----------------------------------------------------------------------------
-- Constructing the Kustin-Miller complex
kustinMillerComplex=method(Options=>{Verbose=>0})
kustinMillerComplex(Ideal,Ideal,PolynomialRing):=opt->(I,J,T0)->(
if ring I =!= ring J then error "expected the rings of the first and second argument to be the same";
if not isSubset(I,J) then error "expected first argument to be an ideal contained in the second";
if codim(I) != -1+codim(J) then error "expected an unprojection locus of codimension 1";
kustinMillerComplex(res I,res J,T0,opt))
kustinMillerComplex(ChainComplex,ChainComplex,PolynomialRing):=opt->(cI0,cJ0,T0)->(
if opt.Verbose>1 then (
<<"------------------------------------------------------------------------------------------------------------------------"<<endl;
<<"res(I):"<<endl;
for j from 1 to length(cI0) do (
<<"a_"<<j<<" = "<<cI0.dd_j<<" : "<<degrees source cI0.dd_j <<" -> "<<degrees target cI0.dd_j<<endl;
);
<<endl<<"------------------------------------------------------------------------------------------------------------------------"<<endl;
<<"res(J):"<<endl;
for j from 1 to length(cJ0) do (
<<"b_"<<j<<" = "<<cJ0.dd_j<<" : "<<degrees source cJ0.dd_j <<" -> "<<degrees target cJ0.dd_j<<endl;
);
<<"------------------------------------------------------------------------------------------------------------------------"<<endl;
);
I:=ideal cI0.dd_1;
J:=ideal cJ0.dd_1;
phi:=unprojectionHomomorphism(I,J);
R:=ring I;
if R =!= ring J then error("expected the rings of the first and second argument to be the same");
K:=coefficientRing R;
degT:=degree phi;
S:=K(monoid[toSequence(prepend(T0_0,gens R)),Degrees=>prepend(degT,degrees R)]);
cI:=substitute(cI0,S);
cJ:=substitute(cJ0,S);
g:=length cJ ;
dualcI:=(dual cI)[-codim I];
dualcJ:=(dual cJ)[-codim I];
degshift:=degree phi;
if degshift#0<=0 then error "Unprojection variable must have positive degree. (Recall that, if I is the first argument and J is the second, then the degree of the unprojection variable is k_1 - k_2, where R/I(k_1) and R/J(k_2) are the canonical modules of R/I and R/J respectively.)";
if opt.Verbose>0 then (
gJ:=gens source phi;
<<"phi: "<<(entries gJ)#0<<" -> "<<(entries phi)#0<<endl;
<<"degree phi = "<<degshift<<endl;
<<"------------------------------------------------------------------------------------------------------------------------"<<endl;
);
gJs:=sub(gens source phi,S);
IJmap:=sub(matrix entries phi,S)*((gens ideal (dualcJ.dd_0))//gJs);
alphaDual:=extend(dualcI,dualcJ, map(dualcI#0,dualcJ#0,IJmap));
w:=(alphaDual_(length cI))_0_0;
alpha:=toList apply(g-1,j->sub(w^(-1),S)*((transpose alphaDual_(g-2-j))**S^{-degshift}));
if opt.Verbose>1 then (
<<endl;
for j from 1 to #alpha do (
<<"alpha_"<<j<<" = "<<alpha_(j-1)<<endl;
);
<<endl<<"------------------------------------------------------------------------------------------------------------------------"<<endl;
);
cJ1:=cJ[1];
betaMap:=map((cI#0,(cJ1#0)**S^{-degshift},-sub(matrix entries phi,S)*((gens ideal (cJ1.dd_0))//gJs)));
beta1:=extend(cI,cJ1**S^{-degshift},betaMap);
beta:=toList apply(g, j-> (-1)^(j + codim I)*beta1_j);
if opt.Verbose>1 then (
for j from 1 to #beta-1 do (
<<"beta_"<<j<<" = "<<beta_(j-1)<<endl;
);
<<endl<<"------------------------------------------------------------------------------------------------------------------------"<<endl;
);
u:=(beta1_(length cI))_0_0;
if opt.Verbose>1 then (
<<"u = "<<u<<endl;
<<"------------------------------------------------------------------------------------------------------------------------"<<endl;
);
-- construct the homotopy h
h:={0_S};
for j from 1 to g-1 do (
tC1:= chainComplex { id_(S^(rank (cI#j)))};
tC2:= chainComplex { cI.dd_j };
hi:= (extend ( tC2, tC1, map (tC2#0, tC1#0, beta#(j-1)*alpha#(j-1) - h#(j-1)*cI.dd_j )));
h=append(h,map(cI#j,cI#j**S^{-degshift},hi_1));
);
if opt.Verbose>1 then (
for j from 1 to #h-1 do (
<<"h_"<<j<<" = "<<h_(j-1)<<endl;
);
<<endl<<"------------------------------------------------------------------------------------------------------------------------"<<endl;
);
cJ=cJ**S^{-degshift};
-- form the differentials of the Kustin-Miller complex
L:={};
for j from 1 to g do (
if g==2 then (
if j==1 then (
inL:={cI.dd_1,beta#0,cJ.dd_1,S_0};
);
if j==2 then (
inL={alpha#(j-2),cJ.dd_j,cI.dd_(j-1),u,S_0};
);
);
if g>=3 then (
if j==1 then (
inL={cI.dd_1,beta#0,cJ.dd_1,S_0};
);
if j==2 then (
inL={cI.dd_2,beta#1,h#1,cJ.dd_2,alpha#0,S_0};
);
if j>=3 and j<=g-2 then (
inL={cI.dd_j,beta#(j-1),h#(j-1),cJ.dd_j,alpha#(j-2),cI.dd_(j-1),S_0};
);
if j>=3 and j==g-1 then (
inL={beta#(j-1),h#(j-1),cJ.dd_j,alpha#(j-2),cI.dd_(j-1),S_0};
);
if j>=3 and j==g then (
inL={alpha#(j-2),cJ.dd_j,cI.dd_(j-1),u,S_0};
);
);
L=append(L,differentials(inL,j,g,degshift));
if opt.Verbose>0 then (
