1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396
|
///
restart
loadPackage "CompleteIntersectionResolutions"
loadPackage "PencilsOfQuadrics"
uninstallPackage("PencilsOfQuadrics")
installPackage("PencilsOfQuadrics")
check "PencilsOfQuadrics"
viewHelp "PencilsOfQuadrics"
needsPackage"CompleteIntersectionResolutions"
loadPackage("PencilsOfQuadrics", Reload=>true)
peek loadedFiles
///
newPackage(
"PencilsOfQuadrics",
Version => "0.9",
Date => "June 17, 2020",
Authors => {{Name => "Frank-Olaf Schreyer",
Email => "schreyer@math.uni-sb.de",
HomePage => ""},
{Name => "David Eisenbud",
Email => "de@msri.org",
HomePage => "https://www.msri.org/~de"},
{Name => "Yeongrak Kim",
Email => "kim@math.uni-sb.de",
HomePage => "https://sites.google.com/view/yeongrak"}
},
PackageExports => {"CompleteIntersectionResolutions"},
Headline => "Clifford Algebra of a pencil of quadratic forms",
Keywords => {"Commutative Algebra"}
)
export {
"matrixFactorizationK",--
"randomNicePencil",--
"RandomNicePencil",
"cliffordOperators",--
"centers",--
--
"tensorProduct",
"randomLineBundle",
-- "Nontrivial", -- an option which is not used in ver 0.2
"degOnE",
-- "degreeOnE",
"orderInPic",
"randomExtension",
--
"randNicePencil",
"qqRing",
"quadraticForm",
"baseRing",
"isotropicSpace",
"matFact1",
"matFact2",
"matFactu1",
"matFactu2",
--
"CliffordModule",--
"cliffordModule",--
"evenOperators",
"oddOperators",
"evenCenter",
"oddCenter",
-- "symmetricMatrix",--function returning the symmetric matrix
"symMatrix",--same as symmetricMatrix
"symmetricM", -- key for CliffordModule
"hyperellipticBranchEquation", -- key for CliffordModule
--going from category to category:
--Note that cliffordModule serves as matrixFactorizationToCliffordModule
"cliffordModuleToCIResolution",
"cliffordModuleToMatrixFactorization",
"ciModuleToMatrixFactorization",
"ciModuleToCliffordModule",
--
"VectorBundleOnE",
"vectorBundleOnE",
"yAction",
"searchUlrich",
"translateIsotropicSubspace",
"randomIsotropicSubspace"
}
needsPackage"CompleteIntersectionResolutions"
X:=local X;
Y:= local Y;
x := local x;
y := local y;
s := local s;
t := local t;
z := local z;
CliffordModule = new Type of MutableHashTable
VectorBundleOnE = new Type of MutableHashTable
RandomNicePencil = new Type of MutableHashTable
matrixFactorizationK=method()
matrixFactorizationK(Matrix,Matrix) := (X,Y) -> (
-- X and Y are vectors of forms in a ring S
-- creates the Knoerrer matrix factorization of X \dot Y
k := rank source X;
S := ring X;
D1 := (diagonalMatrix apply(k,i->(-1)^i))_(rsort toList(0..k-1));
D := (diagonalMatrix apply(2^(k-1),i->(-1)^i))_(rsort toList(0..2^(k-1)-1));
m1 := matFact(X*D1,Y*D1)*D;
m2 := transpose (matFact(Y*D1,X*D1)*D**S^{-1});
deg1 := reverse flatten apply(k//2+1,i->toList(binomial(k,2*i):-i));
deg2 := flatten apply(k//2+1,i->toList(binomial(k,2*i+1):-i-2));
M2 := map(S^deg2,S^(deg1)**S^{-3},m2);
M1 := map(S^deg1,S^deg2,m1);
(M1,M2)
)
TEST///
-- test of matrixFactorizationK
kk=ZZ/101
d=2
n=2*d
R=kk[a_0..a_(binomial(n+2,2))]
S=kk[x_0..x_(n-1),a_0..a_(binomial(n+2,2))]
M=genericSymmetricMatrix(S,a_0,n)
X=(vars S)_{0..n-1}
Y=X*M
(M1,M2)=matrixFactorizationK(X,Y);
M12=M1*M2;
assert(M12-M12_(0,0)*id_(target M12)==0)
assert(isHomogeneous M1)
assert(isHomogeneous M2)
assert(source M1==target M2)
assert( source M2==target M1**S^{-3})
///
matFact = (X,Y) -> (
--matrix factorization of X dot Y
--used in matrixFactorizationK
k := rank source X;
S := ring X;
l := k//2;
zeroMat := map(S^1,S^(2^(k-1)),0);
M := if k%2 == 0 then (
Xpart:=directSum apply(l,i->koszul(2*i+1,X))||zeroMat;
Ypart:=transpose zeroMat|directSum apply(l,i->koszul(2*i+2,Y));
map(S^(2^(k-1)),,Xpart+transpose Ypart) ) else (
Xpart = directSum apply(l+1,i->koszul(2*i+1,X));
zero1 := map(S^1,S^(2^(k-1)-1),0);
Ypart = (zero1||transpose directSum apply(l,i->koszul(2*i+2,Y)))| transpose zeroMat;
map(S^(2^(k-1)),,Xpart- Ypart)
);
M)
randomNicePencil=method()
randomNicePencil(Ring,ZZ) := (kk,g) -> (
--S, qq, R, u, M1, M2 Mu1, Mu2 are constructed.
--These are global variables!!
-*
describe S --kk[x_0..y_(g-1),z_1,z_2,s,t]
--x_0..y_(g-1),z_1,z_2 are coordinates on PP^(2g+1)
describe qq -- is the pencil of quadrics sq_1+tq_2
describe SQ -- the hypersurface ring over kk[s,t]
describe R -- kk[s,t]
X -- is the irrelevant ideal of PP^(2g+1)
Y -- Y is the coefficient vector of qq written as a linear combination of X
assert(X*transpose Y==qq)
u -- are the linear equations defining a maximal isotropic subspace
betti M1, betti M2 -- is the matrix factorization of qq
-- corresponding to the resolution of kk
betti Mu1, betti Mu2 -- is the matrix factorization of qq
-- corresponding to the resolution of u
*-
n := g+1;
S := kk[x_0..x_(g-1),y_0..y_(g-1), z_1,z_2,s,t];
xy := (vars S)_{0..2*n-1};
u := matrix {apply(g,i->x_i)|{z_1,z_2}};
x':=apply(g+1,i->(matrix{apply(g,i->x_i)|{z_1,z_2}}*random(S^{g+2:-1},S^{-1}))_(0,0));
y':=apply(g+1,i->(xy*random(S^{2*n:-1},S^{-1}))_(0,0));
q1:= sum_g(i->x_i*y_i)-z_1^2;
q2:= sum_(g+1)(i->x'_i*y'_i);
qq:= s*q1+t*q2;
SQ := S/qq;
R:=kk[s,t];
X := xy;
Y := matrix {drop(last entries transpose syz (X|qq),-1)};
(m1,m2) := matrixFactorizationK(X,Y);
cub:=sum_n (i-> S_i^3);
F := res(coker X**(S/cub));
degsEven := reverse flatten degrees F_(2*g+4);
degsOdd := flatten degrees F_(2*g+3);
M2 := map(S^-degsOdd,S^-degsEven,m2)**S^{2*g+2};
M1 := map(S^-degsEven**S^{3},S^-degsOdd,m1)**S^{2*g+2};
Yu := matrix {drop(last entries transpose syz (u|qq),-1)};
(m1u,m2u) := matrixFactorizationK(u,Yu);
F = res(coker u**SQ);
degsEven = reverse flatten degrees F_(2*g+4);
degsOdd = flatten degrees F_(2*g+3);
Mu2 := map(S^-degsOdd,S^-degsEven,m2u)**S^{2*g+2};
Mu1 := map(S^-degsEven**S^{3},S^-degsOdd,m1u)**S^{2*g+2};
(S, qq, R, u, M1, M2, Mu1, Mu2))
-- (S, qq, R, u, M1, M2, Mu1, Mu2)=randomNicePencil(kk,g)
-- is constructed
-- randomNicePencil := () -> print"usage: (S, qq, R, u, M1, M2, Mu1, Mu2)=randomNicePencil(kk,g)"
randNicePencil = method()
randNicePencil(Ring,ZZ) := (kk,g)->(
L := randomNicePencil(kk,g);
new RandomNicePencil from hashTable{
(qqRing, L_0),
(quadraticForm, L_1),
(baseRing, L_2),
(isotropicSpace, L_3),
(matFact1, L_4),
(matFact2, L_5),
(matFactu1, L_6),
(matFactu2, L_7)}
)
///
restart
load "PencilsOfQuadrics.m2"
kk=ZZ/101
g=2
(S, qq, R, u, M1, M2, Mu1, Mu2)=randomNicePencil(kk,g);
rNP = randNicePencil(kk,g)
rNP.qqRing
betti Mu1, betti Mu2
isHomogeneous Mu1, isHomogeneous Mu2
(uOdd,uEv)=cliffordOperators(M1,M2,R);
(uOdd,uEv)=cliffordOperators(rNP.matFact1,rNP.matFact2,rNP.baseRing);
(c0,c1)=centers(uOdd,uEv);
f=det symMatrix(uOdd,uEv)
factor f
symMatrix(uOdd,uEv)
betti c0, betti c1
isHomogeneous(c0++c1)
degrees c0, degrees c1
if g==1 then assert(c0-transpose c1==0)
assert(c0^2-c1^2==0)
c0^2-(-1)^(g+1)*f*id_(target c0)
