1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736
|
newPackage(
"MonomialOrbits",
Version => "1.5",
Date => "18 December 2020, last rev 1 June 2021",
Authors => {{Name => "David Eisenbud",
Email => "de@msri.org",
HomePage => "http://www.msri.org/~de"},
{Name => "Mike Stillman",
Email => "mike@math.cornell.edu",
HomePage => "http://pi.math.cornell.edu/~mike"}},
Headline => "Orbit representatives of monomial ideals",
Keywords => {"Combinatorial Commutative Algebra"},
PackageExports =>{"Truncations"}, -- for 'truncate'
DebuggingMode => false
)
export {
"orbitRepresentatives",
"hilbertRepresentatives",
"normalForms",
--options
"MonomialType"
}
squareFree = method()
squareFree(List, Ring) := Matrix => (d,R) -> (
if degreeLength R != #d then
error("expected degrees of length "|degreeLength R);
z := symbol z;
R' := coefficientRing R[z_1..z_(numgens R), SkewCommutative => true, Degrees => degrees R];
phi := map(R,R',vars R);
phi basis(d,R')
)
squareFree(ZZ, Ring) := Matrix => (d,R) -> squareFree({d}, R)
monomialsInDegree = method()
monomialsInDegree(ZZ, Ring, String) := Matrix => (d, R, type) -> monomialsInDegree({d}, R, type)
monomialsInDegree(List, Ring, String) := Matrix => (d, R, type) -> (
-- d: integer, or list (multidegree).
-- R: polynomial ring
-- type is either "All", "SquareFree" (anything else is an error)
-- return: is a matrix of monomials of the given type and degree
if #d != degreeLength R then error"expected valid (multi)degree";
if type === "SquareFree" then
squareFree(d, R)
else if type === "All" then
basis(d, R)
else
error "expected MonomialType to be either \"All\" or \"SquareFree\""
)
hilbertRepresentatives = method(Options=>{MonomialType => "All"})
hilbertRepresentatives(Ring, VisibleList) := List => o -> (R, h) -> (
--orbit representatives of all monomial ideals I, if any, such that
--hilbertFunction(i,R/I) = h_(i-1) for all i = 1,..,#h.
G := permutations R;
if h_0 > numgens R then error "not enough variables";
if min h < numgens R and o.MonomialType == "SquareFree" then return {};
result := if h_0 == numgens R then
{monomialIdeal 0_R}
else
{monomialIdeal((gens R)_{0..numgens R - h_0 -1})};
rawMonsMat := matrix{{}};
mons := {};
for i from 2 to #h do (
rawMonsMat = monomialsInDegree(i, R, o.MonomialType);
mons = flatten entries sort(rawMonsMat,
DegreeOrder => Ascending, MonomialOrder => Descending);
result = flatten for I in result list (
mons = flatten entries sort(compress(rawMonsMat % truncate(i, I)),
DegreeOrder => Ascending, MonomialOrder => Descending);
defect := hilbertFunction(i, R^1/I) - h_(i-1);
if defect < 0 then continue;
if h_(i-1) == 0 then (
if mons == {} then result1 := {I}
else result1 = {monomialIdeal trim (I+ideal mons)}
)
else (
result1 = {I};
scan(defect, j->(
result1 = normalForms(sumMonomials(result1, mons), G);
))
);
result1);
);
result
)
permutations Ring := R -> (
if not R.?cache then R.cache = new CacheTable;
if not R.cache.?MonomialOrbits then R.cache.MonomialOrbits = new MutableHashTable;
H := R.cache.MonomialOrbits;
if not H#?"GroupElements" then
H#"GroupElements" = for p in permutations numgens R list
map(R, R, (vars R)_p);
H#"GroupElements"
)
sumMonomials = method()
sumMonomials(List, List) := List => (L1, L2) -> (
--L1 list of monomial ideal
--L2 list of monomials
--return list of monomial ideals I' where
--I' is an ideal I in L1 with a monomial from L2 adjoined
--that is not in the ideal I
--
--sorted.
unique flatten for I in L1 list (
for m in L2 list (
if m % I != 0 then I+monomialIdeal m
else continue
)
)
)
sumMonomials(Ideal, List) := List => (I, L2) -> sumMonomials({I}, L2)
normalForms = method()
normalForms(List, List) := (Fs, G) -> (
<<"---"<< #Fs<<endl;
-- Fs is a list of MonomialIdeals, G a list of ring maps
-- returns a minimal subset F of Fs such that G F = Fs.
if #Fs == 0 then return {};
S := ring Fs_0;
G1 := select(G, s -> s vars S != vars S); -- remove the identity element if present.