<<"f_"<<j<<" = "<<L_(j-1)<<" : "<<degrees source L_(j-1)<<" -> "<<degrees target L_(j-1)<<endl;
<<endl<<"------------------------------------------------------------------------------------------------------------------------"<<endl;
);
);
chainComplex L)
--kustinMillerComplex(I,J,QQ[t])
TEST ///
R = QQ[x_1..x_4,z_1..z_4, T]
I = ideal(z_2*z_3-z_1*z_4,x_4*z_3-x_3*z_4,x_2*z_2-x_1*z_4,x_4*z_1-x_3*z_2,x_2*z_1-x_1*z_3)
J = ideal (z_1..z_4)
cc=kustinMillerComplex(I,J,QQ[t]);
assert(isExactRes cc)
///
--kustinMillerComplex(L#0,L#1,QQ[t])
-- some auxiliary procedures
-- make the differentials of the Kustin-Miller complex
-- this command (and its documentation, which you can find below) is not a user level function and hence does not get exported
differentials=method()
differentials(List,ZZ,ZZ,List):=(L,i,g,degshift)->(
if i<0 or i>g then error("second argument should be between 0 and "|g);
T:=last L;
mT:=matrix {{T}};
R:=ring first L;
-- codim 2 case
if g==2 then (
-- first differential
if i==1 then (
b1:=L#0;beta1:=L#1;a1:=L#2;
return(beta1+ mT**a1)
);
-- second differential
if i==2 then (
alphaim1:=L#0;ai:=L#1;bim1:=L#2;u:=L#3;
return(-alphaim1+((-1)^i*u^(-1)*mT**ai));
);
);
-- codim 3 case
if g==3 then (
-- first differential
if i==1 then (
b1=L#0;beta1=L#1;a1=L#2;
return matrix {{b1, beta1+ mT**a1}};
);
-- second differential
if i==2 then (
b2:=L#0;beta2:=L#1;h1:=L#2;a2:=L#3;alpha1:=L#4;
return matrix {{beta2, h1+ mT**id_(R^(rank target b2))},
{ -a2, -alpha1 }};
);
-- third differential
if i==3 then (
alphaim1=L#0;ai=L#1;bim1=L#2;u=L#3;
sbim1:=bim1**R^{-degshift};
return matrix {{-alphaim1+(-1)^i*u^(-1)*mT**ai},
{sbim1 }};
);
);
-- general case
-- first differential
if i==1 then (
b1=L#0;beta1=L#1;a1=L#2;
return matrix {{b1, beta1+mT**a1}};
);
-- second differential
if i==2 then (
b2=L#0;beta2=L#1;h1=L#2;a2=L#3;alpha1=L#4;
return matrix {{b2, beta2, h1+mT**id_(R^(rank target b2))},
{ 0, -a2, -alpha1 }};
);
-- the general differential
if i>=3 and i<=g-2 then (
bi:=L#0;betai:=L#1;him1:=L#2;ai=L#3;alphaim1=L#4;bim1=L#5;
sbim1=bim1**R^{-degshift};
return matrix {{bi, betai, him1+(-1)^i*mT**id_(R^(rank target bi))},
{ 0, -ai, -alphaim1 },
{ 0, 0, sbim1 }};
);
-- second last differential
if i>=3 and i==g-1 then (
betai=L#0;him1=L#1;ai=L#2;alphaim1=L#3;bim1=L#4;
sbim1=bim1**R^{-degshift};
return matrix {{betai, him1+(-1)^i*T*id_(R^(rank source bim1))},
{ -ai, -alphaim1 },
{ 0, sbim1 }};
);
-- case i>=3 and i==g
-- last differential
alphaim1=L#0;ai=L#1;bim1=L#2;u=L#3;
sbim1=bim1**R^{-degshift};
matrix {{-alphaim1+(-1)^i*u^(-1)*mT**ai},
{sbim1 }} )
------------------------------------------------------------------------------
-- Compute the unprojection homomorphism phi
unprojectionHomomorphism=method()
unprojectionHomomorphism(Ideal,Ideal):=(I,J)->(
R:=ring I;
if R =!= ring J then error "expected both ideals to be contained in the same ring";
if not isSubset(I,J) then error "expected first ideal to be contained in the second";
if codim(I) != -1 + codim(J) then error "the unprojection locus does not have codimension 1";
if not isGorenstein(I) or not isGorenstein(J) then error("input ideals should be projectively Gorenstein");
Q:=R/I;
M:=Hom(ideal mingens sub(J,Q),Q^1);
-- give some feedback on wrong input
if rank source gens M != 2 and rank source gens M != 1 then (
for j from 0 to -1+rank source gens M do (
phi:=homomorphism M_{j};
gJ:=gens source phi;
<<"phi: "<<(first entries gJ)<<" -> "<<(first entries phi)<<endl;
);
error "internal error: the computed module of homomorphisms does not have the number of generators predicted by theory";
);
if rank source gens M == 1 then (
return homomorphism M_{0};
) else (
f1:=homomorphism M_{0};
f2:=homomorphism M_{1};
if J==I+sub(ideal (entries f1)#0,R) then (
return f2
) else (
return f1
)
))
-- test whether I is projectively Gorenstein
isGorenstein=method()
isGorenstein(Ideal):= I->(
R:= ring I;
(pdim(R^1 / I) == codim I) and (rank gens Ext^(codim I)(coker gens I, R^1)==1)
)
TEST ///
debug KustinMiller
R = QQ[x_1..x_4,z_1..z_4, T]
I = ideal(z_2*z_3-z_1*z_4,x_4*z_3-x_3*z_4,x_2*z_2-x_1*z_4,x_4*z_1-x_3*z_2,x_2*z_1-x_1*z_3)
assert(isGorenstein I )
R = QQ[x_1..x_6]
assert(not isGorenstein minors (2, matrix {{x_1..x_3},{x_4..x_6}}))
R = QQ[x_1..x_3]
assert(not isGorenstein ideal (x_1*x_2, x_1*x_3))
///
---------------------------------------------------------------------
-- some useful stuff for chain complexes
-- check whether a chain complex is a resolution
-- that is it is exact everywhere except at the
-- first non-zero module
-- note that this is not the same as isExact in the
-- chain complex extras
-- we first find the first non-zero module
firstNonzero=method()
firstNonzero(ChainComplex):= cc -> (
for i from min cc to max cc do if cc_i!=0 then return i;
infinity)
isExactRes=method()
isExactRes(ChainComplex):= cc ->(