assert(c1^2-(-1)^(g+1)*f*id_(target c1)==0)
assert(all(#uEv,i->uEv_i*c0+c1*uEv_i==0))
assert(all(#uOdd,i->uOdd_i*c1+c0*uOdd_i==0))
///
cliffordOperators=method()
cliffordOperators(Matrix,Matrix,Ring) := (M1,M2,R) -> (
-- R= kk[s,t]
-- M1 and M2 are the matrices defining a linear periodic resolution
--over R[variables]/qq
-- eOdd_i: Hom_S(target M_2,R) -> Hom_S(target M_1,R)
-- eEv_i: Hom_S(target M_1,R) -> Hom_S(target M_2,R) -- maybe twisted by R^{\pm 1}
-- eOdd_i++eEv_i are the endomorphisms induced by
-- generators of the Clifford algebra
-- on the module Hom_S(target M_1++target M2,R)
-- Note that the following identities hold:
-- transpose M1=sum(S_i*eEv_i) and transpose M2=sum(S_i*eOdd_i)
S := ring M1;
es := drop(gens S,-numgens R);
eOdd := apply(apply(es,e->contract(e,M2)),m->
transpose( sub(map(target M2,, m),R)**R^1));
eEv := apply(apply(es,e->contract(e,M1)),m->
transpose (sub(map(target M1,, m),R)**R^1));
-- << "Lists of Clifford operators eOdd and eEv constructed" << endl;
--error();
(eOdd,eEv))
-*
*-
symMatrix=(eOdd,eEv) -> matrix apply(#eOdd,i->apply(#eEv,j->1/2*(eOdd_i*eEv_j+eOdd_j*eEv_i)_(0,0)));
--symmetricMatrix = symMatrix
compl= (L1,L2) -> sort toList (set L2-set L1)
centers=method()
centers(List,List) := (eOdd,eEv) -> (
-- eOdd_i and eEv_i are the even and odd parts of the same generator of
-- the Clifford algebra of qq over R
-- The result are the center elements computed via the pfaffian formula
M := matrix apply(#eOdd,i->apply(#eEv,j->1/2*(eOdd_i*eEv_j+eOdd_j*eEv_i)_(0,0)));
n := rank source M;
R := ring M;
skewMat :=map(target M, source M,(i,j)->if j>i then M_(i,j) else if i==j then 0 else -M_(j,i));
L := select(subsets(toList(0..n-1)),I-> #I%2==0);
k:=0;
oe := prepend(id_(target eEv_0),
drop(
apply(L,I->(
k=#I//2;
product(k,j->eOdd_(I_(2*k-1-2*j))*eEv_(I_(2*k-2-2*j))))),1));
--product(k,j->eOdd_(I_(1+2*j))*eEv_(I_(2*j))))),1));
eo := prepend(id_(target eOdd_0),
drop(
apply(L,I->(
k=#I//2;
product(k,j->eEv_(I_(2*k-1-2*j))*eOdd_(I_(2*k-2-2*j))))),1));
--product(k,j->eEv_(I_(1+2*j))*eOdd_(I_(2*j))))),1));
cL := apply(L,I->compl(I,toList(0..n-1)));
p:=0;
pfaffianList := apply(cL,I->(p=pfaffians(#I,skewMat_I^I);
if p==0 then 0 else (-1)^(sum I)*p_0));
c0 := sum(#L,i->pfaffianList_i*oe_i);
c1 := sum(#L,i->pfaffianList_i*eo_i);
c0 = map(R^(-degrees target eOdd_0),R^(-degrees target eOdd_0)**R^{-n//2},c0);
c1 = map(R^(-degrees target eEv_0),R^(-degrees target eEv_0)**R^{-n//2},c1);
(c0,c1))
TEST///
-- Testing the pfaffian formula
kk=ZZ/101
d=1
n=2*d
R=kk[a_0..a_(binomial(n+2,2)-1)]
S=kk[x_0..x_(n-1),a_0..a_(binomial(n+2,2)-1)]
M=genericSymmetricMatrix(S,a_0,n)
X=(vars S)_{0..n-1}
Y=X*M
(M1,M2)=matrixFactorizationK(X,Y);
(eOdd,eEv)=cliffordOperators(M1,M2,R);
symMatrix(eOdd,eEv)
(c0,c1)=centers(eOdd,eEv);
assert isHomogeneous c0
assert isHomogeneous c1
betti c0, betti c1
all(n,i->eOdd_i*c1+c0*eOdd_i==0)
all(n,i->eEv_i*c0+c1*eEv_i==0)
assert(target eEv_0 == target c1)
assert(target eOdd_0 == target c0)
determ=det symMatrix(eOdd,eEv)
-- Note the factor (-1)^d occurs in the test below
assert(c0^2-(-1)^d*determ*id_(target c0)==0)
assert(c1^2-(-1)^d*determ*id_(source c1)==0)
///
factorToList = method()
factorToList(Product) := pf ->(
lpf := toList pf;
llpf := apply(lpf,p->toList p);
apply(llpf, pair-> (pair_0)^(pair_1))
)
///
pf = factor f
assert (f == product factorToList factor f)
///
--randomLineBundle=method(Options => {Nontrivial =>true})
randomLineBundle=method()
-- the option is not used
randomLineBundle( RingElement ) := f -> (
--produces a 2x2 matrix factorization of f, hence a line bundle on the hyperelliptic curve.
--corresponding to y^2-(-1)^g*f.
--the first matrix has the form
--b c
--a -b
--where a is the lowest degree factor of (-(-1)^g*f-b^2) =: f1, and ac=f1.
--caveat: produces a nontrivial bundle IF there's a nontrivial factor of f1,
--which happens with positive probability over a finite field.
R:= ring f;
g:= (degree f)_0 // 2 -1;
b:=random(g+1,R);
lf := factorToList factor(-(-1)^g*f-b^2);
a := lf_0;
c := product(drop(lf,1),fi->fi);
--c:=if #ff==1 then 1 else product(drop(ff,1),fi->fi);
targetm := target transpose map(R^1,,matrix{{b,a}});
m:=map(targetm,, matrix{{b,c},{a,-b}});
assert(isHomogeneous m);
vectorBundleOnE m
)
--randomMatrixFactorization = method(Options => {Nontrivial =>true})
randomMatrixFactorization=method()
randomMatrixFactorization(RingElement) := f -> (
--produces a 2x2 matrix factorization of f, hence a line bundle on the hyperelliptic curve.
--corresponding to y^2-(-1)^g*f.
--the first matrix has the form
--b c
--a -b
--where a is the lowest degree factor of (-(-1)^g*f-b^2) =: f1, and ac=f1.
--caveat: produces a nontrivial bundle IF there's a nontrivial factor of f1,
--which happens with positive probability over a finite field.
R:= ring f;
g:= (degree f)_0 // 2 -1;
b:=random(g+1,R);
lf := factorToList factor(-(-1)^g*f-b^2);
a := lf_0;
c := product(drop(lf,1),fi->fi);
--c:=if #ff==1 then 1 else product(drop(ff,1),fi->fi);
targetm := target transpose map(R^1,,matrix{{b,a}});
m:=map(targetm,, matrix{{b,c},{a,-b}});
assert(isHomogeneous m);
m
)
///
restart
loadPackage("PencilsOfQuadrics", Reload =>true)
check "PencilsOfQuadrics"
///
TEST///
kk=ZZ/101
g=1
(S, qq, R, u, M1, M2, Mu1, Mu2)=randomNicePencil(kk,g)
(uOdd,uEv)=cliffordOperators(Mu1,Mu2,R)
(c0,c1)=centers(uOdd,uEv)
symMatrix(uOdd,uEv)
f=det symMatrix(uOdd,uEv)
assert(c0^2+(-1)^g*f*id_(target c0)==0)
L=randomLineBundle(0,f)
m=L.yAction
assert((m)^2_(0,0)+(-1)^g*f==0)
--b = random(2*g+2, R)
assert isHomogeneous m
degOnE L
orderInPic L
--lcm apply(10,c-> (L=randomLineBundle(0,f); orderInPic L))
///
degOnE = method()
degOnE(Matrix) := (L) -> (
f := (L^2)_(0,0);
g := (degree ideal f )//2 -1;
r := numrows L//2;
sum(flatten degrees target L)+2*r+r*(g-1))
--degreeOnE = degOnE
orderInPic = method()
orderInPic(Matrix) := L->(
-- compute the order of a line bundle on E
L1:=L;N:=1;
if member({0},degrees target L1) then return 1;
while(N=N+1;
L1=tensorProduct(L,L1);
not member({0},degrees target L1)) do ();
N)
orderInPic(VectorBundleOnE) := L->(
M := L.yAction;
if numrows M != 2 or degOnE L != 0 then error("expected bundle to have rank 1 and degree 0");
orderInPic M)
randomLineBundle(ZZ,RingElement) := (d,f) -> (
-- f a binary form of degree 2g+2 over a finite field
-- d an integer
-- select randomly a line L of degree d on the hyperelliptic curve
-- defined by y^2-(-1)^g*f
while (L:=randomLineBundle f; a:=d-degOnE L; a% 2 !=0) do ();
R:= ring f;
Ld := vectorBundleOnE (L.yAction**R^{-a//2});
if d == 0 then
while (member({0},degrees target Ld.yAction)) do(
Ld = randomLineBundle (d,f);
);
Ld
)
///
-- Experiments on the order of Pic^0 of an elliptic curve over a finite field
-- When f factors into a product of linear forms, the group is no more cyclic.
