1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472
|
-- -*- coding: utf-8 -*-
newPackage(
"LexIdeals",
Version => "1.2",
Date => "13 October 2008",
Authors => {
{Name => "Chris Francisco",
Email => "chris@math.okstate.edu",
HomePage => "http://www.math.okstate.edu/~chris"}
},
Headline => "lexicographic-type monomial ideals",
Keywords => {"Commutative Algebra"},
DebuggingMode => false
)
export {"macaulayRep", "macaulayBound", "macaulayLowerOperator", "isHF", "hilbertFunct",
"isCM", "lexIdeal", "isLexIdeal", "isPurePower", "LPP", "generateLPPs", "isLPP", "cancelAll",
"multUpperHF", "multLowerBound", "multUpperBound", "multBounds", "PrintIdeals", "MaxDegree"}
--gives the d-th Macaulay representation of a.
--use for finding upper bound for Hilbert function in degree d+1
macaulayRep = method(TypicalValue=>List)
macaulayRep(ZZ,ZZ) := (a,d) -> (
macaulayrep:={};
topnum:=d-1;
bottomnum:=d;
aprime:=a;
--find the largest topnum so that binomial(topnum,bottomnum) <= a
while aprime > 0 do (
while binomial(topnum,bottomnum) < aprime do (
topnum=topnum+1;
);
if binomial(topnum,bottomnum) != aprime then topnum=topnum-1;
--append the new binomial coefficient to the output list
macaulayrep=append(macaulayrep,{topnum,bottomnum});
aprime=aprime-binomial(topnum,bottomnum);
bottomnum=bottomnum-1;
topnum=bottomnum-2;
);
macaulayrep
);
--gives upper bound of Hilbert function in degree d+1 from
--Macaulay's Theorem (given that the HF is a in degree d)
macaulayBound = method(TypicalValue=>ZZ)
macaulayBound(ZZ,ZZ) := (a,d) -> (
macaulayrep:=macaulayRep(a,d); --get macaulay representation
aUpperd:=apply(macaulayrep, li->{(li#0)+1,(li#1)+1});
sum(apply(aUpperd,li->binomial(li#0,li#1)))
);
--gives a_<d> operator: given a = (b_d choose d) + ... + (b_i choose i)
--returns (b_d - 1 choose d) + ... + (b_i - 1 choose i)
--see Bruns-Herzog, page 161
macaulayLowerOperator = method(TypicalValue=>ZZ)
macaulayLowerOperator(ZZ,ZZ) := (a,d) -> (
macaulayrep:=macaulayRep(a,d); --get macaulay representation
aUpperd:=apply(macaulayrep, li->{(li#0)-1,(li#1)});
sum(apply(aUpperd,li->binomial(li#0,li#1)))
);
--takes a finite length list of nonnegative integers and
--tells whether the sequence is an O-sequence (must begin with 1)
isHF = method(TypicalValue=>Boolean)
isHF List := (hilb) -> (
result:=true;
if not all(hilb,i->instance(i,ZZ)) then result=false else(
if hilb#0 != 1 then result=false else (
leng:=#hilb;
degr:=1;
while result==true and degr < leng-1 do (
if hilb#(degr+1) > macaulayBound(hilb#degr,degr) then
result=false else degr=degr+1;
);
);
);
result
)
--return the Hilbert function of R/I as a list, where I is a homogeneous
--ideal in a ring R, and R is a standardly graded polynomial ring or a
--standardly graded quotient of a polynomial ring.
--if no degree bound is specified for a non-Artinian ideal, the default
--bound is degree 20.
hilbertFunct = method(TypicalValue=>List,Options => {MaxDegree => null})
hilbertFunct(Ideal) := opts -> I -> (
dimR:=dim ambient ring I;
dimen:=dim I;
h := poincare I;
t := (ring h)_0;
h = h // (1-t)^(dimR-dimen); --difference instead of codim to
R := ZZ[local u]; --make it work in quotient rings
h = substitute(h, {t=>u});
optDeg:=opts.MaxDegree;
if dimen==0 then (
if optDeg===null then optDeg=first degree h else h = h % u^(optDeg+1);
)
else if dimen!=0 and optDeg===null then optDeg=20;
uDeg := (1-u^(optDeg+1)) // (1-u);
for i from 1 to dimen do (
h = (h * uDeg);
h = h % u^(optDeg+1));
reverse apply(listForm h, x -> x#1))
--determines whether (ring I/I) is Cohen-Macaulay, where ring I is a polynomial ring
isCM = method(TypicalValue=>Boolean)
isCM(Ideal) := (I) -> (
R:=ring I;
if not instance(R,PolynomialRing) then error "expected ideal in a polynomial ring";
if I == ideal(1_R) then true else
(pdim coker gens I == codim I)
)
--add trailing zeros so that two lists have same length
makeSameLength = method(TypicalValue=>List)
makeSameLength(List,List) := (list1,list2) -> (
length1:=#list1;
length2:=#list2;
lengthdiff:=abs(length1-length2);
if length1 > length2 then list2=join(list2,toList(lengthdiff:0))
else list1=join(list1,toList(lengthdiff:0));
{list1,list2}
)
--given a polynomial ring R and Artinian Hilbert function hilb,
--returns the lex ideal in R corresponding to that HF
lexIdeal = method(TypicalValue=>Ideal)
lexIdeal(PolynomialRing,List) := (R,hilb) -> (
leng:=#hilb;
numvars:=dim R;
hilb=append(hilb,0); --takes care of powers of maximal ideal
--check that hilb is a valid HF
if (hilb#1 > numvars) or not (isHF hilb) then return null;
m:=ideal vars R;
--took out a trim below since not clear why needed
iterIdeal:=ideal(0_R);
--get linear generators (because no Macaulay bound from deg 0 to 1)
if numvars-hilb#1 > 0 then iterIdeal=ideal take(first entries gens m,{0,(numvars-hilb#1)-1});
deg:=2;
while deg <= leng do (
--compute number of monomials to add in degree deg
mB:=macaulayBound(hilb#(deg-1),deg-1);
numberToAdd:=mB-hilb#(deg);
if numberToAdd > 0 then (
--compute a basis of monomials for R/iterIdeal in degree
--deg. they're ordered in descending lex order, so add
--the first numberToAdd.