L := new MutableList from Fs;
LH := hashTable for i from 0 to #Fs-1 list Fs#i => i;
count := #L;
if debugLevel > 0 then << "-- " << #L << " ideals" << endl;
ans := for i from 0 to #L-1 list (
if L#i === null then continue;
F := L#i;
for f in G1 do (
H := monomialIdeal(f F);
if LH#?H then (
j := LH#H;
if j > i and L#j =!= null then (
L#j = null;
count = count - 1;
if count % 1000 == 0 and debugLevel > 0 then
<< "-- remaining count: " << count << endl;
);
);
);
F
)
)
--The Lis versions: Here a monomial is an exponent vector, which is a list of integers, and
--a monomial ideal is a sorted list of exponent vectors.
--Note that the zero monomial ideal is (), represented by {{}}, and this often has to be handled separately.
--first methods for converting between monomial ideals and lists of lists
toLis = method()
toLis RingElement := List => m -> (exponents m)_0
toLis MonomialIdeal := List => I -> if I == 0 then {{}} else
--reverse sort( I_*/(m-> toLis m))
sort( I_*/(m-> toLis m))
toMonLis = (S,e) -> product(#e, i-> S_i^(e_i))
fromLis = method()
fromLis (Ring, List) := MonomialIdeal => (S,L) -> if L === {} then monomialIdeal 0_S else
monomialIdeal apply(L,e-> toMonLis (S,e))
notIn = method()
notIn(List, List) := Boolean => (m, L2) -> (
--returns true if m is not "divisible" by any element of L2.
if L2 == {{}} then return true;
diffs := apply(L2, n -> m-n);
all(diffs, L -> min L < 0)
)
monomialsInDegreeLis = method()
monomialsInDegreeLis (VisibleList,Ring,String) :=
monomialsInDegreeLis(ZZ, Ring, String) := List => (d, R, type) -> (
-- d: integer, or list (multidegree).
-- R: polynomial ring
-- type is either "All", "SquareFree" (anything else is an error)
-- return: is a matrix of monomials of the given type and degree
flatten entries sort(monomialsInDegree(d,R,type), MonomialOrder => Descending)/toLis
)
orbitRepresentatives = method(Options=>{MonomialType => "All"})
orbitRepresentatives(Ring, Ideal, VisibleList) := List => o -> (R, I, degs) -> (
if not isMonomialIdeal I then error"orbitRepresentatives:arg 1 is not a monomial ideal";
if #degs >1 then degs = sort toList(degs); -- more efficient to add the small degree gens first.
n := numgens R;
G := permutations n;
result := {toLis monomialIdeal I}; --if I = 0, this gives {{}} ; has to be treated specially
for d in degs do(
mons := monomialsInDegreeLis(d, R, o.MonomialType);
sumList := sumMonomialsLis(result, mons);
result = normalFormsLis(sumList, G);
);
result/(L -> fromLis(R,L))
)
orbitRepresentatives(Ring, VisibleList) := List => o -> (R, degs) -> (
ze := monomialIdeal 0_R;
orbitRepresentatives(R, ze, degs, o)
)
orbitRepresentatives(Ring, Ideal, Ideal, ZZ) := List => o -> (R, I, startmons, numelts) -> (
--take or subtract numelts elements from startmons mod I, plus I.
if not isMonomialIdeal I then error"orbitRepresentatives:arg 1 is not a monomial ideal";
I = monomialIdeal I;
if not isMonomialIdeal startmons then error"orbitRepresentatives:arg 2 is not a monomial ideal";
startmons = monomialIdeal startmons;
n := numgens R;
G := permutations n;
num := abs(numelts);
Ilis := if I == 0 then {} else toLis monomialIdeal I;
startLis := toLis monomialIdeal startmons;
start := if Ilis ==={} then startLis else
for m in startLis list if notIn(m,Ilis) then m else continue;
result := {Ilis}; --if I = 0, this gives {{}} ; has to be treated specially
mons := start;
apply(num, i-> (
sums := sumMonomialsLis(result, mons);
result = normalFormsLis(sums, G)
));
result = apply(result, L -> fromLis(R,L));
--case of subtraction:
if numelts < 0 then(
bigideal := fromLis(R, Ilis|start);
result = for K in result list(I + (bigideal - K))
);
result)
sumMonomialsLis = method()
sumMonomialsLis(List, List) := List => (L1, L2) -> (
--L1: list of lists of lists, representing a list of monomial ideals, or a list representing a single
--monomial ideal.