for j from firstNonzero(cc)+1 to max(cc)+1 do (
if cc.dd_(j)*cc.dd_(j+1) !=0 then return false;
if (HH_j cc) !=0 then return false;
);
true)
-- with this method also the substituted complexes
-- recognize, when printed, if a name is assigned to
-- the ring of the complex
substitute(ChainComplex,Ring):=(cc,S)->(
dual cc;
cn:= new ChainComplex;
cn.ring = S;
for i from min(cc) to max(cc) do cn#i = S^(degrees (cc#i));
for i from min(cc)+1 to max(cc) do cn.dd_i = sub(cc.dd_i,S);
cn)
--------------------------------------------------------------------------
-- Stellar subdivision code
stellarSubdivisionSimplex=method()
stellarSubdivisionSimplex(Face,Face,PolynomialRing,PolynomialRing):=(D,s,n,R)->(
if isSubface(s,D) then
facets(subdivideFace (D,s,n,R)) / face
else
{substitute(D,R)})
-- stellar subdivision of a simplicial complex with respect to the face
-- introducing a new variable
-- the 'stellarSubdivision' method is defined in 'Polyhedra'
stellarSubdivision(SimplicialComplex,Face,PolynomialRing):= (D,s0,n) -> (
R1:=ring D;
s:=substitute(s0,R1);
if not isFaceOf(s,D) then (
error "second argument is not a face of the first argument";
);
fc:=facets(D) / face;
R1=ring D;
K:=coefficientRing R1;
v:=join(gens R1,gens n);
R:=K(monoid[v]);
L:=join toSequence for i to #fc-1 list stellarSubdivisionSimplex (fc#i,s,n,R);
simplicialComplex apply(L, j -> product vertices j)
)
joinFaces=method()
joinFaces(Face,Face):=(F,G)->(
v1:=vertices F;
v2:=vertices G;
face(v1|v2))
listMinus=method()
listMinus(List,List):=(L1,L2)->(
for i in L1 list
if member(i,L2) then continue else i)
coFace=method()
coFace(Face,Face):=(F,G)->(
v1:=vertices F;
v2:=vertices G;
R:=ring G;
face(listMinus(v2,v1),R))
subdivideFace=method()
subdivideFace(Face,Face,PolynomialRing,PolynomialRing):= (D,s,n,R) -> (
comp := substitute(coFace(s,D),R);
nface:= substitute(face {n_0},R);
nc:=joinFaces(comp,nface);
vs:=vertices s;
L := for i to #vs-1 list joinFaces(nc,substitute(coFace(face {vs#i},s),R));
simplicialComplex apply(L, j -> product vertices j)
)
TEST ///
R=QQ[x_1..x_6]
I=monomialIdeal(product(gens R))
D=simplicialComplex I
Dsigma=stellarSubdivision(D,face {x_1,x_2,x_3},QQ[t])
S=ring Dsigma
assert(facets Dsigma == {x_2*x_3*x_5*x_6*t, x_1*x_3*x_5*x_6*t, x_1*x_2*x_5*x_6*t, x_2*x_3*x_4*x_6*t, x_1*x_3*x_4*x_6*t, x_1*x_2*x_4*x_6*t, x_2*x_3*x_4*x_5*t, x_1*x_3*x_4*x_5*t, x_1*x_2*x_4*x_5*t, x_2*x_3*x_4*x_5*x_6, x_1*x_3*x_4*x_5*x_6, x_1*x_2*x_4*x_5*x_6})
///
------------------------------------------------------------------------------------------------------------------
-- documentation
beginDocumentation()
doc ///
Key
KustinMiller
Headline
Unprojection and the Kustin-Miller complex construction
Description
Text
This package implements the construction of the Kustin-Miller complex [1]. This is the
fundamental construction of resolutions in unprojection theory [2]. For details on the
computation of the Kustin-Miller complex see [3].
Gorenstein rings with an embedding codimension at most 2 are known to be
complete intersections, and those with embedding codimension 3 are described
by the theorem of Buchsbaum and Eisenbud as Pfaffians of a skew-symmetric matrix;
general structure theorems in higher codimension are lacking and the main goal of unprojection theory
is to provide a substitute for a structure theorem.
Unprojection theory has been applied in various cases to construct new varieties, for example, in [4] in the case of Campedelli surfaces and [5] in the case of Calabi-Yau varieties.
We provide a general command @TO kustinMillerComplex@ for the Kustin-Miller complex construction and demonstrate it on several examples connecting unprojection theory
and combinatorics such as stellar subdivisions of simplicial complexes [6],
minimal resolutions of Stanley-Reisner rings of boundary complexes $\Delta(d,m)$
of cyclic polytopes of dimension d on m vertices [7], and the classical
(non-monomial) Tom example of unprojection [2].
This package requires the package
@HREF{"http://www.math.uni-sb.de/ag/schreyer/jb/Macaulay2/SimplicialComplexes/SimplicialComplexes.m2","SimplicialComplexes.m2"}@
version 1.2 or higher, so install this first.
{\bf References:}
For the Kustin-Miller complex see:
[1] {\it A. Kustin and M. Miller, Constructing big Gorenstein ideals from small ones, J. Algebra 85 (1983), 303-322}.
[2] {\it S. Papadakis, Kustin-Miller unprojection with complexes, J. Algebraic Geometry 13 (2004) 249-268}, @HREF"http://arxiv.org/abs/math/0111195"@
[3] {\it J. Boehm, S. Papadakis: Implementing the Kustin-Miller complex construction}, @HREF"http://arxiv.org/abs/1103.2314"@
For constructing new varieties see for example:
[4] {\it J. Neves and S. Papadakis, A construction of numerical Campedelli surfaces with ZZ/6 torsion, Trans. Amer. Math. Soc. 361 (2009), 4999-5021}.