mons:=flatten entries basis(deg,coker gens iterIdeal);
iterIdeal=iterIdeal+ideal(take(mons,numberToAdd));
);
deg=deg+1;
);
trim iterIdeal
)
--given a quotient ring R, a polynomial ring modulo a homogeneous ideal, and
--an Artinian Hilbert function hilb, returns the lex ideal R corresponding
--to hilb if one exists
lexIdeal(QuotientRing,List) := (R,hilb) -> (
hilbertLength:=#hilb;
ringHF:=toList apply(0..hilbertLength-1,i->hilbertFunction(i,R));
numMonsNeeded:=ringHF-hilb;
d:=1;
I:=ideal(0_R);
m:=ideal vars R;
while d < hilbertLength do (
toAdd:=(matrix{unique flatten entries compress gens m^d})_{0..(numMonsNeeded#d)-1};
if #toAdd != 0 then I=I+ideal(toAdd);
d=d+1;
);
I=trim(I+m^d);
if (hilbertFunct(I,MaxDegree=>hilbertLength-1)) == hilb then I else null
)
--create the lex ideal with the same HF as I
--works for Artinian and non-Artinian
--assumes Gotzmann in quotient rings
lexIdeal(Ideal) := (I) -> (
R:=ring I;
if I == ideal(0_R) then return I;
if dim I == 0 then return lexIdeal(R,hilbertFunct I) else (
highGen:=max flatten degrees module ideal leadTerm I;
deg:=highGen;
done:=false;
while done == false do (
hilb:=hilbertFunct(I,MaxDegree=>deg+2);
artinian:=lexIdeal(R,drop(hilb,{deg+2,deg+2}));
if not isIdeal artinian then return null;
hfArtinian:=hilbertFunct(artinian,MaxDegree=>deg+1);
lex:=ideal select(flatten entries gens artinian,i->first degree i <= deg);
if (hilbertFunct(lex,MaxDegree=>deg+1))#(deg+1) == hfArtinian#(deg+1) then done=true;
deg=deg+10;
);
return lex;
);
)
--checks whether an ideal in a polynomial ring or quotient of a
--polynomial ring by a graded ideal is a lex ideal IN THAT RING.
--that is, the ideal may be a lex ideal in the quotient but not
--in the polynomial ring itself
isLexIdeal = method(TypicalValue=>Boolean)
isLexIdeal(Ideal) := (I) -> (
R:=ring I;
genDegs:=flatten degrees I;
minDeg:=min genDegs;
maxDeg:=max genDegs;
deg:=minDeg;
result:=true;
while deg <= maxDeg and result==true do (
m:=ideal vars R;
basisI:=flatten entries super basis(deg,I);
hf:=#basisI;
basisLex:=take(unique flatten entries compress gens m^deg,hf);
result=(ideal basisI==ideal basisLex);
deg=deg+1;
);
result
)
--determines whether a monomial in a polynomial ring is
--a pure power of a variable
isPurePower = method(TypicalValue=>Boolean)
isPurePower(RingElement) := (mon) -> (
number(flatten exponents mon,i->i!=0)==1
-- number(flatten exponents lift(mon,ambient ring mon),i->i!=0)==1
)
--determine whether a list of numbers is nondecreasing
isNonDec = method(TypicalValue=>Boolean)
isNonDec(List) := (li) -> (
len:=#li;
pos:=0;
result:=true;
while result==true and pos < len-1 do (
result=li#(pos+1)>=li#pos;
pos=pos+1;
);
result
)
--compute the LPP ideal in R with HF hilb and power sequence powers
--returns null if no such LPP ideal exists
LPP = method(TypicalValue=>Ideal)
LPP(PolynomialRing,List,List) := (R,hilb,powers) -> (
numvars:=dim R;
m:=ideal vars R;
if #powers != numvars then return null;
if not isNonDec(powers) then return null;
if not isHF(hilb) then return null;
gen:=toList apply(0..(numvars-1),i->(R_i)^(powers#i));
lppIdeal:=ideal gen;
hilbGens:=hilbertFunct lppIdeal;
hilbSameLength:=makeSameLength(hilbGens,hilb);
toAdd:=hilbSameLength#0-hilbSameLength#1; --number of mons we need to add
deg:=1; --in each degree
--continue in while loop while the toList is not all 0's and has all
--nonnegative entries
while toAdd != toList (#toAdd:0) and toAdd >= toList (#toAdd:0) do (
if toAdd#deg == 0 then deg=deg+1 else (
mons:=flatten entries basis(deg,coker gens lppIdeal);
--select the monomials not already in lppIdeal
addMons:=take(mons,toAdd#deg);
if not all(addMons,i->(not isPurePower i)) then return null;
if #addMons != toAdd#deg then return null;
gen=join(gen,addMons);
lppIdeal=ideal gen;
hilbGens=hilbertFunct(ideal gen);
hilbSameLength=makeSameLength(hilbGens,hilb);
toAdd=hilbSameLength#0-hilbSameLength#1;
);
);
if (toAdd != toList (#toAdd:0)) then return null
else lppIdeal
)
--generates all LPP ideals in a polynomial ring with a given HF
--outputs {{powers,ideal}}
--if option PrintIdeals=>true, prints {list of powers} LPP ideal
--default is not to print
generateLPPs = method(TypicalValue=>List, Options => {PrintIdeals => false})
generateLPPs(PolynomialRing,List) := opts -> (ri,hilb) -> (
numvars:=dim ri;
toppower:=#hilb;
--extend the HF by one place to deal with powers of (x_1,...,x_n)
hilbext:=append(hilb,0);
hilbbound:=apply((#hilb)+1,i->binomial(numvars+i-1,i));
firstdeg:=position(hilbext-hilbbound,i->(i!=0)); --lowest deg of a gen.
--get all the power sequences one has to check
powerlist:=prepend(firstdeg,toList(numvars-1:firstdeg));
upperbound:=prepend(firstdeg,toList(numvars-1:#hilbext));
powerstocheck:=select(powerlist..upperbound,i->isNonDec(i));
--now loop to check all the power sequences, using LPPTest
num:=#powerstocheck;
j:=0;
output:={};
while j < num-1 do (
getOutput:=LPP(ri,hilb,powerstocheck#j);
if not (getOutput===null) then (
if opts.PrintIdeals == true then (
<< powerstocheck#j << " " << getOutput << endl;
);
output=append(output,{powerstocheck#j,getOutput});
);
j=j+1;
);
output
)
--tests whether an ideal I in a polynomial ring is an LPP ideal
isLPP = method(TypicalValue=>Boolean)
isLPP(Ideal) := (I) -> (
ri:=ring I;
numvars:=dim ri;
m:=ideal vars ri;
Igens:=first entries gens trim I;
--check that the power sequence has right length and is nondecreasing
powers:=select(Igens,i->isPurePower i);
if #powers != numvars then return false;
expon:=apply(sort apply(powers,i->purePowerIndex i),i->i#1);
if not (isNonDec expon) then return false;
--nonPowers are not a power of a variable
nonPowers:=select(Igens,i->not isPurePower i);
if nonPowers=={} then return true; --if a CI with nondec. powers
maxDeg:=first flatten max(apply(nonPowers,i->flatten degree i));
deg:=1;
while deg <= maxDeg do (
--get the minimal generators in degree deg and find the smallest
--in descending lex order that isn't a pure power
nonPowersDeg:=select(nonPowers,i->(first flatten degree i)==deg);
ringBasis:=flatten entries basis(deg,ri);
lastPos:=position(reverse ringBasis,i->member(i,nonPowersDeg));
if lastPos===null then deg=deg+1 else (
normalPos:=binomial(numvars-1+deg,deg)-1-lastPos;
lastGen:=ringBasis#normalPos;
--check that all mons > than lastGen in desc. lex order
--are in I
if not all(0..normalPos,i->((ringBasis#i) % I)==0) then return false else deg=deg+1;
);
);
true
)
--local function for use in isLPP
--if mon is a pure power, returns {index of variable, exponent}
purePowerIndex = method(TypicalValue=>Boolean)
purePowerIndex(RingElement) := mon -> (
expVector:=flatten exponents mon;
if number(expVector,i->i!=0) > 1 then false else (
pos:=position(expVector,i->i!=0);
{position(expVector,i->i!=0),expVector#pos}
)
)
-------------------------multiplicity stuff----------------------------
--takes the graded free resolution of an ideal I
--makes all potentially possible cancellations in the generator
--and first syzygy columns; then all potentially possible cancellations
--in the first and second syzygy columns, etc., moving left to right
--in the Betti diagram.