-- When f is (or is close to?) irreducible, then the group tends to be cyclic.
-- Note that the Hasse-Weil theorem expects that the order of Pic^0 is in between
-- p + 1 - 2*sqrt(p) and p + 1 + 2*sqrt(p)
restart
loadPackage ("PencilsOfQuadrics", Reload =>true)
kk = ZZ/101
R = kk[s,t]
g = 1
f48 = 25*s^4+19*s^3*t-5*s^2*t^2+11*s*t^3+12*t^4
factor f48
lcm apply (10, i-> orderInPic randomLineBundle(0,f48))
-- f48 gives an elliptic curve with noncyclic pic; maybe (ZZ/48)xZZ/2
f10 = (35*s + t)*(33*s - t)*(13*s - t)*(5*s + t)*(-18)
factor f10
-- f10 gives an elliptic curve with noncyclic pic; maybe (ZZ/10)xZZ/10
-- so far all f's with g=1 with linear factorization give rise to Jacobians that are not cyclic
-- they have 2 factors.
tally apply (50, i -> orderInPic randomLineBundle(0,f10))
lcm oo
-- product of 4 linear forms => 2-torsions are Z/2 * Z/2 => Pic^0(E) is not cyclic.
p=char kk
(p+1-2*sqrt(p),p+1+2*sqrt(p))
-- so the only candidates are 90, 100, 110, 120
-- experimentally we cannot find any random line bundle of order multiples of 3, or 11
-- so Pic^0 should be of order 100
f = product(2*g+2, i-> random(1,R))
factor f
kk=ZZ/11
R=kk[s,t]
f = s^3*t+3*s^2*t^2+s*t^3 --(char = 11, factors into linears, group might be Z/4 x Z/4 or Z/2 x Z/4.
factor f
tally apply (100, i-> orderInPic randomLineBundle(0,f))
-- about half of order 2 elements and half of order 4 elements
-- => probably Pic^0 is Z/2 * Z/4.
-- cf. Schoof's fast algorithm to compute the order of an elliptic curve
p=char kk
(p+1-2*sqrt(p),p+1+2*sqrt(p))
-- Pic^0 has at most 2g factors; so experimentally it should be either Z/4 * Z/4 or Z/4 * Z/2
needsPackage "TateOnProducts"
setRandomSeed "order Eight ";
A=randomLineBundle(0,f);
B=randomLineBundle(0,f);
(orderInPic A, orderInPic B)
A.yAction
B.yAction
A2=tensorProduct(A, A)
A3=tensorProduct(A2,A)
A4=tensorProduct(A3,A)
A.yAction
tally apply (100, i->isIsomorphic(coker A.yAction, coker A3.yAction))
betti coker A.yAction
betti coker A2.yAction
betti coker A3.yAction
betti coker A4.yAction
prune coker A.yAction
prune coker A2.yAction
prune coker A3.yAction
prune coker A4.yAction
homAtoA3= Hom(coker A.yAction, coker A3.yAction)
phi=homomorphism homAtoA3_{0}
prune coker phi
basis coker A2.yAction
A.yAction
Ry=kk[s,t,y,Degrees=>{1,1,2}]
isHomogeneous (M1=map( Ry^2,,y*id_(Ry^2) + sub(A.yAction,Ry)))
isHomogeneous (M3=map( Ry^2,,y*id_(Ry^2) + sub(A3.yAction,Ry)))
tally apply (100, i->isIsomorphic(coker M1, coker M3)) -- false
-- only with yAction on PP1, sometimes we pick wrong isomorphisms which make a bad test
tally apply (100, i->isIsomorphic(coker A.yAction, coker B.yAction))
tally apply (100, i->isIsomorphic(coker A2.yAction, coker B.yAction))
tally apply (100, i->isIsomorphic(coker A3.yAction, coker B.yAction))
B2=tensorProduct(B,B)
tally apply (100, i->isIsomorphic(coker A.yAction, coker B2.yAction))
tally apply (100, i->isIsomorphic(coker A2.yAction, coker B2.yAction)) -- true
tally apply (100, i->isIsomorphic(coker A3.yAction, coker B2.yAction))
-- A, B generates a group of order 8
L={A, A2, A3, A4, B, tensorProduct(A,B), tensorProduct(A2,B), tensorProduct(A3,B)}
apply(L, C->apply(L, D->(# (select (apply(100, i->isIsomorphic(coker C.yAction, coker D.yAction)), t->t==true)) > 0)))
apply(10, i->(
C:=randomLineBundle(0,f);
tally apply(L, D-> # (select (apply(100, i->isIsomorphic(coker C.yAction, coker D.yAction)), t->t==true)) > 0)
))
f=product(2, i-> random(1,R))*random(2,R)
f=random(4,R)
factor f
///
TEST///
--test of tensorProduct of randomLineBundle and degreeOnE and orderInPic
kk = ZZ/101
R = kk[ s,t]
g = 1
f = random(2*g+2, R)
assert(dim ideal(jacobian ideal f)== 0)
L1=randomLineBundle(1,f)
assert(degOnE L1 == 1)
L2=randomLineBundle(2,f)
assert(degOnE L2 == 2)
L0 = randomLineBundle(0,f)
assert(degOnE L0 == 0)
assert(degOnE tensorProduct(L1,L1) == 2)
orderInPic randomLineBundle(0,f)
///
tensorProduct=method()
tensorProduct(Matrix,Matrix) := (phi,psi) -> (
--tensor product of sheaves on the hyperell curve y^2 \pm f
--with f in R
--represented by giving sheaves on proj R (usually P^1)
--plus the action phi or psi of the element y
R := ring phi;
g := degree ideal ((phi^2)_(0,0))//2 - 1;
inclusion:=syz(phi**id_(target psi)-(id_(target phi)**psi));
F:=chainComplex(inclusion);
F1:=F**R^{g+1};
(extend(F1,F,map(F1_0,F_0,(phi**id_(target psi)))))_1
)
tensorProduct(CliffordModule, VectorBundleOnE) := (M,L) -> (
phi0 := M.evenCenter;
phi1 := M.oddCenter;
psi := L.yAction;
assert((phi0^2)_(0,0)==(psi^2)_(0,0));
R := ring psi;
g := degree ideal ((psi^2)_(0,0))//2 - 1;
inclusion0 := syz(phi0**id_(target psi)-(id_(target phi0)**psi));
inclusion1 := syz(R^{1}**(phi1**id_(target psi)+(id_(target phi1)**psi)));
FEven := chainComplex(inclusion0);
FOdd := chainComplex(inclusion1);
Odd' := null;
Even' := null;
eOdd := apply(M.oddOperators, Odd->(
Odd' = map(FEven_0, R^{-g-1}**FOdd_0, R^{-g-1}**Odd**id_(target psi));
(extend(FEven,R^{-g-1}**FOdd, Odd'))_1));
eEv := apply(M.evenOperators, Even->(
Even' = map(FOdd_0, R^{-g-1}**FEven_0, R^{-g-1}**Even**id_(target psi));
(extend(FOdd,FEven, Even'))_1));
assert(symMatrix(eOdd,eEv) == symMatrix(M.oddOperators, M.evenOperators));
c0 := tensorProduct(phi0, psi);
c1 := tensorProduct(phi1, psi);
eOdd = apply(eOdd, e->map(target c0, target c1, e));
eEv = apply(eEv, e->map(target c1, R^{-1}**target c0, e));
cliffordModule(eOdd,eEv)
)
///
--test of tensorProduct(CliffordModule, VectorBundle)
restart
load ("PencilsOfQuadrics.m2")
kk=ZZ/101
g=1
(S, qq, R, u, M1, M2, Mu1, Mu2)=randomNicePencil(kk,g) ;
(uOdd,uEv)=cliffordOperators(Mu1,Mu2,R);
(c0,c1)=centers(uOdd,uEv);
symMatrix(uOdd,uEv)
f=det symMatrix(uOdd,uEv);
cMu = cliffordModule(uOdd, uEv);
M = cMu
u
betti M.evenCenter
apply(M.evenOperators, ev-> betti ev)
betti M.oddCenter
apply(M.oddOperators, e-> betti e)
apply(M.oddOperators, e-> map(target M.evenCenter, target M.oddCenter, e))/isHomogeneous
apply(M.evenOperators, e-> map(target M.oddCenter, R^{-1}**target M.evenCenter, e))/isHomogeneous
betti c0
elapsedTime cM = cliffordModule(M1, M2, R)
L = randomLineBundle(0,f);
betti(L.yAction)
M' = tensorProduct(M,L)
apply(M'.oddOperators, e-> betti e) == apply(M.oddOperators, e-> betti e)
apply(M'.evenOperators, e-> betti e) == apply(M.evenOperators, e-> betti e)
--elapsedTime cM' = tensorProduct(cM,L)
assert(target c0 == target (uOdd_0))
assert(target c1 == target (uEv_0))
T = tensorProduct(vectorBundleOnE(M.evenCenter),L)
assert(T.yAction - M'.evenCenter == 0)
--T = tensorProduct(vectorBundleOnE(cM.evenCenter),L)
--assert(T.yAction - cM'.evenCenter == 0)
M'1 = sum(2*g+2, i->S_i*sub(M'.evenOperators_i, S));
Mu1 = sum(2*g+2, i->S_i*sub(M.evenOperators_i, S));
I1= trim ideal Mu1_{0}
I1' = trim ideal M'1_{0}