--L2: list of lists, representing monomials
--return list of lists L of lists; where
--returns the list of monomial ideals I, each an ideal I' from L1 with a "monomial" from L2 adjoined
--that is not divisible by any monomial in I',
unique flatten for I in L1 list (
for m in L2 list if I == {{}} then {m} else
if notIn(m, I) then sort (I | { m })
else continue
))
normalFormsLis = method()
normalFormsLis(List, List) := List => (Fs, G) -> (
-- Fs is a list of lists representing MonomialIdeals, G a list of permutations
-- returns a minimal subset F of Fs such that G F = Fs.
if #Fs == 0 then return {{}};
n := #(Fs_0_0); -- "number of variables"
ident := apply(n, i-> i);
G1 := select(G, g-> g != ident); -- remove the identity element if present.
L := new MutableList from Fs;
LH := hashTable for i from 0 to #Fs-1 list Fs#i => i;
count := #L;
if debugLevel > 0 then << "-- " << #L << " ideals" << endl;
ans := for i from 0 to #L-1 list (
if L#i === null then continue;
F := L#i;
for f in G1 do (
H := sort apply(F, FF -> FF_f);
if LH#?H then (
j := LH#H;
if j > i and L#j =!= null then (
L#j = null;
count = count - 1;
if count % 1000 == 0 and debugLevel > 0 then
<< "-- remaining count: " << count << endl;
);
);
);
F
);
ans
)
beginDocumentation()
doc ///
Key
MonomialOrbits
Headline
find orbit representatives of monomial ideals, under permutations of the variables
Description
Text
This package contains functions for the construction of
representatives of the orbits of monomial ideals of a
given type in a polynomial ring $S$ under the group of
permutations of the variables of $S$.
The type of the ideals may be defined either by the number
of minimal generators of each degree, or by
the set of monomials from which to choose
or by the set of monomials from which to
subtract in @TO
orbitRepresentatives @ or by the Hilbert function, in @TO
hilbertRepresentatives@. If the option {\tt MonomialType
=> "SquareFree"} is given, then only square-free monomial
ideals are considered.
Subnodes
:Enumerating monomial ideals with given generator degrees or number of elements
@TO orbitRepresentatives@
:Enumerating monomial ideals with given Hilbert function
@TO hilbertRepresentatives@
:Options limiting the type of ideals generated
@TO MonomialType@
///
doc ///
Key
orbitRepresentatives
(orbitRepresentatives, Ring, VisibleList)
(orbitRepresentatives, Ring, Ideal, VisibleList)
(orbitRepresentatives, Ring, Ideal, Ideal, ZZ)
[orbitRepresentatives, MonomialType]
Headline
find representatives of monomial ideals under permutations of variables
Usage
L = orbitRepresentatives(R, degs)
L = orbitRepresentatives(R, I, degs)
L = orbitRepresentatives(R, I, J, numelts)
Inputs
R:PolynomialRing
degs:List
or @ofClass Sequence@, of the degrees of the generators
I:Ideal
The starting ideal; all the ideals returned will contain this one.
J:Ideal
A monomial ideal containing monomials from which to add to I;
when numelts < 0, then the ideals formed are I+J minus
a certain number of monomials.
numelts:ZZ
If numelts >0 then each monomial ideal produced is
I+ numelts elements of J; if numelts < 0 then
each monomial ideal produced is I+J minus |numelts| elements of J.
MonomialType => String
(either {\tt "All"} or {\tt "SquareFree"}). For {\tt "All"},
all monomials are
considered, and for {\tt "SquareFree"},
only square free monomials are considered
Outputs
L:List
of monomial ideals
Description
Text
This method generates a list of representatives of the orbits of
monomial ideals with given minimal generator degrees
under the group of permutations of the variables.
If the option @TO MonomialType@ is set to "SquareFree",
then only ideals of square-free monomials are considered.
The program works by induction on the number of
generators; given the list L of orbit representatives for
the ideals minimally generated by the first k of the
generators, the program adds all possible generators of
the (k+1)-st degree to each of ideals in L in a certain
order, and then removes those in the list that can be
obtained by a permutation of variables from one that is earlier
in the list.