--for use in multUpperHF
cancelAll = method(TypicalValue=>List)
cancelAll(Ideal) := I -> (
C:=res I;
pd:=pdim coker gens I;
deglist:={};
i:=1;
while i < pd do (
--get the shifts in two consecutive spots in the resolution
if i==1 then F:=(flatten degrees C_i);
G:=flatten degrees C_(i+1);
j:=0;
--cancel everything possible, left to right
while j < #F do (
if member(F#j,G) then (
pos:=position(G,l->(l==(F#j)));
F=drop(F,{j,j});
G=drop(G,{pos,pos});
)
else j=j+1;
);
deglist=append(deglist,F);
F=G;
i=i+1;
);
deglist=append(deglist,F);
<< endl; << cancelAllDisplay deglist << endl;
deglist
)
--local function for displaying the result of cancelAll in Betti
--diagram form
cancelAllDisplay = method()
cancelAllDisplay(List) := (li) -> (
numberLists:=#li;
reg:=(max last li)-numberLists;
pairsList:=apply(apply(prepend({0},li),i->tally i),w->pairs w);
listNum:=0;
newPairsList:={};
while listNum <= numberLists do (
newPairsList=append(newPairsList,apply(pairsList#listNum,i->append(i,listNum)));
listNum=listNum+1;
);
bettiDisplay hashTable apply(flatten newPairsList,(j,k,l)->(j,l)=>k)
)
--local function, taken from chaincomplexes.m2
bettiDisplay = method()
bettiDisplay(HashTable) := v -> (
-- convert the hash table created by rawbetti to the standard display
v = applyKeys( v, (d,i) -> (d-i,i) ); -- skew the degrees
k := keys v;
fi := first \ k;
la := last \ k;
mincol := min la;
maxcol := max la;
minrow := min fi;
maxrow := max fi;
v = table(toList (minrow .. maxrow), toList (mincol .. maxcol),
(i,j) -> if v#?(i,j) then v#(i,j) else 0);
leftside := apply(
splice {"total:", apply(minrow .. maxrow, i -> toString i | ":")},
s -> (6-# s,s));
totals := apply(transpose v, sum);
v = prepend(totals,v);
v = transpose v;
v = applyTable(v, bt -> if bt === 0 then "." else toString bt);
v = apply(v, col -> (
wid := 1 + max apply(col, i -> #i);
apply(col, s -> (wid-#s, s))));
v = prepend(leftside,v);
v = transpose v;
stack apply(v, concatenate))
--tests sufficient condition for all Cohen-Macaulay modules R/I with HF hilb
--to satisfy the upper bound of the multiplicity conjecture of
--Huneke-Srinivasan, Herzog-Srinivasan.
--false doesn't mean a counterexample but just that the sufficient condition
--doesn't hold.
--method from C. Francisco's thesis
multUpperHF = method(TypicalValue=>Boolean)
multUpperHF(PolynomialRing,List) := (R,hilb) -> (
L:=lexIdeal(R,hilb);
mult:=degree L;
c:=codim L;
shifts:=cancelAll L;
maxShifts:=apply(shifts,i->max i);
upperBound:=(product maxShifts)/(c!);
<< endl; << "degree = " << mult << " upper bound = " << upperBound << endl;
mult <= upperBound
)
--does I satisfy the upper bound of the multiplicity conjecture
--of Huneke-Srinivasan, Herzog-Srinivasan?
--uses stronger upper bound of using codimension rather than pdim
--in non-Cohen-Macaulay case
multUpperBound = method(TypicalValue=>Boolean)
multUpperBound(Ideal) := I -> (
mult:=degree I;
c:=codim I;
resol:=res I;
maxShifts:=apply(1..c,i->max flatten degrees resol_i);
upperBound:=(product toList maxShifts)/(c!);
<< endl; << "degree = " << mult << " upper bound = " << upperBound << endl;
mult <= upperBound
)
--let R/I be C-M. does I satisfy the lower bound of the multiplicity conjecture
--of Huneke-Srinivasan, Herzog-Srinivasan?
multLowerBound = method(TypicalValue=>Boolean)
multLowerBound(Ideal) := I -> (
mult:=degree I;
c:=codim I;
resol:=res I;
minShifts:=apply(1..c,i->min flatten degrees resol_i);
lowerBound:=(product toList minShifts)/(c!);
<< endl; << "lower bound = " << lowerBound << " degree = " << mult << endl;
lowerBound <= mult
)
--let R/I be C-M. does I satisfy the bounds of the multiplicity conjecture
--of Huneke-Srinivasan, Herzog-Srinivasan?
multBounds = method(TypicalValue=>Boolean)
multBounds(Ideal) := I -> (
mult:=degree I;
c:=codim I;
resol:=res I;
minShifts:=apply(1..c,i->min flatten degrees resol_i);
maxShifts:=apply(1..c,i->max flatten degrees resol_i);
lowerBound:=(product toList minShifts)/(c!);
upperBound:=(product toList maxShifts)/(c!);
<< endl; << "lower bound = " << lowerBound << " degree = " << mult << " upper bound = " << upperBound << endl;
lowerBound <= mult and mult <= upperBound
)
beginDocumentation()
------------------------------------------------------------------------
--
--DOCUMENTATION
--
------------------------------------------------------------------------
-------------------------------------------------------
--DOCUMENTATION LexIdeals
-------------------------------------------------------
doc///
Key
LexIdeals
Headline
a package for working with lex ideals
Description
Text
{\em LexIdeals} is a package for creating lexicographic ideals and
lex-plus-powers (LPP) ideals. There are also several functions for
use with the multiplicity conjectures of Herzog, Huneke, and Srinivasan.
///
-------------------------------------------------------
--
--DOCUMENTATION FOR FUNCTIONS
--
-------------------------------------------------------
-------------------------------------------------------
--DOCUMENTATION macaulayRep
-------------------------------------------------------
doc///
Key
macaulayRep
(macaulayRep,ZZ,ZZ)
Headline
the Macaulay representation of an integer
Usage
h=macaulayRep(a,d)
Inputs
a:ZZ
a nonnegative integer
d:ZZ
a positive integer
Outputs
L:List
a list of pairs {i,j} of integers such that j <= d for all terms, and a is the sum of the {\tt binomial(i,j)}.
Description
Text
Yields the {\tt d}-th Macaulay representation of the integer {\tt a}. Given a positive integer {\tt d},
each positive integer a can be uniquely represented as a sum of binomials
{\tt binomial(b_d,d) + binomial(b_{d-1},d-1) + ... + binomial(b_1,1)}, where {\tt b_d > b_{d-1} > ... > b_1 >= 0}.