trim(I1+I1')
vars S
qq
qq%I1'
///
vectorBundleOnE = method()
vectorBundleOnE(Matrix) := M -> (
new VectorBundleOnE from hashTable{yAction => M})
tensorProduct(VectorBundleOnE,VectorBundleOnE) := (L1, L2) ->
vectorBundleOnE tensorProduct(L1.yAction,L2.yAction)
degOnE(VectorBundleOnE) := L -> degOnE L.yAction
cliffordModule = method(TypicalValue => CliffordModule)
cliffordModule(List, List) := (uOdd, uEv) ->(
R := ring uOdd_0;
(c0',c1') := centers(uOdd, uEv);
uOdd' := apply(uOdd, e-> map(target c0', target c1', e));
uEv' := apply(uEv, e-> map(target c1', R^{-1}**target c0', e));
symm := symMatrix(uOdd', uEv');
f := det symm;
new CliffordModule from hashTable{
oddOperators => uOdd',
evenOperators => uEv',
evenCenter=>c0',
oddCenter => c1',
symmetricM => symm,
hyperellipticBranchEquation => f
}
)
cliffordModule(Matrix,Matrix,Ring) := (M1,M2,R)->(
cliffordModule cliffordOperators (M1,M2,R)
)
TEST///
kk=ZZ/101
g=1
(S, qq, R, u, M1, M2, Mu1, Mu2)=randomNicePencil(kk,g)
(uOdd,uEv)=cliffordOperators(Mu1,Mu2,R)
(c0,c1)=centers(uOdd,uEv)
betti c0
betti c1
symMatrix(uOdd,uEv)
f=det symMatrix(uOdd,uEv)
cMu = cliffordModule(uOdd, uEv)
cM = cliffordModule(M1, M2, R)
cM.oddOperators
cMu.symmetricM
class cM
assert ((cMu.evenCenter, cMu.oddCenter)==centers(cMu.oddOperators, cMu.evenOperators))
///
randomExtension=method()
randomExtension(Matrix,Matrix) := (m1,m2) -> (
-- Input: m1, m2 matrices representing line bundle on E
-- Output: an extension of these line bundle
R := ring m1;
kk := coefficientRing R;
b := symbol b;
n:= numrows m1;
m:= numrows m2;
Rb :=kk[gens R|toList(b_(0,0)..b_(n-1,m-1))];
B :=map( Rb^(-degrees target m1),Rb^(-degrees source m2), transpose genericMatrix(Rb,b_(0,0),m,n));
eq := flatten( sub(m1,Rb)*B+B*sub(m2,Rb));
rex:=syz sub(transpose diff(transpose flatten transpose B,eq),R);
ex:=transpose (rex*random(source rex, R^1));
m12 := map(target m1,,sub(B,vars R|ex));
t:=(flatten degrees source m12)_0-(flatten degrees source m2)_0;
map(target m1++target m2**R^{-t},,(m1|m12)||(map(target m2,source m1,(i,j) -> 0)|m2))
)
///
restart
load"PencilsOfQuadrics.m2"
kk=ZZ/101
g=2
(S,qq,R,u,M1,M2,Mu1,Mu2) =randomNicePencil(kk,g);
P = kk[drop(gens S, -2)]
qs = sub(diff(matrix{{S_(2*g+2), S_(2*g+3)}}, qq), P)
CI = P/ideal qs
Mu=cliffordModule(Mu1,Mu2,R)
f=Mu.hyperellipticBranchEquation
bet=betti cliffordModuleToCIResolution(Mu,S,CI)
bet(1)[1]+bet(0)[0]+bet(-1)[-1]
while(
L1=randomLineBundle(2,f);
L2=randomLineBundle(0,f);
V=randomExtension(L1,L2);
F=cliffordModuleToCIResolution(tensorProduct(Mu,V),S,CI);
rank F_3 > 8 ) do ()
betti F
betti cliffordModuleToCIResolution(tensorProduct(Mu,V),S,CI)
elapsedTime tally apply(2,c-> (
L1=randomLineBundle(2,f);
L0=randomLineBundle(0,f);
L1=tensorProduct(L1,L0);
L2=randomLineBundle(1,f);
L0=randomLineBundle(0,f);
L2=tensorProduct(L2,L0);
L3=randomLineBundle(0,f);
L0=randomLineBundle(0,f);
L3=tensorProduct(L3,L0);
V=randomExtension(L1,L2);
V3=randomExtension(V,L3);
F=cliffordModuleToCIResolution(tensorProduct(Mu,V3),S,CI);
betti F
))
-*
elapsedTime tally apply(10,c-> (
L1=randomLineBundle(2,f);
L0=randomLineBundle(0,f);
L1=tensorProduct(L1,L0);
L2=randomLineBundle(1,f);
L0=randomLineBundle(0,f);
L2=tensorProduct(L2,L0);
L3=randomLineBundle(0,f);
L0=randomLineBundle(0,f);
L3=tensorProduct(L3,L0);
V=randomExtension(L1,L2);
V3=randomExtension(V,L3);
F=cliffordModuleToCIResolution(tensorProduct(Mu,V3),S,CI);
betti F))
-- 32.7006 seconds elapsed
0 1 2 3 4 5 6 7
o14 = Tally{total: 48 36 24 12 12 24 36 48 => 10}
3: 48 36 24 12 . . . .
4: . . . . 12 24 36 48
o14 : Tally
-- => exist a rank 2 and 3 Ulrichbundles for genus 2
*-
///
randomExtension(VectorBundleOnE,VectorBundleOnE) := (L1,L2) -> (
vectorBundleOnE randomExtension(L1.yAction,L2.yAction)
)
///
kk=ZZ/101
g=2
(S,qq,R,u,M1,M2,Mu1,Mu2) =randomNicePencil(kk,g);
vars S
P = kk[drop(gens S, -2)]
qs = sub(diff(matrix{{S_(2*g+2), S_(2*g+3)}}, qq), P)
CI = P/ideal qs
u
Mu=cliffordModule(Mu1,Mu2,R)
f=Mu.hyperellipticBranchEquation
L1=randomLineBundle(1,f)
L2=randomLineBundle(2,f)
V=randomExtension(L1,L2)
keys Mu
Mor=vectorBundleOnE Mu.evenCenter
degOnE Mor
Mor1=vectorBundleOnE Mu.oddCenter
degOnE Mor1
(g-1)*2^g
2^g
L3=randomLineBundle(3,f)
MorV=tensorProduct(Mor1,L3)
degOnE MorV == (g-1)*2^g
MuV=tensorProduct(Mu,V)
F=cliffordModuleToCIResolution(MuV,S,CI)
betti F
betti cliffordModuleToCIResolution(Mu,S,CI)
M=cliffordModule(M1,M2,R)
bet=betti cliffordModuleToCIResolution(M,S,CI)
MV=tensorProduct(M,V)
betti cliffordModuleToCIResolution(MV,S,CI)
bet[1]+bet(-1)
///
searchUlrich=method()
searchUlrich(CliffordModule,Ring) :=(M,S) -> (
Mor := vectorBundleOnE M.evenCenter;
Mor1:= vectorBundleOnE M.oddCenter;
f := M.hyperellipticBranchEquation;
assert(dim ideal jacobian ideal f ==0);
g:=degree ideal f//2-1;
if (numgens S != 2*g+4) then error "S should be a polynomial ring in (2g+4) variables";
if (rank source M.evenCenter != 2^(g+1)) then error "M should be a Clifford module associated to a maximal isotropic subspace";
m1:=null; m2:= null; m12 := null;
Ul:= null; Ul1:= null; V:= null;
d1 := null; d0:= null;
while (
m1=randomLineBundle(g+(g%2),f);
m2=randomLineBundle(g%2,f);
m12=randomExtension(m1.yAction,m2.yAction);
V = vectorBundleOnE m12;
Ul=tensorProduct(Mor,V);
Ul1=tensorProduct(Mor1,V);
d0=unique degrees target Ul.yAction;
d1=unique degrees target Ul1.yAction;
#d1 >=3 or #d0 >=3) do ();
Ul = tensorProduct(M,V);
M1Ul:=sum(#Ul.oddOperators,i->S_i*sub(Ul.oddOperators_i,S));
Ulrich := M1Ul^{2*2^g..4*2^g-1};
coker map(S^(2^(g+1)),,Ulrich)
)
///
restart
load "PencilsOfQuadrics.m2"
kk=ZZ/101
R=kk[s,t]
g=3
(S, qq, R, u, M1, M2, Mu1, Mu2)=randomNicePencil(kk,g);
M=cliffordModule(Mu1,Mu2,R)
elapsedTime Ulrich = searchUlrich(M,S);
betti res Ulrich
ann Ulrich
assert(4*2^(g-1)== numrows presentation Ulrich)
-*
M=cliffordModule(Mu1,Mu2,R)
Mor=vectorBundleOnE M.evenCenter
Mor1=vectorBundleOnE M.oddCenter
betti Mor.yAction, betti Mor1.yAction
f=M.hyperellipticBranchEquation
elapsedTime tally apply(10,c-> (
m1=randomLineBundle(g+(g%2),f);
m2=randomLineBundle(g%2,f);
m12=randomExtension(m1.yAction,m2.yAction);
V = vectorBundleOnE m12;
Ul=tensorProduct(Mor,V);
Ul1=tensorProduct(Mor1,V);
(betti Ul.yAction,betti Ul1.yAction)))
betti Ul1.yAction, betti Ul.yAction
MV=tensorProduct(M,V)
P = kk[drop(gens S, -2)]
qs = sub(diff(matrix{{S_(2*g+2), S_(2*g+3)}}, qq), P)
CI = P/ideal qs
ciRes=cliffordModuleToCIResolution(MV,S,CI)
betti ciRes
betti res coker lift(ciRes.dd_5,P)
*-
///
matrixFactorizationCToCliffordModule = cliffordModule
cliffordModuleToMatrixFactorization = method()
cliffordModuleToMatrixFactorization(CliffordModule,Ring) := (M,S) ->(
--S is a ring with first set of vars corresponding to odd operators
--and s,t at the end.