Because the generators are constrained to be minimal generators,
it is advantageous to specify the low degrees of generators first.
Note that {\tt degs} is specified as a VisibleList, which could
be either a list or a sequence.
Example
S = ZZ/101[a..d];
L = orbitRepresentatives(S,(2,2,2))
#L
tally apply(L, m->betti res m)
L' = orbitRepresentatives(S,(2,2,2), MonomialType => "SquareFree")
#L'
tally apply(L', m->betti res m)
I = monomialIdeal"a2,b2,c2,d2"
L'' = orbitRepresentatives(S,I,{2,2,2})
tally apply(L'', m->betti res m)
Text
Multi-gradings are also allowed:
Example
S = ZZ/101[x_0..x_3, Degrees=>{{1,2},{2,1},{1,1},{1,0}}];
orbitRepresentatives(S,{{2,2},{2,1}})
Text
Since the input data specifies degrees of minimal generators,
the set of ideals may be empty:
Example
S = ZZ/101[a,b];
L = orbitRepresentatives(S,(2,2,2,2))
Text
It is possible to give a starting monomial ideal, and add
a given number of its generators.
Example
L = orbitRepresentatives(S,monomialIdeal a^3, (ideal(a,b))^3, 2)
Text
If the number given is negative, then all but that number
of elements of the starting monomial ideal in arg 2 are taken. The
starting monomial ideal is reduced mod the ideal in arg 1 before
the process begins
Example
L = orbitRepresentatives(S,monomialIdeal a^3, (ideal(a,b))^3, -2)
SeeAlso
hilbertRepresentatives
MonomialType
///
doc ///
Key
hilbertRepresentatives
(hilbertRepresentatives, Ring, VisibleList)
[hilbertRepresentatives, MonomialType]
Headline
find representatives of monomial ideals under permutations of the variables
Usage
L = hilbertRepresentatives(R,s)
Inputs
R:PolynomialRing
s:VisibleList
of desired values of {\tt d->hilbertFunction(R/I,d)} for d in (1..length s)
MonomialType => String
(either {\tt "All"} or {\tt "SquareFree"}). For {\tt "All"},
all monomials are
considered, and for {\tt "SquareFree"},
only square free monomials are considered
Outputs
L:List
of monomial ideals
Description
Text
This method generates a list of representatives of the orbits of
monomial ideals with given Hilbert function,
under the group of permutations of the variables.
If the option @TO MonomialType@ is set to "SquareFree",
then only ideals of square-free monomials are considered.
Starting with orbit representatives of monomial ideals
generated by all but s_0 linear forms, it successively adds to each
monomial ideal already found as
many forms of degree d in (2..1+length s) as necessary to
achieve the desired Hilbert function, in all possible ways. After each addition
it chooses representatives under the action of the group permuting the
variables of the ring.
Note that the (partial) Hilbert function is specified as a
@TO VisibleList@, which could be either a list or a sequence.
Example
S = ZZ/101[a..d];
netList(L = hilbertRepresentatives(S,{4,7,10}))
#L
tally apply(L, m-> hilbertPolynomial(m,Projective => false))
tally apply(L, m->betti res m)
tally apply(L, m->primaryDecomposition m)
Text
If the option @TO MonomialType@ is set to "SquareFree",
then only ideals of square-free monomials are considered.
Example
netList hilbertRepresentatives(S,{4,7,10,13}, MonomialType => "SquareFree")
Text
It is possible to specify data which results in no ideals:
Example
S = ZZ/101[a,b];
hilbertRepresentatives(S,{1,4}) == {}
SeeAlso
orbitRepresentatives
MonomialType
///
doc ///
Key
normalForms
(normalForms, List, List)
Headline
chooses orbit representatives from a list of monomial ideals, under a group of permutations
Usage
L' = normalForms(L,G)
Inputs
L:List
list of monomial ideals in a ring R
G:List
list of permutations, written as automorphisms of R
Outputs
L':List
list of representatives of the G-orbits in L
Description
Text
To test a conjecture on monomial ideals of a certain type, one typically makes a
computation on each one. If the computation is costly, and the result is invariant
under a group G of permutations of the variables, it may be more efficient to
choose orbit representatives first.
Applying the ring automorphisms and then comparing the ideals can be slow.
In the routine orbitRepresentatives, the monomial ideals are first
turned into lists of exponent vector, and the normalForms operations are done on these
using "normalFormsLis" instead of on the original ideals. The conversions to and from
monomialIdeals and lists of lists are done with toLis and fromLis.