Example
macaulayRep(100,4)
macaulayRep(10,5)
SeeAlso
macaulayBound
isHF
///
-------------------------------------------------------
--DOCUMENTATION macaulayBound
-------------------------------------------------------
doc///
Key
macaulayBound
(macaulayBound,ZZ,ZZ)
Headline
the bound on the growth of a Hilbert function from Macaulay's Theorem
Usage
h=macaulayBound(a,d)
Inputs
a:ZZ
a positive integer
d:ZZ
a positive integer
Outputs
h:ZZ
the Macaulay upper bound for the Hilbert function in degree {\tt d+1} given that it is {\tt a} in degree {\tt d}.
Description
Text
Given a Hilbert function of {\tt a} in degree {\tt d}, {\tt macaulayBound} yields the upper bound from Macaulay's Theorem
for the Hilbert function in degree {\tt d+1}.
Example
macaulayBound(3,1)
macaulayBound(15,5)
SeeAlso
macaulayRep
macaulayLowerOperator
isHF
///
doc///
Key
macaulayLowerOperator
(macaulayLowerOperator,ZZ,ZZ)
Headline
the a_<d> operator used in Green's proof of Macaulay's Theorem
Usage
h=macaulayLowerOperator(a,d)
Inputs
a:ZZ
a positive integer
d:ZZ
a positive integer
Outputs
h:ZZ
a nonnegative integer representing {\tt a_<d>}
Description
Text
Given positive integers {\tt a} and {\tt d}, {\tt macaulayLowerOperator} yields {\tt a_<d>}, the operation from
Green's proof of Macaulay's Theorem. See Bruns and Herzog, {\em Cohen-Macaulay Rings}, page 161.
Example
macaulayLowerOperator(3,1)
macaulayLowerOperator(15,5)
SeeAlso
macaulayRep
macaulayBound
///
doc///
Key
isHF
(isHF,List)
Headline
is a finite list a Hilbert function of a polynomial ring mod a homogeneous ideal
Usage
b=isHF L
Inputs
L:List
a finite list of integers
Outputs
b:Boolean
{\tt true} if {\tt L} is a Hilbert function of a polynomial ring modulo a homogeneous ideal and {\tt false} otherwise
Description
Text
Macaulay's Theorem characterizes the sequences of integers that occur as the Hilbert function of a polynomial
ring modulo a homogeneous ideal. {\tt isHF} checks that the input is a list of integers and that the
first entry of the list is 1, and then it checks Macaulay's bound in each degree, using @TO macaulayBound@. The
function returns {\tt true} if the sequence of numbers in the list satisfies the conditions of Macaulay's Theorem
and {\tt false} otherwise.
Example
isHF({1,3,6,7,5,3})
isHF({2,3,4,3,2}) --doesn't start with a 1 in degree 0
isHF({1,3,6,8,14,3}) --growth from 8 to 14 is too high
SeeAlso
macaulayRep
macaulayBound
///
doc///
Key
hilbertFunct
(hilbertFunct,Ideal)
Headline
return the Hilbert function of a polynomial ring mod a homogeneous ideal as a list
Usage
L=hilbertFunct I
Inputs
I:Ideal
a homogeneous ideal in a polynomial ring or a quotient of a polynomial ring (where the ring has the standard grading)
Outputs
L:List
returns the Hilbert function of {\tt (ring I)/I} as a list
Description
Text
Let {\tt I} be a homogeneous ideal in a ring {\tt R} that is either a polynomial ring or a quotient
of a polynomial ring, and suppose that {\tt R} has the standard grading. {\tt hilbertFunct} returns
the Hilbert function of {\tt R/I} as a list.
If {\tt R/I} is Artinian, then the default is for {\tt hilbertFunct} to return the entire Hilbert
function (i.e., until the Hilbert function is zero) of {\tt R/I} as a list. The user can override
this by using the {\tt MaxDegree} option to bound the highest degree considered.
If {\tt R/I} is not Artinian, then {\tt hilbertFunct} returns the Hilbert function of {\tt R/I}
through degree 20. Again, the user can select a different upper bound for the degree by using the
{\tt MaxDegree} option.
We require the standard grading on {\tt R} in order to compute with the Hilbert series, which is presently
much faster than repeatedly computing the Hilbert function.
Example
R=ZZ/32003[a..c];
hilbertFunct ideal(a^3,b^3,c^3)
hilbertFunct ideal(a^3,a*b^2)
hilbertFunct(ideal(a^3,a*b^2),MaxDegree=>4)
M=ideal(a^3,b^4,a*c);
Q=R/M;
hilbertFunct ideal(c^4)
hilbertFunct ideal(b*c,a*b)
SeeAlso
isHF
lexIdeal
///
doc///
Key
isCM
(isCM,Ideal)
Headline
test whether a polynomial ring modulo a homogeneous ideal is Cohen-Macaulay
Usage
B=isCM I
Inputs
I:Ideal
a homogeneous ideal in a polynomial ring
Outputs
B:Boolean
{\tt true} if {\tt (ring I)/I} is Cohen-Macaulay and {\tt false} otherwise
Description
Text
{\tt isCM} takes a homogeneous ideal {\tt I} in a polynomial ring {\tt R} and, by computing the
projective dimension and codimension of {\tt I}, determines whether {\tt R/I} is Cohen-Macaulay.
Of course, {\tt isCM} works only if Macaulay 2 can compute the projective dimension of {\tt I}.
Example
R=ZZ/32003[a..c];
isCM(ideal(a^2,b^4)) --complete intersection
isCM(ideal(a^3,b^5,c^4,a*c^3)) --Artinian
isCM(ideal(a^3,a*b^2))
///
doc///
Key
lexIdeal
(lexIdeal,PolynomialRing,List)
(lexIdeal,QuotientRing,List)
(lexIdeal,Ideal)
Headline
produce a lexicographic ideal
Usage
L=lexIdeal(R,hilb) or L=lexIdeal(Q,hilb) or L=lexIdeal(I)
Inputs
R:PolynomialRing
Q:QuotientRing
a polynomial ring modulo a homogeneous ideal
hilb:List
a finite length list of positive integers
I:Ideal
a homogeneous ideal
Outputs
L:Ideal
the Artinian lexicographic ideal {\tt L} in {\tt R} (resp. {\tt Q}) such that {\tt R/L} (resp. {\tt Q/L}) has
Hilbert function {\tt hilb} OR the lexicographic ideal (possibly not Artinian) {\tt L} in {\tt R} or {\tt Q}
with the same Hilbert function as {\tt I}
Description
Text
When {\tt R} is a polynomial ring, if {\tt hilb} is an O-sequence (that is, it satisfies Macaulay's Theorem),
such an {\tt L} always exists. When {\tt Q} is a quotient of a polynomial ring, there may be no lexicographic
ideal with a particular Hilbert function even if it is an O-sequence. {\tt lexIdeal} returns {\tt null} if no
lexicographic ideal {\tt L} corresponding to the Hilbert function {\tt hilb} exists in {\tt R} or {\tt Q}.