[5] {\it J. Neves and S. Papadakis, Parallel Kustin-Miller unprojection with an application to Calabi-Yau geometry, preprint, 2009, 23 pp}, @HREF"http://arxiv.org/abs/0903.1335"@
For the stellar subdivision case see:
[6] {\it J. Boehm, S. Papadakis: Stellar subdivisions and Stanley-Reisner rings of Gorenstein complexes}, @HREF"http://arxiv.org/abs/0912.2151"@
For the case of cyclic polytopes see:
[7] {\it J. Boehm, S. Papadakis: On the structure of Stanley-Reisner rings associated to cyclic polytopes}, @HREF"http://arxiv.org/abs/0912.2152"@, to appear in Osaka J. Math.
{\bf Examples:}
@TO "Cyclic Polytopes"@ -- Minimal resolutions of Stanley-Reisner rings of boundary complexes of cyclic polytopes
@TO "Stellar Subdivisions"@ -- Stellar subdivisions and unprojection
@TO "Tom"@ -- The Tom example of unprojection
@TO "Jerry"@ -- The Jerry example of unprojection
{\bf Key user functions:}
{\it The central function of the package is:}
@TO kustinMillerComplex@ -- The Kustin-Miller complex construction
{\it Also important is the function to represent the unprojection data as a homomorphism:}
@TO unprojectionHomomorphism@ -- Compute the homomorphism associated to an unprojection pair
{\it Functions used in the examples to compare with the combinatorics:}
@TO delta@ -- The boundary complex of a cyclic polytope
@TO stellarSubdivision@ -- Compute the stellar subdivision of a simplicial complex
///
doc ///
Key
kustinMillerComplex
(kustinMillerComplex,Ideal,Ideal,PolynomialRing)
(kustinMillerComplex,ChainComplex,ChainComplex,PolynomialRing)
Headline
Compute Kustin-Miller resolution of the unprojection of I in J
Usage
kustinMillerComplex(I,J,W)
kustinMillerComplex(cI,cJ,W)
Inputs
J:Ideal
in a positively graded polynomial ring R
I:Ideal
contained in J
cI:ChainComplex
resolution of I
cJ:ChainComplex
resolution of J
W:PolynomialRing
over the same @TO coefficientRing@ as R
with one variable T.
Outputs
:ChainComplex
Description
Text
Compute Kustin-Miller resolution of the unprojection of I in J (or
equivalently of the image J' of J in R/I) with unprojection variable T.
We have the following setup:
Assume R is a @TO PolynomialRing@ over a field, the degrees of all
variables positive and $I \subset J \subset R$ two homogeneous ideals of R
such that R/I and R/J are Gorenstein and dim(R/J)=dim(R/I)-1.
Let R/I(k_1) and R/J(k_2) be the canonical modules of R/I and R/J respectively. We require k_1 - k_2, that is, the degree of the unprojection variable, to be positive.
For a description of this resolution and how it is computed see
J. Boehm, S. Papadakis: Implementing the Kustin-Miller complex construction, @HREF"http://arxiv.org/abs/1103.2314"@
It is also possible to specify minimal resolutions of I and J.
The function @TO kustinMillerComplex@ returns a chain complex over a new polynomial ring S
with the same @TO coefficientRing@ as R and the variables of R and W, where
degree(T) = @TO degree@ @TO unprojectionHomomorphism@(I,J) = k_1-k_2.
To avoid printing the variables of this ring when printing the chain complex
just give a name to the ring (e.g., do S = @TO ring@ cc to call it S).
We illustrate the Kustin-Miller complex construction at the example described in Section 5.5 of
Papadakis, Kustin-Miller unprojection with complexes, J. Algebraic Geometry 13 (2004) 249-268, @HREF"http://arxiv.org/abs/math/0111195"@
Example
R = QQ[x_1..x_4,z_1..z_4]
I = ideal(z_2*z_3-z_1*z_4,x_4*z_3-x_3*z_4,x_2*z_2-x_1*z_4,x_4*z_1-x_3*z_2,x_2*z_1-x_1*z_3)
betti res I
J = ideal (z_1..z_4)
betti res J
cc=kustinMillerComplex(I,J,QQ[T]);
S=ring cc
cc
betti cc
isExactRes cc
print cc.dd_1
print cc.dd_2
print cc.dd_3
print cc.dd_4
SeeAlso
unprojectionHomomorphism
///
doc ///
Key
unprojectionHomomorphism
(unprojectionHomomorphism,Ideal,Ideal)
Headline
Compute the homomorphism associated to an unprojection pair
Usage
unprojectionHomomorphism(I,J)
Inputs
J:Ideal
with R/J Gorenstein
I:Ideal
contained in J with R/I Gorenstein and dim(R/J)=dim(R/I)-1.
Outputs
f:Matrix
Description
Text
Compute the deformation associated to the unprojection of $I \subset J$ (or
equivalently of $J'\subset R/I$ where $R$ = @TO ring@ $I$ and $J'=$@TO sub@$(J,R/I)$),
i.e., a homomorphism
$\phi : J' \to R/I$
such that the unprojected ideal $U\subset R[T]$ is the inverse image of
$U' = (T*u - \phi(u) | u \in J' ) \subset (R/I)[T]$
under the natural map $R[T]\to(R/I)[T]$.
The result is represented by a matrix $f$ with @TO source@ $f$ = J'
and @TO target@ $f$ = (R/I)^1.
Example
R = QQ[x_1..x_4,z_1..z_4, T]
I = ideal(z_2*z_3-z_1*z_4,x_4*z_3-x_3*z_4,x_2*z_2-x_1*z_4,x_4*z_1-x_3*z_2,x_2*z_1-x_1*z_3)
J = ideal (z_1..z_4)
phi = unprojectionHomomorphism(I,J)
S = ring target phi;
I == ideal S
source phi
target phi
SeeAlso
kustinMillerComplex
///
doc ///
Key
delta
(delta,ZZ,PolynomialRing)
Headline
Boundary complex of cyclic polytope.
Usage
delta(d,R)
Inputs
d:ZZ
positive
R:PolynomialRing
Outputs
:SimplicialComplex
Description
Text
Boundary complex of a cyclic polytope of dimension d on the variables of R as vertices, i.e., $\Delta(d,m)$ if m is the number of variables of R.