Example
R = ZZ/101[w,x,y,z]
monlist = flatten entries basis(4,R)
idlist = subsets(monlist, 3)/monomialIdeal;
#oo
Text
There are 6545 ideals in 4 variables generated by 3 monomials of degree 4
Example
G0 = permutations numgens R
G = apply(G0, g -> map(R,R,(vars R)_g))
normalForms(idlist,G); --there are 244
#oo
Text
But only 333 orbits, a 19-fold reduction.
SeeAlso
orbitRepresentatives
hilbertRepresentatives
///
doc ///
Key
MonomialType
Headline
MonomialType => "SquareFree" or "All"
Usage
orbitRepresentatives(S,degs,MonomialType => "SquareFree")
Description
Text
The default is "All".
///
TEST///
R = ZZ/101[w,x,y,z]
monlist = flatten entries basis(4,R)
assert (#(idlist = subsets(monlist, 3)/monomialIdeal) == 6545)
G0 = permutations numgens R
G = apply(G0, g -> map(R,R,(vars R)_g))
assert(#normalForms(idlist,G) == 333)
///
TEST///
S = ZZ/101[a..d];
assert(#orbitRepresentatives(S,(2,2,2)) == 11)
assert(#orbitRepresentatives(S,{2,2,2}, MonomialType => "SquareFree") == 3)
///
TEST///
debug MonomialOrbits
#(G = permutations 4)
#(G1 = drop(G,1))
Fs = {{{1, 0, 0, 0}, {0, 0, 0, 1}, {0, 0, 1, 0}}, {{1, 0, 0, 0}, {0, 0, 0, 1}, {0, 1, 0, 0}}, {{1, 0, 0, 0}, {0, 0, 1, 0}, {0, 1, 0, 0}}}
Fs = Fs/sort
assert(#normalFormsLis(Fs,G) == 1)
///
TEST///
debug MonomialOrbits
S = ZZ/101[x,y,z]
L = monomialsInDegreeLis(4,S,"All")
M = monomialsInDegree(4,S,"All")
M' = sort(M, DegreeOrder => Ascending, MonomialOrder => Descending)
assert(all(#L, i->toMonLis(S, L_i) === (flatten entries M')_i))
///
TEST///
restart
loadPackage"MonomialOrbits"
debug MonomialOrbits
S = ZZ/101[x,y,z]
L = monomialsInDegreeLis(4,S,"All")
M = monomialsInDegree(4,S,"All")
M' = sort(M, DegreeOrder => Ascending, MonomialOrder => Descending)
assert(all(#L, i->toMonLis(S,L_i) === (flatten entries M')_i))
///
TEST///
S = ZZ/101[x_0..x_3, Degrees=>{{1,2},{2,1},{1,1},{1,0}}]
result = orbitRepresentatives(S,{{2,2},{2,1}})
ans = {monomialIdeal(x_1, x_0*x_3),
monomialIdeal(x_2*x_3, x_0*x_3),
monomialIdeal(x_1, x_2^2),
monomialIdeal(x_2*x_3, x_2^2)}
assert(#result == 4)
assert(set ans === set result)
///
TEST///
S = ZZ/101[a,b,c]
I = monomialIdeal"a3,b3,c3"
assert(#orbitRepresentatives(S,{3,3,3}) == 25)
assert(#orbitRepresentatives(S,I,{3}) == 2)
assert(#orbitRepresentatives(S,monomialIdeal 0_S, (monomialIdeal vars S)^3, 3) == 25)
assert(#orbitRepresentatives(S,I, (monomialIdeal vars S)^3, 1) == 2)
R = ZZ/101[a..f]
assert(
orbitRepresentatives(R,{4,5}, MonomialType => "SquareFree")
== {monomialIdeal (a*b*c*d, a*b*c*e*f)})
///
TEST///
R = ZZ/101[a,b]
assert(hilbertRepresentatives(R,{2,2}) == {monomialIdeal a^2 , monomialIdeal(a*b)})
assert(toString\hilbertRepresentatives(R,{2,2,1,0}) =={"monomialIdeal(a^2,a*b^2,b^4)", "monomialIdeal(a^2,b^3)", "monomialIdeal(a^3,a*b,b^4)"})
assert(hilbertRepresentatives(R,{2,3,0}) =={monomialIdeal(a^3,a^2*b,a*b^2,b^3)})
R = ZZ/101[a,b,c]
assert(#hilbertRepresentatives(R,{2}) == 1)
assert(#hilbertRepresentatives(R,{2,0}) == 1)