g := (numgens S - 4)//2;
N1 := transpose sum(#M.evenOperators, i-> S_i*sub(M.evenOperators_i,S));
N2 := transpose sum(#M.oddOperators, i-> S_i*sub(M.oddOperators_i, S));
N1' := map(target (S^{1}**N1),,N1);
N2' := map(target (S^{-1}**N2),,N2);
(N1', N2'))
TEST///
kk = ZZ/101;g= 1
(S,qq,R,u, M1,M2, Mu1, Mu2) = randomNicePencil(kk,g);
M = cliffordModule(Mu1, Mu2, R)
(Mu1', Mu2') = cliffordModuleToMatrixFactorization (M,S);
assert(Mu1'-Mu1 == 0 and Mu2'-Mu2 ==0)
assert(Mu1'==Mu1)
assert(Mu2'==Mu2)
betti Mu1', betti Mu1
betti Mu2', betti Mu2
M = cliffordModule(M1, M2, R);
(M1', M2') = cliffordModuleToMatrixFactorization (M,S);
assert(M1'-M1 == 0 and M2'-M2 ==0)
betti M1', betti M1
assert(M1'==M1)
betti M2', betti M2
assert(M2'==M2)
--g=2
kk = ZZ/101;g=2
(S,qq,R,u, M1,M2, Mu1, Mu2) = randomNicePencil(kk,g);
M = cliffordModule(Mu1, Mu2, R)
(Mu1', Mu2') = cliffordModuleToMatrixFactorization (M,S);
assert(Mu1'-Mu1 == 0 and Mu2'-Mu2 ==0)
betti Mu1', betti Mu1
betti Mu2', betti Mu2
assert(Mu1'==Mu1)
assert(Mu2'==Mu2)
M = cliffordModule(M1, M2, R);
(M1', M2') = cliffordModuleToMatrixFactorization (M,S);
assert(M1'-M1 == 0 and M2'-M2 ==0)
assert(M1'==M1)
assert(M2'==M2)
betti M1', betti M1
betti M2', betti M2
///
-- Translating isotropic subspaces by degree 0 line bundles
translateIsotropicSubspace = method()
translateIsotropicSubspace(CliffordModule, VectorBundleOnE, PolynomialRing) := (M, L, S) -> (
-- Input:
-- M, a Clifford Module, corresponding to a maximal isotropic subspace u
-- L, a degree 0 line bundle on the associated hyperelliptic curve E
-- S, a polynomial ring kk[x_0..y_(g-1),z_0,z_1,s,t] in (2g+4) variables
-- Output:
-- uL, a matrix, presenting a maximal isotropic subspace of the translation of u by L.
f:=M.hyperellipticBranchEquation;
g:=(first degree f)//2 - 1;
if (numgens S != 2*g+4) then error "S should be a polynomial ring in (2g+4) variables";
if (rank source M.evenCenter != 2^(g+1)) then error "M should be a Clifford module associated to a maximal isotropic subspace";
if (degOnE L != 0) or (rank source L.yAction != 2) then error "L should be a degree 0 line bundle";
if (((L.yAction)^2)_(0,0) + (-1)^g*f != 0) then error "L should be a line bundle on E";
kk:=coefficientRing ring f;
u:=(vars S)_{0..g-1} | (vars S)_{2*g, 2*g+1};
M':=tensorProduct(M,L);
(Mqq1,Mqq2):=cliffordModuleToMatrixFactorization(M',S); -- MF of qq
qq:=(Mqq1*Mqq2)_(0,0);
q1:=diff(S_(numgens S-2),qq);
q2:=diff(S_(numgens S-1),qq);
S':=(coefficientRing S)[drop (gens S,-2)]; -- ring without s,t
CI:=S'/ideal (sub(q1,S'), sub(q2,S')); -- complete intersection ring
resCI:=cliffordModuleToCIResolution (M', S, CI);
BCI:=betti resCI;
d:=first last (select (keys BCI, k->BCI_k==1));
uL:=sub(mingens ideal (resCI.dd_d)_{0}, S);
assert((dim ideal uL, degree ideal uL) ==(dim ideal u, degree ideal u));
uL
)
-- input should be a CliffordModule.
randomIsotropicSubspace = method()
randomIsotropicSubspace(CliffordModule, PolynomialRing) := (M,S) -> (
-- Input:
-- M, a CliffordModule, corresponding to a maximal isotropic subspace u
-- S = kk[x_0..y_(g-1), z_0,z_1, s, t], a poly. ring in (2g+4) variables
-- Output:
-- I, a Matrix, presenting a maximal isotropic subspace
-- corresponding to the translation of u by a random line bundle of degree 0.
g:=(numgens S)//2 - 2;
u:=(vars S)_{0..g-1} | (vars S)_{2*g, 2*g+1};
if (rank source M.evenCenter != 2^(g+1)) then error "M should be a Clifford module associated to a maximal isotropic subspace";
f:=M.hyperellipticBranchEquation;
L:=randomLineBundle(0,f);
I:=translateIsotropicSubspace(M,L,S);
sub(I, S)
)
TEST///
-- needsPackage "PencilsOfQuadrics"
kk=ZZ/101;g=2
(S,qq,R,u, M1,M2, Mu1, Mu2) = randomNicePencil(kk,g);
M=cliffordModule (Mu1, Mu2, R);
f=M.hyperellipticBranchEquation;
L=randomLineBundle(0,f)
uL=translateIsotropicSubspace(M,L,S)
rU=randomIsotropicSubspace(M,S)
assert (betti rU == betti u)
///
///
cliffModuleToCIModule = method()
cliffModuleToCIModule(CliffordModule,Ring) := (M,R) ->()
///
cliffordModuleToCIResolution = method()
cliffordModuleToCIResolution(CliffordModule,Ring, Ring) :=(M,S,CI) ->(
(M1,M2) := cliffordModuleToMatrixFactorization(M,S);
StoCI := map(CI, S, gens CI | {0,0});
i := first max degrees target M.evenCenter;
B1 := sub(basis(i+2,target(M.oddCenter)),S);
B2 := sub(basis(i,target(M.evenCenter)),S);
d1 :=first degrees target transpose M1 - (first degrees target B1);
assert(degrees target ((transpose M1)**S^d1)==degrees target B1);
dd1 := (((transpose M1)**S^d1)*B2)//B1;
dd1':= StoCI (dd1);
res coker dd1'
)
-*
cliffordModuleToCIResolution(CliffordModule,Ring, Ring) :=(M,S,CI) ->(
(M1,M2) := cliffordModuleToMatrixFactorization(M,S);
--M1 goes odd to even; M2 goes even to odd
i := first max degrees target M.evenCenter;
B1 := sub(basis(i+1,target(M.oddCenter)),S);
--B1 has target odd
B2 := sub(basis(i,target(M.evenCenter)),S);
--B2 has target even
StoCI := map(CI, S, gens CI | {0,0});
d := StoCI ((M1*B1)//B2);
res(coker d, LengthLimit => 5)[i]
)
*-
///
restart
loadPackage "PencilsOfQuadrics"
///
TEST///
kk = ZZ/101;g=1
(S,qq,R,u, M1,M2, Mu1, Mu2) = randomNicePencil(kk,g);
diff(matrix{{S_(2*g+2), S_(2*g+3)}}, qq)
P = kk[drop(gens S, -2)]
qs = sub(diff(matrix{{S_(2*g+2), S_(2*g+3)}}, qq), P)
CI = P/ideal qs
F = res( coker (sub(u, CI)), LengthLimit => 3)
betti (FF = res( coker transpose F.dd_3, LengthLimit => 5))
M = cliffordModule(Mu1, Mu2, R)
betti (F1=cliffordModuleToCIResolution(M,S,CI))
betti FF
betti (FFF = res coker FF.dd_5)
q1 = diff(S_(2*g+2),qq)
q2 = diff(S_(2*g+3),qq)
N = (S^1/(ideal(q1,q2))**coker sub(F.dd_2,S))
betti res (N, LengthLimit =>10)
betti F1.dd_(g+3-(g%2))
assert(ideal F1.dd_(g+3-(g%2))_{0} ==ideal sub(u,CI))
M = cliffordModule(M1,M2,R)
betti (F2=cliffordModuleToCIResolution(M,S,CI))
assert(ideal F2.dd_(2*g+3)_{0}^{0..2*g+1} == ideal gens CI)
----- now genus 2
g=2
(S,qq,R,u, M1,M2, Mu1, Mu2) = randomNicePencil(kk,g);
diff(matrix{{S_(2*g+2), S_(2*g+3)}}, qq)
P = kk[drop(gens S, -2)]
qs = sub(diff(matrix{{S_(2*g+2), S_(2*g+3)}}, qq), P)
CI = P/ideal qs
F = res( coker (sub(u, CI)), LengthLimit => 3)
betti (FF = res( coker transpose F.dd_3, LengthLimit => 5))
M = cliffordModule(Mu1, Mu2, R)
betti (F1=cliffordModuleToCIResolution(M,S,CI))
betti FF
betti F1.dd_(g+3-(g%2))
assert(ideal F1.dd_(g+3-(g%2))_{0} ==ideal sub(u,CI))
M = cliffordModule(M1,M2,R)
betti (F2=cliffordModuleToCIResolution(M,S,CI))
assert(ideal F2.dd_(2*g+3)_{0}^{0..2*g+1} == ideal gens CI)
-*
g=3
(S,qq,R,u, M1,M2, Mu1, Mu2) = randomNicePencil(kk,g);
diff(matrix{{S_(2*g+2), S_(2*g+3)}}, qq)
P = kk[drop(gens S, -2)]
qs = sub(diff(matrix{{S_(2*g+2), S_(2*g+3)}}, qq), P)
CI = P/ideal qs
F = res( coker (sub(u, CI)), LengthLimit => 3)
betti (FF = res( coker transpose F.dd_3, LengthLimit => 5))
M = cliffordModule(Mu1, Mu2, R)
betti (F1=cliffordModuleToCIResolution(M,S,CI))
betti FF
betti F1.dd_(g+3-(g%2))
assert(ideal F1.dd_(g+3-(g%2))_{0} ==ideal sub(u,CI))
M = cliffordModule(M1,M2,R)