When {\tt lexIdeal} has an ideal as its input, it returns the lexicographic ideal with the same Hilbert function
as its output. If no such ideal exists, which may happen since Macaulay's Theorem fails in some quotient rings,
then {\tt lexIdeal} returns {\tt null}.
The function now works for quotients by arbitrary homogeneous ideals, not just monomial ideals.
We thank David Eisenbud and Jeff Mermin for contributing their ideas.
Example
R=ZZ/32003[a..c];
lexIdeal(R,{1,3,4,3,1})
lexIdeal ideal(a*b,b*c)
lexIdeal(R,{1,3,7}) --not an O-sequence, so no lex ideal exists
Q=R/ideal(a^3,b^3,a*c^2);
lexIdeal(Q,{1,3,6,4,2})
lexIdeal(Q,{1,3,6,4,4}) --value of 4 in degree 4 is too high in this ring
Caveat
Note that we use the Gotzmann Persistence Theorem as a stopping criterion, so one should make sure this holds in the
ring in which one is computing.
SeeAlso
macaulayRep
macaulayBound
isHF
isLexIdeal
///
doc///
Key
isLexIdeal
(isLexIdeal,Ideal)
Headline
determine whether an ideal is a lexicographic ideal
Usage
B=isLexIdeal I
Inputs
I:Ideal
a homogeneous ideal in a polynomial ring or quotient of a polynomial ring by a homogeneous ideal
Outputs
B:Boolean
{\tt true} if {\tt I} is a lexicographic ideal in {\tt ring I} and {\tt false} otherwise
Description
Text
Given an ideal {\tt I} in a ring {\tt R} that is either a polynomial ring or a quotient of a polynomial
ring by a monomial ideal, {\tt isLexIdeal} computes bases of {\tt I} in each degree up through the
maximum degree of a minimal generator of {\tt I} to determine whether {\tt I} is a lexicographic ideal in {\tt R}.
Example
R=ZZ/32003[a..c];
isLexIdeal lexIdeal(R,{1,3,4,3,1})
isLexIdeal ideal(a^3-a^2*b)
isLexIdeal ideal(a^3,a^2*b)
isLexIdeal ideal(a^3,a^2*b,a^3-a^2*b) --not given as a monomial ideal but still a lex ideal
Q=R/ideal(a^3,b^3,a*c^2);
isLexIdeal ideal(a^2*b,a^2*c)
isLexIdeal ideal(a^2*b,a*b^2)
SeeAlso
lexIdeal
///
doc///
Key
isPurePower
(isPurePower,RingElement)
Headline
determine whether a ring element is a pure power of a variable
Usage
B=isPurePower f
Inputs
f:RingElement
an element of a polynomial ring
Outputs
B:Boolean
{\tt true} if {\tt f} is a nonzero power of a variable and {\tt false} otherwise
Description
Text
{\tt isPurePower} tests a ring element in a polynomial ring to determine whether or not
it is nonzero and a power of a variable. {\tt isPurePower} is used in the lex-plus-powers @TO LPP@ code.
Example
R=ZZ/32003[a..c];
isPurePower a^4
isPurePower (a*b^5)
isPurePower (a^3-b^3)
SeeAlso
LPP
isLPP
///
doc///
Key
LPP
(LPP,PolynomialRing,List,List)
Headline
return the lex-plus-powers (LPP) ideal corresponding to a given Hilbert function and power sequence
Usage
L=LPP(R,hilb,power)
Inputs
R:PolynomialRing
hilb:List
a Hilbert function as a list
power:List
a list of positive integers in weakly increasing order
Outputs
L:Ideal
an LPP ideal with the desired Hilbert function and power sequence if one exists and {\tt null} otherwise
Description
Text
Let {\tt a_1 <= ... <= a_n} be positive integers. A monomial ideal {\tt L} in a polynomial ring {\tt R=k[x_1,...,x_n]}
is called an {\tt (a_1,...a_n)}-lex-plus-powers (LPP) ideal if it satisfies two conditions:
(1) L is minimally generated by {\tt x_1^{a_1}, ..., x_n^{a_n}} and monomials {\tt m_1, ..., m_t}.
(2) Suppose that r is a monomial such that {\tt deg r = deg m_i}, and {\tt r > m_i} in the lex order. Then
{\tt r} is in {\tt L}.
LPP ideals are generalizations of Artinian lexicographic ideals. Condition (2) represents the lex portion of
the LPP ideal; monomials that are not powers of a variable must satisfy a lexicographic condition similar to
what generators of lex ideals satisfy. An LPP ideal also contains powers of all the variables in weakly
increasing order.
LPP ideals arise in conjectures of Eisenbud-Green-Harris and Charalambous-Evans in algebraic geometry,
Hilbert functions, and graded free resolutions. They are conjectured to play a role analogous to that of
lexicographic ideals in theorems of Macaulay on Hilbert functions and Bigatti, Hulett, and Pardue on resolutions.
Example
R=ZZ/32003[a..c];
LPP(R,{1,3,6,5,3},{3,3,4})
LPP(R,{1,3,4,2,1},{2,3,5}) --an Artinian lex ideal
LPP(R,{1,3,4,2,1},{2,4,3}) --exponents not in weakly increasing order
LPP(R,{1,3,4,2,1},{2,2,3}) --no LPP ideal with this Hilbert function and power sequence
SeeAlso
generateLPPs
isLPP
///
doc///
Key
generateLPPs
(generateLPPs,PolynomialRing,List)
Headline
return all LPP ideals corresponding to a given Hilbert function
Usage
li=generateLPPs(R,hilb)
Inputs
R:PolynomialRing
hilb:List
a Hilbert function as a list
Outputs
li:List
a list of the form {{powers, LPP ideal}, {powers, LPP ideal}, ...}
Description
Text
Given a polynomial ring {\tt R} and a Hilbert function {\tt hilb} for {\tt R} modulo a homogeneous
ideal, {\tt generateLPPs} generates all the LPP ideals corresponding to {\tt hilb}. The power sequences
and ideals are returned in a list. If the user sets the {\tt PrintIdeals} option to {\tt true}, the power sequences
and ideals are printed on the screen in a nice format.
Example
R=ZZ/32003[a..c];
generateLPPs(R,{1,3,4,3,2})
Text
Same example with the {\tt PrintIdeals} option set to {\tt true}:
Example
generateLPPs(R,{1,3,4,3,2},PrintIdeals=>true)
SeeAlso
LPP
isLPP
///
doc///
Key
isLPP
(isLPP,Ideal)
Headline
determine whether an ideal is an LPP ideal
Usage
B=isLPP I
Inputs
I:Ideal
an ideal in a polynomial ring
Outputs
B:Boolean
{\tt true} if {\tt I} is an LPP ideal in {\tt ring I} and {\tt false} otherwise
Description
Text
Given an ideal {\tt I} in a polynomial ring {\tt R}, {\tt isLPP} checks that {\tt I} is Artinian and that the power
sequence is weakly increasing. Then {\tt isLPP} computes bases of {\tt R/I} in each degree up through the maximum
degree of a minimal generator of {\tt I} to determine whether {\tt I} is an LPP ideal in {\tt R}.