Example
K=QQ;
R=K[x_0..x_6];
C=delta(4,R)
fVector C
I=ideal C
betti res I
///
doc ///
Key
[kustinMillerComplex,Verbose]
Headline
Option to print intermediate data
Description
Text
@TO Option@ to print the intermediate results.
It takes @TO ZZ@ values (standard is 0), increasing the amount of output with the value.
///
-*
doc ///
Key
differentials
(differentials,List,ZZ,ZZ,List)
Headline
Generate the differentials of the Kustin-Miller resolution
Usage
differentials(L,j,g,s)
Inputs
L:List
with entries of type @TO Matrix@ and the last entry of type @TO RingElement@,
all of them defined over the same ring.
g:ZZ
positive
j:ZZ
from 1 to g
s:ZZ
Outputs
:Matrix
Description
Text
Generate the j-th differential of a Kustin-Miller resolution
of length g. So, e.g., for j=1 we obtain the relations of the
ring resolved and for j=2 the first syzygies of those.
We use the notation of
J. Boehm, S. Papadakis: Implementing the Kustin-Miller complex construction, @HREF"http://arxiv.org/abs/1103.2314"@
For any j the @TO last@ entry of L should be the variable T.
For j=1 we assume L = \{ b_1, beta_1, a_1, T \}.
For j=2 we assume L = \{ b_2, beta_2, h_1, a_2, alpha_1, T \}.
For j=3,...,g-1 we assume L = \{ b_j, beta_j, h_{j-1}, a_j, alpha_{j-1}, b_{j-1}, T \}.
For j=g-1 we assume L = \{ beta_{g-1}, h_{g-1}, a_{g-1}, alpha_{g-2}, b_{g-2}, T \}.
For j=g we assume L = \{ alpha_{g-1}, a_g, b_{g-1}, u, T \}.
Finally s equals k_1-k_2.
SeeAlso
kustinMillerComplex
Caveat
This is not a user level function.
///
*-
doc ///
Key
resBE
(resBE,Matrix)
Headline
Buchsbaum-Eisenbud resolution
Usage
resBE(A)
Inputs
A:Matrix
skew-symmetric
Outputs
:ChainComplex
Description
Text
Returns the Buchsbaum-Eisenbud resolution of the ideal of submaximal @TO pfaffians@
of a skew-symmetric matrix A. The syzygy matrix will be A.
Example
R=QQ[x_1..x_4,z_1..z_4];
A=matrix {{0,x_1,x_2,x_3,x_4},{-x_1,0,0,z_1,z_2},{-x_2,0,0,z_3,z_4},{-x_3,-z_1,-z_3,0,0},{-x_4,-z_2,-z_4,0,0}}
resBE A
SeeAlso
res
///
doc ///
Key
isExactRes
(isExactRes,ChainComplex)
Headline
Test whether a chain complex is an exact resolution.
Usage
isExactRes(cc)
Inputs
cc:ChainComplex
Outputs
:Boolean
Description
Text
Test whether a chain complex is an exact resolution, that is,
it is exact everywhere except at the first non-zero module.
We consider cc as a doubly infinite complex extending it by adding
trivial modules and homomorphisms.
Example
R = QQ[x_1..x_4,z_1..z_4]
I = ideal(z_2*z_3-z_1*z_4,x_4*z_3-x_3*z_4,x_2*z_2-x_1*z_4,x_4*z_1-x_3*z_2,x_2*z_1-x_1*z_3)
cc= res I
isExactRes cc
isExactRes(cc[1])
isExactRes(cc[-1])
SeeAlso
res
///
doc ///
Key
(substitute,ChainComplex,Ring)
Headline
Substitute a chain complex to a new ring.
Usage
substitute(cc,R)
Inputs
cc:ChainComplex
R:Ring
Outputs
:ChainComplex
Description
Text
Substitute a chain complex cc to a new ring R.
Example
R=QQ[x_1..x_4,z_1];
cc=res ideal(x_4*x_3, -x_1*x_2+x_4*z_1);
cs=substitute(cc,QQ[x_1..x_4])
cs.dd_1
SeeAlso
substitute
///
doc ///
Key
stellarSubdivision
(stellarSubdivision,SimplicialComplex,Face,PolynomialRing)
Headline
Compute the stellar subdivision of a simplicial complex.
Usage
stellarSubdivision(D,F,S)
Inputs
D:SimplicialComplex
a simplicial complex on the variables of the polynomial ring R.
F:Face
a face of D
S:PolynomialRing
a polynomial ring in one variable corresponding to the new vertex
Outputs
:SimplicialComplex
the stellar subdivision of D with respect to F and S
Description
Text
Computes the stellar subdivision of a simplicial complex D by subdividing the face F with a new vertex
corresponding to the variable of S.
The result is a complex on the variables of R \otimes S. It is a subcomplex of the simplex on the variables of R \otimes S.