betti (F2=cliffordModuleToCIResolution(M,S,CI))
assert(ideal F2.dd_(2*g+3)_{0}^{0..2*g+1} == ideal gens CI)
*-
///
TEST///
restart
loadPackage "PencilsOfQuadrics"
debug PencilsOfQuadrics
kk = ZZ/101
R = kk[s,t,x,y,z]
mm = ideal(x,y,z)
L = ext1Prep(R,mm)
assert ((L_0)_1 == coker matrix{{x^2,y,z}})
///
ciModuleToCliffordModule = method()
ciModuleToCliffordModule Module := M ->(
(e1,e0) := ciModuleToMatrixFactorization M;
S := ring e1;
n := numgens S - 2;
kk := coefficientRing S;
R := kk[S_n, S_(n+1)];
cliffordModule(e1,e0,R)
)
ciModuleToMatrixFactorization = method()
ciModuleToMatrixFactorization Module := M ->(
Ubar := ring M;
n := numgens Ubar;
--needsPackage "CompleteIntersectionResolutions";
(d0,d1) := EisenbudShamashTotal M;
S' := ring d0;
kk := coefficientRing Ubar;
S := kk[gens Ubar,s,t];
S'toS := map(S, S', apply(n,i->S_(i+2))|{S_0,S_1} );
fixDegs := d->( -- are the ceiling/floor functions applied correctly?
d' := S'toS d;
td := degrees target d;
sd := degrees source d;
td':= apply(td, D -> ceiling(3*D_0/2 -D_1));
sd':= apply(sd, D -> floor(3*D_0/2 -D_1));
map(S^td',S^sd',d')
);
e0 := fixDegs d0;
e1 := fixDegs d1;
assert(isHomogeneous e0 and isHomogeneous e1);
(e1,e0)
)
///
restart
loadPackage "PencilsOfQuadrics"
setRandomSeed 0
n = 4
c = 2
kk = ZZ/101
U = kk[x_0..x_(n-1)]
qq = matrix{{x_0^2+x_1^2,x_0*x_1}}
qq = random(U^1, U^{2:-2})
Ubar = U/ideal qq
M = coker vars Ubar
M = coker random(Ubar^2, Ubar^{-1,-2,-2})
(e1,e0) = ciModuleToMatrixFactorization M
source e0 == target e1
-degrees target e0+ degrees source e1
C = ciModuleToCliffordModule M
keys C
C.evenOperators
C.symmetricM
C.evenCenter
randomNicePencil()
randomNicePencil(kk,2)
///
isMinimal = method()
isMinimal(Ideal, ChainComplex) := (mm, F) -> (
--tests whether the differential is in mm
n := length F;
R := ring F;
k := R^1/mm;
all(n, i-> F.dd_i**k == 0)
)
isMinimal ChainComplex := F -> (
mm := ideal vars ring F;
isMinimal(mm,F))
///
restart
loadPackage "PencilsOfQuadrics"
debug PencilsOfQuadrics
check PencilsOfQuadrics
///
makeTlocal = method()
--local copy of code from "CompleteIntersectionResolutions"
makeTlocal(Matrix, ChainComplex,ZZ) := (ff,F,i) ->(
-*
If ff is an c x 1 matrix and
F is a chain complex
over R = S/(ideal ff),
of codim c this returns a list of the c ci-operators
F_i \to F_{i-2}
corresponding to the entries of ff.
*-
c := numcols ff;
degsff := flatten((degrees ff)_1);
R := ring F;
S := ring ff;
complete F;
minF := min F;
d0 := sub(F.dd_i, S);
d1 := sub(F.dd_(i-1), S);
Ftar := target d1;
Fsour := source d0;
d2 := d1*d0;
T := (d2//(ff**Ftar));
I := id_(source ff);
u := apply(c, j-> (I^{j}**Ftar)*T);
--check: is d1*d0 = sum ff_{i}*u_i
if d1*d0 != map(Ftar, Fsour, sum(c, i-> u_i**ff_{i})) then
error{"doesn't add up"};
ret := map(R,S);
apply(u, u1 -> ret u1)
)
ExtIntoK = method()
ExtIntoK Module := M -> (
--If M is a module over a complete intersection R of codim c,
--the script returns
--Ext^*(M,(ring M)^1/(ideal vars ring M))
--graded in POSITIVE degrees
--as a module over the polynomial ring kk[X_1..X_(codim R)],
--where the vars have degree 2
R := ring M;
kk := coefficientRing R;
kkk := (ring M)^1/(ideal vars ring M);
E := Ext(M,kkk);
TE := ring E;
c := numgens source presentation R;
X := local X;
T := kk[X_0..X_(c-1), Degrees => toList(c:{2})];
v := map(T,
ring E,
vars T | matrix{toList ((numgens R):0_T)},
DegreeMap => i -> {-first i} );
prune coker v presentation E)
ExtIntoK(Ideal, Module) := (I,M) -> (
--If M is a module over a complete intersection R of codim c that is a flat
-- algebra over
--a polynomial subring T (eg R = k[s,t][x_0...x_n]/s*q1(x)+t*q2(x))
--and I is an ideal such that T = R/I,
--the script returns
--Ext^*(M,R/I)
--graded in POSITIVE degrees
--as a module over T[X_0...X_c]
--where the vars have degree 2
R := ring M;
kk := coefficientRing R;
T := R/I;
varsT := flatten entries compress vars T;
E := Ext(M,R^1/I);
TE := ring E;
T' := minimalPresentation (TE/sub(I,TE));
coker sub(presentation E, T')
)
horizontalConcatenate = L ->(
-- L is a list of matrices with the same number of rows
M := L_0;
scan(#L-1, i-> M = M|L_(i+1));
M)
TEST///
restart
loadPackage "PencilsOfQuadrics"
debug PencilsOfQuadrics
N = ZZ^2
L = {id_N,id_N}
horizontalConcatenate L
///
beginDocumentation()
document {
Key => PencilsOfQuadrics,
Headline => "Clifford Algebra of a Pencil of quadratic forms on PP^(2g+1)",
"The Clifford algebra forms a link between the intersection of two quadrics X
and a hyperelliptic curve E. For example, one can recover the coordinate ring
of the hyperelliptic curve as the center of the even Clifford algebra. Using
a maximal linear subspace contained in the intersection, we get a Morita bundle
that connects graded modules over the coordinate ring of the hyperelliptic
curve and modules over the even Clifford algebra.
This leads to a proof of Reid's theorem which identifies the set of maximal isotropic
subspaces in the complete intersection of two quadrics to the set of degree 0 line bundles
on E. This approach was taken in an unpublished manuscript of Ragnar-Olaf Buchweitz and Frank-Olaf Schreyer.
The package allows a computational approach to the result of Bondal and Orlov
which showed that the Kuznetsov component of X and the derived category of E are equivalent
by a Fourier-Mukai transformation (see Section 2 of [A. Bondal, D. Orlov, arXiv:alg-geom/9506012],
or Section 6 of [A. Bondal, D. Orlov, Proceedings of ICM, Vol. II (Beijing, 2002)]).",
PARA{},
"We demonstrate this,
over finite fields, with
the constructions of further random linear spaces on the intersection of two quadrics,
and random Ulrich modules of lowest possible rank on the complete intersection
of two quadrics for small g.",
PARA{},
SUBSECTION "Types",
UL{
TO CliffordModule,
TO RandomNicePencil,
TO VectorBundleOnE
},
SUBSECTION "Basic Construction of the Clifford Algebra",
UL{
TO cliffordOperators,
TO symMatrix,
TO centers,
TO evenCenter,
TO oddCenter,
TO hyperellipticBranchEquation
},
SUBSECTION "Vector Bundles",
UL{
TO randomLineBundle, -- kk has to be finite
TO vectorBundleOnE,
TO yAction,
TO tensorProduct,
TO degOnE,
TO orderInPic, -- kk has to be finite
TO randomExtension
},
SUBSECTION "Clifford Modules",
UL{
TO cliffordModule,
TO tensorProduct,
TO evenOperators,
TO oddOperators
},
SUBSECTION "Computations using Clifford Algebras",
UL{
TO translateIsotropicSubspace,
TO randomIsotropicSubspace, -- kk has to be finite
TO searchUlrich -- kk has to be finite
}
}
doc ///
Key
matrixFactorizationK
(matrixFactorizationK,Matrix,Matrix)
Headline
Knoerrer matrix factorization from a bilinear form X*transpose Y
Usage
(M1, M2) = matrixFactorizationK(X,Y)
Inputs
X:Matrix
row matrix of linear forms with constant coefficients
Y:Matrix
row matrix of linear forms with linear coefficients of same length as X
Outputs
M1:Matrix
M2:Matrix
Description
Text
Produces a matrix factorization (M1,M2) of the bilinear form X*transpose Y.