Example
R=ZZ/32003[a..c];
isLPP LPP(R,{1,3,4,3,2},{2,2,4})
isLPP ideal(a^3,b^3,c^3,a^2*b,a^2*c,a*b^2*c^2)
isLPP ideal(a^3,b^4) --not Artinian since no power of c
isLPP ideal(a^3,b^4,c^3) --powers not weakly increasing
isLPP ideal(a^3,b^3,c^3,a^2*b,a*b^2)
SeeAlso
isLexIdeal
LPP
generateLPPs
///
doc///
Key
cancelAll
(cancelAll,Ideal)
Headline
make all potentially possible cancellations in the graded free resolution of an ideal
Usage
l=cancelAll I
Inputs
I:Ideal
a homogeneous ideal in a polynomial ring
Outputs
l:List
lists of the new shifts in the Betti diagram
Description
Text
This function was useful in testing the upper bound of the conjecture of Herzog-Huneke-Srinivasan on
the multiplicity of an ideal; it is designed to make all potentially possible cancellations in a Betti
diagram in a certain order described below.
Let {\tt R} be a polynomial ring, let {\tt I} and {\tt J} be homogeneous ideals in {\tt R} of codimension
{\tt c} with the same Hilbert function, and assume that {\tt R/I} and {\tt R/J} are Cohen-Macaulay. Suppose
that the graded Betti numbers of {\tt R/I} are at most those of {\tt R/J}; that is,
{\tt beta_{ij}(R/I) <= beta_{ij}(R/J)} for all {\tt i} and {\tt j}. (We can form a partial order on resolutions
of modules with the same Hilbert function by saying that {\tt beta(R/I) <= beta(R/J)} if and only if
{\tt beta_{ij}(R/I) <= beta_{ij}(R/J)} for all {\tt i} and {\tt j}.)
Let {\tt m_i(R/I)} and {\tt M_i(R/I)} be the minimum and maximum shifts at step {\tt i} in the minimal
graded free resolution of {\tt R/I}. Let {\tt e(R/I)} be the multiplicity of {\tt R/I}. Herzog, Huneke, and
Srinivasan conjectured that
{\tt m_1(R/I) ... m_c(R/I) / c! <= e(R/I) <= M_1(R/I) ... M_c(R/I) / c!},
where the ellipses signify that we are taking the product of the shifts. This conjecture was proven in 2008 work
of Eisenbud-Schreyer and Boij-Soderberg using decompositions of Betti diagrams as positive linear combinations of
Betti diagrams of modules with pure resolutions.
Suppose that {\tt R/I} satisfies the conjectured inequalities. Then it is easy to show that {\tt R/J} must as
well: Since the resolution of {\tt R/J} contains all the shifts in the resolution of {\tt R/I} plus possibly more,
the minimum shifts for {\tt R/J} can only be the same or lower, and the maximum shifts can only be the same or higher.
Therefore one can attack this conjecture by looking at resolutions minimal in the partial order discussed above.
It is difficult to find which potential resolutions at the bottom of the partial order for a given Hilbert function
do occur for a module, however. The function {\tt cancelAll} implements a fast way of proving that the upper bound of
the Herzog-Huneke-Srinivasan conjecture is satisfied for particular Hilbert functions; it is used in
@TO multUpperHF@. The idea is to create a Betti diagram that is minimal in the partial order that may or may not
actually occur for a module; we can then test the upper bound on that potential resolution. As we explain below,
if the inequality holds, it doesn't matter whether the Betti diagram occurs for a module or not.
{\tt cancelAll} starts with the far left side of the Betti diagram of the ideal I the user inputs, and it makes
all potentially possible cancellations in the first two columns. Then it moves to the first and second syzygies
columns and makes all potentially possible cancellations, continuing through the rest of the Betti diagram. This
technique is designed to investigate the upper bound of the conjecture. One may have choices of which syzygies to
cancel from the resolution of the lexicographic ideal. This algorithm selects the cancellations that, if we start out
with a lexicographic ideal {\tt L}, and {\tt R/L} is Cohen-Macaulay, minimize each {\tt M_i} that could occur for a
Cohen-Macaulay module with the same Hilbert function as {\tt R/L}. Therefore if the upper bound of the conjecture holds
for the potential Betti diagram that {\tt cancelAll} produces, it holds for all Cohen-Macaulay modules with the same Hilbert
function and codimension. Even if the potential Betti diagram {\tt cancelAll} produces doesn't occur for a module, the maximum
shifts could only increase, which won't cause the inequality to fail if it holds for the result of {\tt cancelAll}.
{\tt cancelAll} makes all the cancellations with the process described above, prints the resulting Betti diagram, and
then returns the shifts in a list of lists.
See C. Francisco, New approaches to bounding the multiplicity of an ideal, {\em J. Algebra} {\bf 299} (2006), no. 1, 309-328.
Example
R=ZZ/32003[a..c];
L=lexIdeal(R,{1,3,6,9,9,6,2});
betti res L
cancelAll L
M=lexIdeal(R,{1,3,4,3,2});
betti res M
cancelAll M
A=ZZ/32003[a..e];
J=lexIdeal(A,{1,5,12,10,6,3})
betti res J
cancelAll J
SeeAlso
multUpperHF
multUpperBound
multLowerBound
multBounds
///
doc///
Key
multUpperHF
(multUpperHF,PolynomialRing,List)
Headline
test a sufficient condition for the upper bound of the multiplicity conjecture
Usage
B=multUpperHF(R,hilb)
Inputs
R:PolynomialRing
the polynomial ring in which one wants to work
hilb:List
a Hilbert function for {\tt R} modulo a homogeneous ideal
Outputs
B:Boolean
{\tt true} if the sufficient condition holds and {\tt false} otherwise
Description
Text
This function uses @TO cancelAll@ to test a sufficient condition for the upper bound of the
Herzog-Huneke-Srinivasan conjecture to hold for all quotients of polynomial rings with Hilbert function
{\tt hilb}. The conjecture, proven in 2008 work of Eisenbud-Schreyer and Boij-Soderberg, asserts that if
{\tt R} is a polynomial ring, and {\tt I} is a homogeneous ideal in {\tt R}, then
{\tt e(R/I) <= M_1 ... M_c / c!},
where {\tt M_i} is the largest shift at step {\tt i} of the minimal graded free resolution of {\tt R/I},
{\tt c} is the codimension of {\tt I}, and {\tt e(R/I)} is the multiplicity of {\tt R/I}.
{\tt multUpperHF} forms the lex ideal corresponding to the Hilbert function the user inputs. Then it calls
@TO cancelAll@ to make all potentially possible cancellations in the resolution of the lex ideal (as described
in the @TO cancelAll@ documentation). @TO cancelAll@ prints the diagram with the cancellations. In addition,
{\tt multUpperHF} compares the multiplicity associated to the given Hilbert function to the conjectured upper
bound from the Betti diagram with the cancellations. If the conjectured inequality holds, the function returns
{\tt true}, and the conjectured upper bound is true for all modules {\tt R/I} with the given Hilbert function.