Example
R=QQ[x_0..x_4];
I=monomialIdeal(x_0*x_1,x_1*x_2,x_2*x_3,x_3*x_4,x_4*x_0);
betti res I
D=simplicialComplex I
fc=facets(D) / face
S=QQ[x_5]
D5=stellarSubdivision(D,fc#0,S)
I5=ideal D5
betti res I5
Text
Example
R=QQ[x_1..x_6]
I=monomialIdeal product gens R
D=simplicialComplex I
S=QQ[x_7]
Dsigma=stellarSubdivision(D,face {x_1,x_2,x_3},S)
betti res ideal Dsigma
SeeAlso
simplicialComplex
facets
ideal
///
-----------------------------------------------------------------
-- Tests
-- test unprojectionHomomorphism
///TEST
R = QQ[x_1..x_4,z_1..z_4, T];
I = ideal(z_2*z_3-z_1*z_4,x_4*z_3-x_3*z_4,x_2*z_2-x_1*z_4,x_4*z_1-x_3*z_2,x_2*z_1-x_1*z_3);
J = ideal (z_1..z_4);
phi=unprojectionHomomorphism(I,J);
assert(phi==map(coker gens I,image gens J,matrix {{x_1*x_3, x_1*x_4, x_2*x_3, x_2*x_4}}));
///
-- test cyclic polytope command
///TEST
K=QQ;
R=K[x_0..x_6];
C=delta(4,R);
fVector C;
assert(ideal C==ideal(x_0*x_2*x_4,x_0*x_2*x_5,x_0*x_3*x_5,x_1*x_3*x_5,x_1*x_3*x_6,x_1*x_4*x_6,x_2*x_4*x_6))
///
-- test Buchsbaum-Eisenbud resolution command
///TEST
R=QQ[x_1..x_4,z_1..z_4];
A=matrix {{0,x_1,x_2,x_3,x_4},{-x_1,0,0,z_1,z_2},{-x_2,0,0,z_3,z_4},{-x_3,-z_1,-z_3,0,0},{-x_4,-z_2,-z_4,0,0}};
cc=resBE A;
assert(matrix entries cc.dd_2==A);
assert(pfaffians(4,A)==ideal cc.dd_1);
///
-- test isExactRes
///TEST
R = QQ[x_1..x_4,z_1..z_4];
I = ideal(z_2*z_3-z_1*z_4,x_4*z_3-x_3*z_4,x_2*z_2-x_1*z_4,x_4*z_1-x_3*z_2,x_2*z_1-x_1*z_3);
cc= res I;
assert(isExactRes cc);
C=chainComplex presentation QQ^1;
assert(isExactRes C);
assert(isExactRes(C[1]));
assert(isExactRes(C[-1]));
assert(isExactRes(dual C));
assert(isExactRes(dual C[1]));
assert(isExactRes(dual C[-1] ));
///
-- test stellar subdivision code
TEST ///
K=QQ;
R=K[x_0..x_4];
I=monomialIdeal(x_0*x_1,x_1*x_2,x_2*x_3,x_3*x_4,x_4*x_0);
D=simplicialComplex I
S=K[x_5]
D5=stellarSubdivision(D,face {x_0,x_2},S)
I5=ideal D5
use ring I5
assert(I5==ideal(x_4*x_5,x_3*x_5,x_1*x_5,x_3*x_4,x_0*x_4,x_2*x_3,x_1*x_2,x_0*x_2,x_0*x_1));
///
-- test Kustin-Miller complex command using C47 example
TEST ///
K=QQ;
C26=delta(2,K[z,x_2..x_6])
R=K[z,x_1..x_7]
J=sub(ideal C26,R)
c26=res J;
C47=delta(4,K[x_1..x_7])
I=sub(ideal C47,R)
c47=res I;
cc=kustinMillerComplex(c47,c26,K[x_8]);
assert(rank(cc#1)==16);
assert(rank(cc#2)==30);
assert(isExactRes(cc));
///
-- test whether the result of unprojection is C48
TEST ///
K=QQ;
C26=delta(2,K[z,x_2..x_6])
R=K[z,x_1..x_7]
J=sub(ideal C26,R)
c26=res J;
C47=delta(4,K[x_1..x_7])
I=sub(ideal C47,R)
c47=res I;
cc=kustinMillerComplex(c47,c26,K[x_8]);
R'=K[x_1..x_8];
C48=delta(4,R');
I48=ideal C48;
assert(I48==sub(ideal cc.dd_1,R'))
///
-- test Kustin-Miller complex command using Tom example
TEST ///
R = QQ[x_1..x_4,z_1..z_4]
I = ideal(z_2*z_3-z_1*z_4,x_4*z_3-x_3*z_4,x_2*z_2-x_1*z_4,x_4*z_1-x_3*z_2,x_2*z_1-x_1*z_3)
cI=res I
betti cI
J = ideal (z_1..z_4)
cJ=res J
betti cJ
cc=kustinMillerComplex(cI,cJ,QQ[T]);
assert(rank(cc#1)==9);
assert(rank(cc#2)==16);
assert(isExactRes cc);
///
-----------------------------------------------------------------
-- Examples
doc ///
Key
Face
Headline
The class of faces of simplicial complexes.
Description
Text
The class of faces of simplicial complexes on the variables of a
polynomial ring. The faces are @TO MutableHashTable@s F with two
@TO keys@ F.vertices is a @TO List@ of vertices in the @TO
PolynomialRing@ F.ring
Example
R=QQ[x_0..x_4];
F=face {x_0,x_2}
vertices F
I = monomialIdeal(x_0*x_1,x_1*x_2,x_2*x_3,x_3*x_4,x_4*x_0);
D = simplicialComplex I
fc = faces(1, D)
SeeAlso
SimplicialComplex
faces
facets
///
doc ///
Key
(symbol ==,Face,Face)
Headline
Compare two faces.
Usage
F==G
Inputs
F:Face
G:Face
Outputs
:Boolean
Description
Text
Checks whether F and G are equal.
Example
K=QQ;
R=K[x_0..x_4];
F=face {x_0,x_1}
G1=face {x_1,x_0}
G2=face {x_1,x_2}
F==G1
F==G2
SeeAlso
Face
face
///
doc ///
Key
face
(face,List)
(face,List,PolynomialRing)
(face,RingElement)
Headline
Generate a face.
Usage
face(L)
face(L,R)
face(m)
Inputs
L:List
R:PolynomialRing
m:RingElement
a monomial
Outputs
:Face
Description
Text
Generates a face out of a list L or a squarefree monomial.
If L is not empty or a monomial the argument R is not required.
Example
K=QQ;
R=K[x_0..x_4];
F=face {x_0,x_1}
SeeAlso
SimplicialComplex
faces
facets
///
doc ///
Key
(dim, Face)
Headline
The dimension of a face.
Usage
dim F
Inputs
F : Face
Outputs
: ZZ
bigger or equal to -1
Description
Text
Returns the dimension of a @TO Face@, i.e., the number of
@TO vertices@ F minus 1.
Example
K = QQ;
R = K[x_0..x_4];
I = monomialIdeal(x_0*x_1,x_1*x_2,x_2*x_3,x_3*x_4,x_4*x_0);
D = simplicialComplex I
fc = faces(D)
-- apply(-1..1, j->apply(fc#j,dim))
SeeAlso
face
(facets, SimplicialComplex)
(faces, SimplicialComplex)
///
doc ///
Key
(vertices, Face)
Headline
The vertices of a face of a simplicial complex.
Usage
vertices(F)
Inputs
F:Face
Outputs
:List
Description
Text
Returns a @TO List@ with the vertices of a @TO Face@ of a simplicial complex.