It does this by specializing
the formula given by Knoerrer for $\sum X_i*Y_i$.
Example
kk=ZZ/101
n=2
R=kk[a_0..a_(binomial(n+2,2))]
S=kk[x_0..x_(n-1),a_0..a_(binomial(n+2,2))]
M=genericSymmetricMatrix(S,a_0,n)
X=(vars S)_{0..n-1}
Y=X*M
(M1,M2)=matrixFactorizationK(X,Y)
M12=M1*M2
///
doc ///
Key
ciModuleToMatrixFactorization
(ciModuleToMatrixFactorization,Module)
Headline
transforms a module over a complete intersection of 2 quadrics into a matrix factorization
Usage
(e1,e0) = ciModuleToMatrixFactorization M
Inputs
M:Module
module over a complete intersection of 2 quadrics
Outputs
e1:Matrix
e0:Matrix
the matrix factorization, in the form needed for cliffordModule(e1,e0,R)
Description
Text
Part of the series of explicit functors giving category equivalences:
cliffordModule
cliffordModuleToCIResolution
cliffordModuleToMatrixFactorization
ciModuleToMatrixFactorization
ciModuleToCliffordModule
This function uses the bihomogeneous matrix factorization produced by
the script EisenbudShamashTotal in the package CompleteIntersectionResolutions.
Using the multigrading, a new matrix factorization in the form needed for
cliffordModule(e1,e0,R), where R=k[s,t].
Example
n = 4
c = 2
kk = ZZ/101
U = kk[x_0..x_(n-1)]
qq = matrix{{x_0^2+x_1^2,x_0*x_1}}
qq = random(U^1, U^{2:-2})
Ubar = U/ideal qq
M = coker vars Ubar
betti (fM=res M)
betti res coker transpose fM.dd_3
(e1,e0) = ciModuleToMatrixFactorization M;
Text
Check that it's a matrix factorization:
Example
source e0 == target e1
0 == e0*e1 - diagonalMatrix(ring e0, apply(numcols e0, i->(e0*e1)_0_0))
degrees source e1-degrees target e0
Caveat
SeeAlso
cliffordModule
cliffordModuleToCIResolution
cliffordModuleToMatrixFactorization
ciModuleToMatrixFactorization
ciModuleToCliffordModule
///
doc ///
Key
ciModuleToCliffordModule
(ciModuleToCliffordModule,Module)
Headline
transforms a module over a complete intersection of 2 quadrics into a Clifford Module.
Usage
C = ciModuleToCliffordModule M
Inputs
M:Module
module over a complete intersection of 2 quadrics
Outputs
C:CliffordModule
Description
Text
Part of the series of explicit functors giving category equivalences:
cliffordModule
cliffordModuleToCIResolution
cliffordModuleToMatrixFactorization
ciModuleToMatrixFactorization
ciModuleToCliffordModule
This function uses ciModuleToMatrixFactorization, and then calls cliffordModule
Example
n = 4
c = 2
kk = ZZ/101
U = kk[x_0..x_(n-1)]
qq = matrix{{x_0^2+x_1^2,x_0*x_1}}
qq = random(U^1, U^{2:-2})
Ubar = U/ideal qq
M = coker vars Ubar
M = coker random(Ubar^2, Ubar^{-1,-2,-2})
C = ciModuleToCliffordModule M
keys C
C.evenOperators
C.symmetricM
C.evenCenter
SeeAlso
cliffordModule
cliffordModuleToCIResolution
cliffordModuleToMatrixFactorization
ciModuleToMatrixFactorization
ciModuleToCliffordModule
///
doc ///
Key
randomNicePencil
(randomNicePencil, Ring, ZZ)
Headline
sets up a random example to construct Clifford algebra and representation
Usage
(S, qq, R, u, M1, M2, Mu1, Mu2)=randomNicePencil(kk,g)
Inputs
kk:Ring
the ground field, not char 2, please!
g:ZZ
genus of the associated hyperelliptic curve.
Outputs
S:Ring
polynomial ring in g x's, g y's z_1,z_2 and s, t
qq:RingElement
Element of S, quadratic in x_0..z_2 and linear in s,t
R:Ring
polynomial ring kk[s,t]
u:Matrix
1 x g+2 row matrix with entries x_0..x_{(g-1)}, z_1,z_2;
generators of the ideal of an isotropic subspace for qq
M1:Matrix
M2:Matrix
Matrices over S such that M1*M2 = qq times an identity of size 2^{2g+1}
Mu1:Matrix
Mu2:Matrix
Matrices over S such that Mu1*Mu2 = qq times an identity of size 2^{g+1}
Description
Text
Chooses a random example of a pencil of quadrics qq = s*q1+t*q2
with a fixed isotropic subspace (defined by ideal u)
and a fixed corank one quadric in normal form q1.
When called with no arguments it prints a usage message.
The variables of S that are entries of X:= matrix \{\{x_0..y_{(g-1)},z_1,z_2\}\}
\, represent coordinates on PP_R^{2g+1}.
M1, M2 are consecutive high syzygy matrices in the minimal (periodic) resolution
of kk[s,t] = S/(ideal X) as a module over S/qq. These are used to construct the
Clifford algebra of qq.
Mu1, Mu2 are consecutive high syzygy matrices in the minimal (periodic) resolution
of S/(ideal u) as a module over S/qq. These are used to construct a Morita bundle
between the even Clifford algebra of qq and the hyperelliptic curve
branched over the degeneracy locus of the pencil,
\{(s,t) | s*q1+t*q2 is singular\} \subset PP^1.
Example
kk=ZZ/101
g=1
(S, qq, R, u, M1, M2, Mu1, Mu2)=randomNicePencil(kk,g);
gens S
q1 = diff(S_(2*g+2),qq)
Text
a quadratic form of corank 1 (corresponding to a branch point of E-->PP^1
in normal form.
Example
ideal u -- an isotropic space for q1 and q2
betti Mu1, betti Mu2
Mu1*Mu2- qq*id_(target Mu1) == 0
SeeAlso
CliffordModule
cliffordModule
cliffordOperators
centers
///
doc ///
Key
randNicePencil
(randNicePencil, Ring, ZZ)
Headline
sets up a random pencil of quadrics, and returns a hash table of the type RandomNicePencil.
Usage
L = randNicePencil(kk,g)
Inputs
kk:Ring
the ground field, not char 2, please!
g:ZZ
genus of the associated hyperelliptic curve.
Outputs
L:RandomNicePencil
Description
Text
Generates a random pencil of quadrics in the same way as randomNicePencil(kk,g).
Returns a hash table of the type RandomNicePencil.
Example
kk=ZZ/101;
g=1;
L=randNicePencil(kk,g)
keys L
L.qqRing
L.quadraticForm
L.baseRing
(L.matFact1 * L.matFact2) - (L.quadraticForm)**id_(source L.matFact1)
(L.matFact2 * L.matFact1) - (L.quadraticForm)**id_(source L.matFact1)
L.isotropicSpace
(L.matFactu1 * L.matFactu2) - (L.quadraticForm)**id_(source L.matFactu1)
(L.matFactu2 * L.matFactu1) - (L.quadraticForm)**id_(source L.matFactu1)
SeeAlso
randomNicePencil
RandomNicePencil
///
doc ///
Key
cliffordOperators
(cliffordOperators, Matrix, Matrix, Ring)
Headline
Generators for a Clifford Algebra
Usage
(eOdd, eEv) = cliffordOperators (M1,M2,R)
Inputs
R:Ring
polynomial ring of the form kk[U],
where U are parameter variables
M1:Matrix
over an auxiliary ring S = kk[X,Y,Z,U]
M2:Matrix
M1, M2 a matrix factorization: M1*M2- qq*id = 0 for a quadratic form qq on S
Outputs
eOdd:List
eEv:List
each list has length n = numgens S - numgens R;
the elements are matrices of size rank target M1.
Description
Text
The Clifford algebra C := Cliff(qq) of a quadratic form qq in n=2d variables is a
free ZZ/2-graded algebra of rank 2^{n} where n = numgens S-numgens R (if R is ZZ-graded,
and M1, M2 are linear in the variables of R, then C inherits a ZZ-grading; this is our usual case.
As an R-module C = C0++C1, with each component of rank 2^{(n-1)}.
The operators eOdd_i go from C1 to C0;
the operators eEv go from C0 to C1.