If the inequality fails, then the function returns {\tt false}, and the sufficient condition does not hold.
(However, this of course does not mean that the conjecture is false for the given Hilbert function; it may be
that the Betti diagram with the cancellations cannot exist.) Note that since {\tt hilb} is a finite list, all
modules with that Hilbert function are Artinian and hence Cohen-Macaulay.
See C. Francisco, New approaches to bounding the multiplicity of an ideal, {\em J. Algebra} {\bf 299} (2006), no.
1, 309-328.
Example
S=ZZ/32003[a..c];
betti res lexIdeal(S,{1,3,4,2,1}) --just to see the resolution of the lex ideal
multUpperHF(S,{1,3,4,2,1})
SeeAlso
cancelAll
multUpperBound
multLowerBound
multBounds
///
doc///
Key
multUpperBound
(multUpperBound,Ideal)
Headline
determine whether an ideal satisfies the upper bound of the multiplicity conjecture
Usage
B=multUpperBound I
Inputs
I:Ideal
a homogeneous ideal in a polynomial ring
Outputs
B:Boolean
{\tt true} if {\tt I} satisfies the upper bound and {\tt false} otherwise
Description
Text
Let {\tt I} be a homogeneous ideal of codimension {\tt c} in a polynomial ring {\tt R}.
Huneke and Srinivasan (and later Herzog and Srinivasan in the non-Cohen-Macaulay case)
conjectured that
{\tt e(R/I) <= M_1 ... M_c / c!},
where {\tt M_i} is the maximum shift in the minimal graded free resolution of {\tt R/I}
at step {\tt i}, and {\tt e(R/I)} is the multiplicity of {\tt R/I}. {\tt multUpperBound}
tests this inequality for the given ideal, returning {\tt true} if the inequality holds and
{\tt false} otherwise, and it prints the upper bound and the multiplicity (listed as the degree).
This conjecture was proven in 2008 work of Eisenbud-Schreyer and Boij-Soderberg.
Example
R=ZZ/32003[a..c];
multUpperBound ideal(a^4,b^4,c^4)
multUpperBound ideal(a^3,b^5,c^6,a^2*b,a*b*c)
SeeAlso
cancelAll
multUpperHF
multLowerBound
multBounds
///
doc///
Key
multLowerBound
(multLowerBound,Ideal)
Headline
determine whether an ideal satisfies the lower bound of the multiplicity conjecture
Usage
B=multLowerBound I
Inputs
I:Ideal
a homogeneous ideal in a polynomial ring {\tt R}
Outputs
B:Boolean
{\tt true} if {\tt I} satisfies the lower bound and {\tt false} otherwise
Description
Text
Let {\tt I} be a homogeneous ideal of codimension {\tt c} in a polynomial ring {\tt R} such
that {\tt R/I} is Cohen-Macaulay. Huneke and Srinivasan conjectured that
{\tt m_1 ... m_c / c! <= e(R/I)},
where {\tt m_i} is the minimum shift in the minimal graded free resolution of {\tt R/I} at
step {\tt i}, and {\tt e(R/I)} is the multiplicity of {\tt R/I}. {\tt multLowerBound} tests
this inequality for the given ideal, returning {\tt true} if the inequality holds and {\tt false}
otherwise, and it prints the lower bound and the multiplicity (listed as the degree).
This conjecture was proven in 2008 work of Eisenbud-Schreyer and Boij-Soderberg.
Example
R=ZZ/32003[a..c];
multLowerBound ideal(a^4,b^4,c^4)
multLowerBound ideal(a^3,b^5,c^6,a^2*b,a*b*c)
Caveat
Note that {\tt multLowerBound} makes no attempt to check to see whether {\tt R/I} is Cohen-Macaulay.
SeeAlso
cancelAll
multUpperHF
multUpperBound
multBounds
///
doc///
Key
multBounds
(multBounds,Ideal)
Headline
determine whether an ideal satisfies the upper and lower bounds of the multiplicity conjecture
Usage
B=multBounds I
Inputs
I:Ideal
a homogeneous ideal in a polynomial ring
Outputs
B:Boolean
{\tt true} if both the upper and lower bounds hold and {\tt false} otherwise
Description
Text
Let {\tt I} be a homogeneous ideal of codimension {\tt c} in a polynomial ring {\tt R} such that {\tt R/I} is Cohen-Macaulay.
Herzog, Huneke, and Srinivasan conjectured that if {\tt R/I} is Cohen-Macaulay, then
{\tt m_1 ... m_c / c! <= e(R/I) <= M_1 ... M_c / c!},
where {\tt m_i} is the minimum shift in the minimal graded free resolution of {\tt R/I} at step {\tt i}, {\tt M_i} is the
maximum shift in the minimal graded free resolution of {\tt R/I} at step {\tt i}, and {\tt e(R/I)} is the multiplicity of
{\tt R/I}. If {\tt R/I} is not Cohen-Macaulay, the upper bound is still conjectured to hold. {\tt multBounds} tests the
inequalities for the given ideal, returning {\tt true} if both inequalities hold and {\tt false} otherwise.
{\tt multBounds} prints the bounds and the multiplicity (called the degree), and it calls @TO multUpperBound@ and @TO multLowerBound@.
This conjecture was proven in 2008 work of Eisenbud-Schreyer and Boij-Soderberg.
Example
S=ZZ/32003[a..c];
multBounds ideal(a^4,b^4,c^4)
multBounds ideal(a^3,b^4,c^5,a*b^3,b*c^2,a^2*c^3)
Caveat
Note that {\tt multBounds} makes no attempt to check to see whether {\tt R/I} is Cohen-Macaulay.
SeeAlso
cancelAll
multUpperHF
multUpperBound
multLowerBound
///
-------------------------------------------------------
--
--DOCUMENTATION FOR OPTIONS
--
-------------------------------------------------------
------------------------------------------------------------
-- DOCUMENTATION PrintIdeals (for generateLPPs)
------------------------------------------------------------
doc///
Key
PrintIdeals
Headline
optional argument for generateLPPs
Description
Text
Tells @TO generateLPPs@ to display the LPP ideals nicely on the screen.
SeeAlso
generateLPPs
///
doc///
Key
[generateLPPs,PrintIdeals]
Headline
print LPP ideals nicely on the screen
Usage
li = generateLPPs(R,hilb,PrintIdeals=>true)
Inputs
R:PolynomialRing
the ring in which to work
hilb:List
the values of the Hilbert function as a list
Outputs
li:List
the LPP ideals with Hilbert function {\tt hilb}
Description
Text
The default value is {\tt false}. If {\tt PrintIdeals} is set to {\tt true}, the power sequences and
ideals are printed nicely on the screen to make them more readable than they are in list form.
SeeAlso
generateLPPs
///
------------------------------------------------------------
-- DOCUMENTATION MaxDegree (for hilbertFunct)
------------------------------------------------------------
doc///
Key
MaxDegree
Headline
optional argument for hilbertFunct
Description
Text
Used to set the highest degree through which hilbertFunct should compute the
Hilbert function.