Example
R = QQ[x_0..x_4];
I = monomialIdeal(x_0*x_1,x_1*x_2,x_2*x_3,x_3*x_4,x_4*x_0);
D = simplicialComplex I
fc = facets(D)
(faces D)#(1)
--vertices fc#1
SeeAlso
face
(facets,SimplicialComplex)
(faces, SimplicialComplex)
///
doc ///
Key
isSubface
(isSubface,Face,Face)
Headline
Test whether a face is a subface of another face.
Usage
isSubface(F,G)
Inputs
F:Face
G:Face
Outputs
:Boolean
Description
Text
Test whether F is a subface of G.
Example
K=QQ;
R=K[x_0..x_4];
G=face {x_0,x_1,x_2}
F1=face {x_0,x_2}
F2=face {x_0,x_3}
isSubface(F1,G)
isSubface(F2,G)
///
doc ///
Key
(substitute,Face,PolynomialRing)
Headline
Substitute a face to a different ring.
Usage
substituteFace(F,R)
Inputs
F:Face
R:PolynomialRing
Outputs
:Face
Description
Text
Substitute a face to a different ring.
Example
K=QQ;
R=K[x_0..x_4];
F=face {x_0,x_1,x_2}
S=R**K[y]
substitute(F,S)
///
doc ///
Key
(ring,Face)
Headline
Ring of a face.
Usage
ring(F)
Inputs
F:Face
Outputs
:Ring
Description
Text
Ring of a face.
Example
K=QQ;
R=K[x_0..x_4];
F=face {x_0,x_1,x_2}
ring F
///
doc ///
Key
isFaceOf
(isFaceOf,Face,SimplicialComplex)
Headline
Substitute a face to a different ring.
Usage
substitute(F,R)
Inputs
F:Face
R:PolynomialRing
Outputs
:Face
Description
Text
Substitute a face to a different ring.
Example
R = QQ[x_1..x_5];
C = simplicialComplex monomialIdeal (x_1*x_2,x_3*x_4*x_5)
F1 = face {x_1,x_2}
F2 = face {x_1,x_3}
-- isFaceOf(F1,C)
-- isFaceOf(F2,C)
///
doc ///
Key
(net,Face)
Headline
Printing a face.
Usage
net(F)
Inputs
F:Face
Outputs
:Net
Description
Text
Prints a face. The vertices are printed without any brackets and with one space between them. Also prints the polynomial ring which contains the vertices.
Example
K=QQ;
R=K[x_0..x_4];
face {x_0,x_1}
///
///
Key
useFaceClass
[faces,useFaceClass]
[facets,useFaceClass]
Headline
Option to return faces in the class Face
Description
Text
@TO Boolean@ @TO Option@ to return in the methods @TO faces@ and @TO facets@ a @TO List@ of @TO Face@s instead of a @TO Matrix@.
///
doc ///
Key
"Stellar Subdivisions"
Headline
The Kustin-Miller complex for stellar subdivisions
Description
Text
We consider a Gorenstein* simplicial complex C and the complex C' obtained by
stellar subdivision (see @TO stellarSubdivision@) of a face F of C,
and the corresponding Stanley-Reisner ideals I and I'.
We construct a resolution of I' from a resolution of I and from a resolution of the
Stanley-Reisner ideal of the link of F using the Kustin-Miller complex construction
implemented in @TO kustinMillerComplex@. Note that this resolution
is not necessarily minimal (for facets it is).
For details see
{\it J. Boehm, S. Papadakis: Stellar subdivisions and Stanley-Reisner rings of Gorenstein complexes}, @HREF"http://arxiv.org/abs/0912.2151"@
(1) The simplest example:
Consider the stellar subdivision of the edge \{x_1,x_2\}\ of the triangle with vertices x_1,x_2,x_3.
The new vertex is x_4 and z_1 is the base of the unprojection deformation.
Example
K=QQ;
R=K[x_1..x_3,z_1];
I=ideal(x_1*x_2*x_3)
Ilink=I:ideal(x_1*x_2)
J=Ilink+ideal(z_1)
cI=res I
betti cI
cJ=res J
betti cJ
cc=kustinMillerComplex(cI,cJ,K[x_4]);
S=ring cc
cc
betti cc
isExactRes cc
cc.dd_1
cc.dd_2
Text
Obviously the ideal resolved by the Kustin-Miller complex at the special fiber z_1=0
is the Stanley-Reisner ideal of the stellar subdivision (i.e., of a 4-gon).
(2) Stellar subdivision of the facet \{x_1,x_2,x_4,x_6\}\ of the simplicial complex associated to the complete intersection (x_1*x_2*x_3, x_4*x_5*x_6).
The result is a Pfaffian:
Example
R=K[x_1..x_6,z_1..z_3];
I=ideal(x_1*x_2*x_3,x_4*x_5*x_6)
Ilink=I:ideal(x_1*x_2*x_4*x_6)
J=Ilink+ideal(z_1*z_2*z_3)
cI=res I
betti cI
cJ=res J
betti cJ
cc=kustinMillerComplex(cI,cJ,K[x_7]);
S=ring cc
cc
betti cc
isExactRes cc
cc.dd_1
cc.dd_2
cc.dd_3
Text
We compare with the combinatorics, i.e., check that the ideal
resolved by the Kustin Miller complex at the special fiber is the
Stanley-Reisner ideal of the stellar subdivision:
Example
R=K[x_1..x_6];
C=simplicialComplex monomialIdeal(x_1*x_2*x_3,x_4*x_5*x_6)
fVector C
F=face {x_1,x_2,x_4,x_6}
R'=K[x_1..x_7];
C'=substitute(stellarSubdivision(C,F,K[x_7]),R')
fVector C'
I'=monomialIdeal(sub(cc.dd_1,R'))
C'===simplicialComplex I'
Text
One observes that in this case the resulting complex is minimal
This is always true for stellars of facets.