assert(#hilbertRepresentatives(R,{2,2,1}) == 3)
assert(#hilbertRepresentatives(R,{2,2,1,0}) == #hilbertRepresentatives(R,{2,2,1}))
assert(#hilbertRepresentatives(R,{3,4,5}) == 2)
assert(#hilbertRepresentatives(R,{3,4,0}) == 4)
///
TEST///
debug needsPackage "MonomialOrbits"
S = ZZ/101[a,b,c,d]
assert(# permutations S == 24)
///
///
restart
debug loadPackage("MonomialOrbits", Reload=>true)
///
TEST///
S = ZZ/101[a..d]
mm = monomialIdeal gens S
assert ({monomialIdeal (a, b, c)} ==
orbitRepresentatives(S, monomialIdeal S_0, mm, -1)
)
assert (
#orbitRepresentatives(S, monomialIdeal S_0, mm, -1) == 1
)
assert(
{monomialIdeal(a, b^2,b*c,c^2,b*d,c*d), monomialIdeal(a,b^2,b*c,c^2,b*d,d^2)} ==
orbitRepresentatives(S, monomialIdeal S_0, mm^2, -1)
)
assert({monomialIdeal (a, d)} ==
orbitRepresentatives(S, monomialIdeal S_0, mm, 1)
)
assert(
{monomialIdeal(a,c*d,d^2), monomialIdeal(a,c^2,d^2), monomialIdeal(a,b*c,d^2), monomialIdeal(a,b*d,c*d)} ==
orbitRepresentatives(S, monomialIdeal S_0, mm^2, 2)
)
///
///--new TEST
restart
loadPackage "MonomialOrbits"
debugLevel = 1
///
TEST///
debug MonomialOrbits;
S = ZZ/101[x,y,z]
mm = ideal vars S
I = monomialIdeal monomialsInDegree(3,S,"All")
L = toLis I
assert(I_* == (fromLis(S, toLis I))_*)
ze = monomialIdeal 0_S
ans1 = orbitRepresentatives(S,ze, {2,2}) -- both of these pairs should be singletons:
ans2 = orbitRepresentatives(S,ze, {2,2}) -- both of these pairs should be singletons:
assert(ans1==ans2)
ans1 = orbitRepresentatives(S,ze, {3})
ans2 = orbitRepresentatives(S,ze, {3})
assert(ans1==ans2)
ans1 = orbitRepresentatives(S,monomialIdeal(x^3), {3})
ans2 = orbitRepresentatives(S,monomialIdeal(x^3), {3})
assert(ans1==ans2)
ans1 = orbitRepresentatives(S,monomialIdeal(z^3), {3})
ans2 = orbitRepresentatives(S,monomialIdeal(z^3), {3})
assert(ans1 == ans2)
ans1 = orbitRepresentatives(S,monomialIdeal(0_S), {3,3})
ans2 = orbitRepresentatives(S,monomialIdeal(0_S), {3,3})
assert(ans1 == ans2)
assert(#orbitRepresentatives (S, ze, 3:5) == 238)
ans1 = orbitRepresentatives (S, ze, {2,3,4})
ans2 = orbitRepresentatives (S, ze, (2,3,4))
assert(ans1 == ans2)
ans3 = orbitRepresentatives (S, {2,3,4})
assert(ans1 == ans3)
assert(#orbitRepresentatives (S, monomialIdeal x, mm, -1) == 1)
assert(#orbitRepresentatives (S, ze, mm, -1) == 1)
///
end-----------------------------------
///
restart
loadPackage("MonomialOrbits", Reload => true)
uninstallPackage "MonomialOrbits"
restart
installPackage "MonomialOrbits"
check "MonomialOrbits"
viewHelp MonomialOrbits
///
n = 4
x = symbol x
S = ZZ/101[x_1..x_n]
ze = monomialIdeal 0_S
mm = monomialIdeal gens S
--timing for version of June 1, 2021 on DE's IMac Pro:
(d,s) = (4,4)
#elapsedTime orbitRepresentatives (S, ze, mm^d, s) --.958 sec
#elapsedTime orbitRepresentatives (S, ze, mm^d, -s) --1.021 sec
#elapsedTime orbitRepresentatives (S, ze, s:d) --.980 sec
--for an earlier version, the timing was 41.5 sec.
|