SeeAlso
hilbertFunct
///
doc///
Key
[hilbertFunct,MaxDegree]
Headline
bound degree through which Hilbert function is computed
Usage
li = hilbertFunct(I,MaxDegree=>d)
Inputs
I:Ideal
a homogeneous ideal
d:ZZ
the highest degree in which the Hilbert function should be computed
Outputs
li:List
the values of the Hilbert function through degree {\tt d}
Description
Text
If {\tt I} is Artinian, the default is to return all values of the Hilbert
function until it becomes zero. If not, the default maximum degree is 20. This
option allows one to specify any maximum degree.
SeeAlso
hilbertFunct
///
------------------------------------------------------------
-- TESTS
------------------------------------------------------------
----------------------------
-- Test macaulayRep
----------------------------
TEST///
assert(macaulayRep(8,2)=={{4,2}, {2,1}})
assert(macaulayRep(5,6)=={{6,6},{5,5},{4,4},{3,3},{2,2}})
///
----------------------------
-- Test macaulayBound
----------------------------
TEST///
assert(macaulayBound(3,1)==6)
assert(macaulayBound(8,3)==10)
///
----------------------------
-- Test macaulayLowerOperator
----------------------------
TEST///
assert(macaulayLowerOperator(9,3)==3)
assert(macaulayLowerOperator(50,7)==10)
///
----------------------------
-- Test isHF
----------------------------
TEST///
assert(isHF {1,3,6,5,3,2} == true)
assert(isHF {0,1,3,4,2} == false)
assert(isHF {1,3,6,9,15} == false)
///
----------------------------
-- Test hilbertFunct
----------------------------
TEST///
R=ZZ/101[a..c];
assert(hilbertFunct ideal(a^3,b^3,c^3) == {1,3,6,7,6,3,1})
assert(hilbertFunct ideal(a^3,a*b^2) == {1, 3, 6, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25})
assert(hilbertFunct(ideal(a^3,a*b^2),MaxDegree=>4)=={1,3,6,8,9})
M=ideal(a^3,b^3,a*c);
Q=R/M;
assert(hilbertFunct ideal(c^4)=={1,3,5,5,3,1})
///
----------------------------
-- Test isCM
----------------------------
TEST///
R=ZZ/101[a..c];
assert(isCM ideal(a^2,a*b)==false)
assert(isCM ideal(a^2,b^2)==true)
assert(isCM ideal(a^2,b^3,c^4,b^2*c^2) == true)
///
----------------------------
-- Test lexIdeal
----------------------------
TEST///
R=ZZ/32003[a..c];
assert(lexIdeal(R,{1,3,4,3,1})==ideal(a*b,a^2,a*c^2,b^3,b*c^3,b^2*c^2,c^5))
assert(lexIdeal ideal(a*b,b*c)==ideal(a^2,a*b))
assert(lexIdeal(R,{1,3,7})==null)
Q=R/ideal(a^3,b^3,a*c^2);
assert(lexIdeal(Q,{1,3,6,4,2})==ideal(a^2*c,a*b^2,a^2*b,b^2*c^2,c^5,b*c^4))
assert(lexIdeal(Q,{1,3,6,4,4})==null)
T=ZZ/101[a..c]/ideal(a^2-b*c);
assert(lexIdeal ideal(a*b,b^2,a*c,b*c,c^2)==ideal(a*b,b^2,a*c,b*c,c^2))
assert(lexIdeal ideal(a*b)==ideal(a^2))
///
----------------------------
-- Test isLexIdeal
----------------------------
TEST///
R=ZZ/32003[a..c];
assert(isLexIdeal lexIdeal(R,{1,3,4,3,1})==true)
assert(isLexIdeal ideal(a^3-a^2*b) == false)
assert(isLexIdeal ideal(a^3,a^2*b)==true)
assert(isLexIdeal ideal(a^3,a^2*b,a^3-a^2*b)==true)
Q=R/ideal(a^3,b^3,a*c^2);
assert(isLexIdeal ideal(a^2*b,a^2*c)==true)
assert(isLexIdeal ideal(a^2*b,a*b^2)==false)
T=ZZ/101[a..c]/ideal(a^2-b*c);
assert(isLexIdeal ideal(b*c)==true)
///
----------------------------
-- Test isPurePower
----------------------------
TEST///
R=ZZ/101[a..c]
assert(isPurePower(b^5)==true)
assert(isPurePower(b*c^4)==false)
///
----------------------------
-- Test LPP
----------------------------
TEST///
R=ZZ/32003[a..c];
assert(LPP(R,{1,3,6,5,3},{3,3,4})==ideal(a^3,b^3,c^4,a^2*b,a^2*c,a*b^2,a*b*c^2,b^2*c^3))
assert(LPP(R,{1,3,4,2,1},{2,3,5})==lexIdeal(R,{1,3,4,2,1}))
assert(LPP(R,{1,3,4,2,1},{2,4,3})==null)
assert(LPP(R,{1,3,4,2,1},{2,2,3})==null)
///
----------------------------
-- Test generateLPPs
----------------------------
TEST///
R=ZZ/101[a..c];
assert(flatten generateLPPs(R,{1,3,6,10})=={{4,4,4},(ideal vars R)^4})
assert(#generateLPPs(R,{1,3,4,2})==4)
assert(generateLPPs(R,{1,3,6,11})=={})
///
----------------------------
-- Test isLPP
----------------------------
TEST///
R=ZZ/101[a..c];
assert(isLPP ideal(a^3,b^4,c^4,a^2*b,a^2*c^2)==true)
assert(isLPP ideal(a^4,b^3,c^4,a^2*b,a^2*c^2)==false)
assert(isLPP ideal(a^3,b^4,c^4)==true)
assert(isLPP ideal(a^4,b^5,c^4)==false)
///
----------------------------
-- Test cancelAll
----------------------------
TEST///
R=ZZ/101[a..c];
assert(cancelAll lexIdeal(R,{1,3,4,2})=={{2, 2, 3, 3}, {4, 4, 4, 5, 5}, {6, 6}})
assert(cancelAll ideal(a^2,b^2,c^2)=={{2,2,2},{4,4,4},{6}})
assert(cancelAll lexIdeal(R,{1,3,3,3})=={{2, 2, 2, 4, 4}, {3, 3, 5, 5, 5, 5, 5, 5}, {4, 6, 6, 6}})
///
----------------------------
-- Test multUpperHF
----------------------------
TEST///
R=ZZ/101[a..c];
assert(multUpperHF(R,{1,3,4,2,1})==true)
assert(multUpperHF(R,{1,3,4,4,3})==false)
///
--------------------------------------------------
-- Test multLowerBound, multUpperBound, multBounds
--------------------------------------------------
TEST///
R=ZZ/101[a..c];
assert(multBounds(ideal(a^3,b^3,c^5))==true)
assert(multUpperBound(ideal(a^2,a*b))==true)
assert(multLowerBound(ideal(a^2,a*b,b^2))==true)
assert(multLowerBound(ideal(a^2,a*b))==false)
///
end
restart
installPackage ("LexIdeals", UserMode=>true)
loadPackage "LexIdeals"
viewHelp
|