(3) Stellar subdivision of an edge:
Example
R=K[x_1..x_5,z_1];
I=monomialIdeal(x_1*x_2*x_3,x_4*x_5)
C=simplicialComplex I
fVector C
F=face {x_1,x_2}
Ilink=I:ideal(product vertices F)
J=Ilink+ideal(z_1)
cI=res I
betti cI
cJ=res J
betti cJ
cc=kustinMillerComplex(cI,cJ,K[x_6]);
S=ring cc
cc
betti cc
isExactRes cc
cc.dd_1
cc.dd_2
cc.dd_3
Text
(4) Starting out with the Pfaffian elliptic curve:
Example
R=K[x_1..x_5,z_1];
I=ideal(x_1*x_2,x_2*x_3,x_3*x_4,x_4*x_5,x_5*x_1)
Ilink=I:ideal(x_1*x_3)
J=Ilink+ideal(z_1)
cI=res I
betti cI
cJ=res J
betti cJ
cc=kustinMillerComplex(cI,cJ,K[x_10]);
betti cc
Text
(5) One more example of a stellar subdivision of an edge starting with a codimension 4 complete intersection:
Example
R=K[x_1..x_9,z_1];
I=monomialIdeal(x_1*x_2,x_3*x_4,x_5*x_6,x_7*x_8*x_9)
Ilink=I:ideal(x_1*x_3)
J=Ilink+ideal(z_1)
cI=res I
betti cI
cJ=res J
betti cJ
cc=kustinMillerComplex(cI,cJ,K[x_10]);
S=ring cc;
cc
betti cc
Text
We compare again with the combinatorics:
Example
R=K[x_1..x_9];
C=simplicialComplex monomialIdeal(sub(I,R))
fVector C
F=face {x_1,x_3}
R'=K[x_1..x_10];
C'=substitute(stellarSubdivision(C,F,K[x_10]),R')
fVector C'
I'=monomialIdeal(sub(cc.dd_1,R'))
C'===simplicialComplex I'
SeeAlso
kustinMillerComplex
res
betti
///
doc ///
Key
"Cyclic Polytopes"
Headline
Constructing minimal resolutions for Stanley-Reisner rings of boundary complexes of cyclic polytopes
Description
Text
In the following example we construct the minimal resolution of the Stanley-Reisner ring of
the cyclic polytope $\Delta(4,8)$ of embedding codimension 4 (as a subcomplex of the simplex on 8 vertices)
from those of the cyclic polytopes $\Delta(2,6)$ and $\Delta(4,7)$ (the last one being Pfaffian).
This process can be iterated to give a recursive construction of the
resolutions of all cyclic polytopes, for details see
{\it J. Boehm, S. Papadakis: On the structure of Stanley-Reisner rings associated to cyclic polytopes}, @HREF"http://arxiv.org/abs/0912.2152"@, to appear in Osaka J. Math.
Example
K=QQ;
C26=delta(2,K[z,x_2..x_6])
R=K[z,x_1..x_7]
J=sub(ideal C26,R)
c26=res J;
betti c26
C47=delta(4,K[x_1..x_7])
I=sub(ideal C47,R)
c47=res I;
betti c47
cc=kustinMillerComplex(c47,c26,K[x_8]);
betti cc
Text
We compare with the combinatorics, that is, check that
the Kustin-Miller complex at the special fiber z=0 indeed resolves
the Stanley-Reisner ring of $\Delta(4,8)$.
Example
R'=K[x_1..x_8];
C48=delta(4,R')
I48=ideal C48
betti res I48
I48==sub(ideal cc.dd_1,R')
Text
We finish the example by printing the differentials of the Kustin-Miller complex:
Example
print cc.dd_1
print cc.dd_2
print cc.dd_3
SeeAlso
kustinMillerComplex
res
betti
///
-- remark: print command avoids matrices to be broken to the next line in the html
doc ///
Key
"Tom"
Headline
The Kustin-Miller complex for Tom
Description
Text
The Kustin-Miller complex construction for the Tom example which can be found in Section 5.5 of
Papadakis, Kustin-Miller unprojection with complexes, J. Algebraic Geometry 13 (2004) 249-268, @HREF"http://arxiv.org/abs/math/0111195"@
Here we pass from a Pfaffian to a codimension 4 variety.
Example
R = QQ[x_1..x_4,z_1..z_4]
b2 = matrix {{0,x_1,x_2,x_3,x_4},{-x_1,0,0,z_1,z_2},{-x_2,0,0,z_3,z_4},{-x_3,-z_1,-z_3,0,0},{-x_4,-z_2,-z_4,0,0}}
betti(cI=resBE b2)
b1 = cI.dd_1
J = ideal (z_1..z_4);
betti(cJ=res J)
betti(cU=kustinMillerComplex(cI,cJ,QQ[T]))
S=ring cU
isExactRes cU
print cU.dd_1
print cU.dd_2
print cU.dd_3
print cU.dd_4
SeeAlso
kustinMillerComplex
res
betti
"Jerry"
///
-- we use print to avoid line breaking inside the matrices
doc ///
Key
"Jerry"
Headline
The Kustin-Miller complex for Jerry
Description
Text
The Kustin-Miller complex construction for the Jerry example which can be found in Section 5.7 of
Papadakis, Kustin-Miller unprojection with complexes, J. Algebraic Geometry 13 (2004) 249-268, @HREF"http://arxiv.org/abs/math/0111195"@
Here we pass from a Pfaffian to a codimension 4 variety.
Example
R = QQ [x_1..x_3, z_1..z_4]
I = ideal(-z_2*z_3+z_1*x_1,-z_2*z_4+z_1*x_2,-z_3*z_4+z_1*x_3,-z_3*x_2+z_2*x_3,z_4*x_1-z_3*x_2)
cI=res I
betti cI
J = ideal (z_1..z_4)
cJ=res J
betti cJ
cc=kustinMillerComplex(cI,cJ,QQ[T]);
S=ring cc
cc
betti cc
isExactRes cc
print cc.dd_1
print cc.dd_2
print cc.dd_3
print cc.dd_4
SeeAlso
kustinMillerComplex
res
betti
"Tom"
///
-*
check "KustinMiller"
uninstallPackage("KustinMiller")
installPackage("KustinMiller")
installPackage("KustinMiller",RerunExamples=>true)
viewHelp("KustinMiller")
*-
end
restart
uninstallPackage "KustinMiller"
installPackage "KustinMiller"
check KustinMiller
|