We have eOdd_i*eEv_j+eOdd_j*eEv_i = B(e_i,e_j), where
the e_i form a basis of the space on which qq acts and B is the bilinear form associated to 2qq
thus the pairs (eOd_i,eEv_i) form a representation of Cliff(qq).
--If qq is nonsingular over the generic point of R, then C is an Azumaya algebra over R, and this implies that the representation is faithful.
In the following we construct the generic symmetric
bilinear form on 2d variables and make a quadratic form
qq out of it.
Example
kk=ZZ/101; d=1;
n=2*d
R=kk[a_0..a_(binomial(n+2,2))]
S=kk[x_0..x_(n-1),a_0..a_(binomial(n+2,2))]
M=genericSymmetricMatrix(S,a_0,n)
X=(vars S)_{0..n-1}
Y=X*M
qq = X*transpose Y
(M1,M2)=matrixFactorizationK(X,Y);
(eOdd,eEv)=cliffordOperators(M1,M2,R);
Text
we check two of the relations of the Clifford algebra:
Example
(eOdd_0*eEv_0+eOdd_0*eEv_0)_(0,0) == 2*R_0
(eOdd_0*eEv_1+eOdd_1*eEv_0)_(0,0) == 2*R_1
SeeAlso
centers
cliffordModule
///
doc ///
Key
CliffordModule
Headline
hash table holding details of a Clifford module
Description
Text
the keys are
oddOperators => uOdd',
evenOperators => uEv',
evenCenter=>c0',
oddCenter => c1',
symmetricM => Q,
hyperellipticBranchEquation => f
SeeAlso
cliffordModule
///
doc ///
Key
RandomNicePencil
Headline
hash table holding details of a random pencil of quadrics
Description
Text
the keys are
qqRing => S,
quadraticForm => a pencil of quadrics qq=s*q1+t*q2,
baseRing => R = kk[s,t],
isotropicSpace => u,
matFact1 => M1,
matFact2 => M2,
matFactu1 => Mu1,
matFactu2 => Mu2,
SeeAlso
randomNicePencil
randNicePencil
///
doc ///
Key
evenOperators
Headline
part of a CliffordModule
Usage
uEv = M.evenOperators
Outputs
uEv:List
of the even operators on M
Description
Text
The list of the even operators uEv_i: M_0\to M_1
Example
kk = ZZ/101
g = 1
(S, qq, R, u, M1, M2, Mu1, Mu2)=randomNicePencil(kk,g);
M = cliffordModule(M1,M2, R)
M.evenOperators
SeeAlso
oddOperators
evenCenter
oddCenter
symMatrix
hyperellipticBranchEquation
///
doc ///
Key
oddOperators
Headline
part of a CliffordModule
Usage
uOdd = M.oddOperators
Outputs
uOdd:List
of the odd operators on M
Description
Text
The list of the odd operators uOdd_i: M_1\to M_0
Example
kk = ZZ/101
g = 1
(S, qq, R, u, M1, M2, Mu1, Mu2)=randomNicePencil(kk,g);
M = cliffordModule(M1,M2, R)
M.oddOperators
SeeAlso
evenOperators
evenCenter
oddCenter
symMatrix
hyperellipticBranchEquation
///
doc ///
Key
evenCenter
Headline
part of a CliffordModule
Usage
c0 = M.evenCenter
Outputs
c0:Matrix
Description
Text
Gives the action of Haag's center element y of the even Clifford algebra on the even part of M
Example
kk = ZZ/101
g = 1
(S, qq, R, u, M1, M2, Mu1, Mu2)=randomNicePencil(kk,g);
M = cliffordModule(M1,M2, R)
M.evenCenter
SeeAlso
evenOperators
oddOperators
oddCenter
oddCenter
symMatrix
hyperellipticBranchEquation
///
doc ///
Key
symmetricM
Headline
part of a CliffordModule
Usage
Q = M.symmetricM
Outputs
Q:Matrix
over k[s,t]
Description
Text
the underlying pencil of quadratic forms
Example
kk = ZZ/101
g = 1
(S, qq, R, u, M1, M2, Mu1, Mu2)=randomNicePencil(kk,g);
M = cliffordModule(M1,M2, R)
M.symmetricM
Text
this can also be obtained by
Example
symMatrix(M.evenOperators,M.oddOperators)
SeeAlso
evenOperators
oddOperators
oddCenter
oddCenter
symMatrix
hyperellipticBranchEquation
///
doc ///
Key
oddCenter
Headline
part of a CliffordModule
Usage
c1 = M.oddCenter
Outputs
c1:Matrix
Description
Text
Gives the action of Haag's center element y of the even Clifford algebra on the odd part of M
Example
kk = ZZ/101
g = 1
(S, qq, R, u, M1, M2, Mu1, Mu2)=randomNicePencil(kk,g);
M = cliffordModule(M1,M2, R)
M.oddCenter
SeeAlso
evenOperators
oddOperators
oddCenter
oddCenter
symMatrix
hyperellipticBranchEquation
///
doc ///
Key
symMatrix
Headline
part of a CliffordModule
Usage
s = symMatrix(eOdd,eEv)
Inputs
eOdd:List
eEv:List
operators on a Clifford Module
Outputs
s:Matrix
over k[s,t], the base of the Clifford algebra
Description
Text
Computes the matrix given by the pencil of quadrics defining the Clifford algebra.
Example
kk = ZZ/101
g = 1
(S, qq, R, u, M1, M2, Mu1, Mu2)=randomNicePencil(kk,g);
M = cliffordModule(M1,M2, R)
M.evenOperators
-- symmetricMatrix(M.evenOperators,M.oddOperators)
symMatrix(M.evenOperators,M.oddOperators)
SeeAlso
evenOperators
oddOperators
oddCenter
oddCenter
hyperellipticBranchEquation
///
-*
doc ///
Key
symmetricMatrix
Headline
part of a CliffordModule
Usage
s = symmetricMatrix(eOdd,eEv)
Inputs
eOdd:List
eEv:List
operators on a Clifford Module
Outputs
s:Matrix
over k[s,t], the base of the Clifford algebra
Description
Text
the pencil of quadratic forms defining the Clifford algebra. The functions
symmetricMatrix and symMatrix are the same.
Example
kk = ZZ/101
g = 1
(S, qq, R, u, M1, M2, Mu1, Mu2)=randomNicePencil(kk,g);
M = cliffordModule(M1,M2, R)
M.evenOperators
symmetricMatrix(M.evenOperators,M.oddOperators)
symMatrix(M.evenOperators,M.oddOperators)
SeeAlso
evenOperators
oddOperators
oddCenter
oddCenter
hyperellipticBranchEquation
///
*-
doc ///
Key
hyperellipticBranchEquation
Headline
part of a CliffordModule
Usage
f = M.hyperellipticBranchEquation
Outputs
f : RingElement
Description
Text
Gives the branch equation of the set of
points over which the associated quadratic form is singular. It is same as
the determinant of the symmetric matrix M.symmetricM.
Example
kk=ZZ/101;
g=1;
rNP=randNicePencil(kk,g);
M=cliffordModule(rNP.matFact1,rNP.matFact2,rNP.baseRing)
f=M.hyperellipticBranchEquation
sM=M.symmetricM
f == det sM
SeeAlso
evenOperators
oddOperators
oddCenter
evenCenter
symmetricM
///
doc ///
Key
baseRing
Headline
part of a RandomNicePencil
Usage
R = rNP.baseRing
Outputs
R : Ring
polynomial ring kk[s,t]
Description
Text
The base ring kk[s,t] which is the coordinate ring of PP^1.
Example
kk=ZZ/101;
g=1;
rNP=randNicePencil(kk,g);
R=rNP.baseRing
SeeAlso
qqRing
quadraticForm
matFact1
matFact2
matFactu1
matFactu2
isotropicSpace
///
doc ///
Key
qqRing
Headline
part of a RandomNicePencil
Usage
S = rNP.qqRing
Outputs
S : Ring
polynomial ring in g x's, g y's, z_1, z_2, and s, t.
Description
Text
The ambient polynomial ring where the quadratic form qq = s*q1 + t*q2 lives.
Example
kk=ZZ/101;
g=1;
rNP=randNicePencil(kk,g);
S=rNP.qqRing
SeeAlso
baseRing
quadraticForm
matFact1
matFact2
matFactu1
matFactu2
isotropicSpace
///
doc ///
Key
quadraticForm
Headline
part of a RandomNicePencil
Usage
qq = rNP.quadraticForm
Outputs
qq : RingElement
an element of S, quadratic in x_0..z_2 and linear in s, t.
Description
Text
the polynomial that represents a pencil of quadrics qq=s*q1+t*q2 with a fixed isotropic subspace
and a fixed corank one quadric in normal form q1.
Example
kk=ZZ/101;
g=1;
rNP=randNicePencil(kk,g);
S=rNP.qqRing;
qq=rNP.quadraticForm
q1=diff(S_(2*g+2), qq)
q2=diff(S_(2*g+3), qq)
qq==S_(2*g+2)*q1+S_(2*g+3)*q2
SeeAlso
qqRing
baseRing
matFact1
matFact2
matFactu1
matFactu2
isotropicSpace
///
doc ///
Key
isotropicSpace
Headline
part of a RandomNicePencil
Usage
u = rNP.isotropicSpace
Outputs
u : Matrix
1 x (g+2) row matrix with entries x_0 .. x_{(g-1)}, z_1, z_2
Description
Text
a row matrix whose entries are generators of the ideal of an isotropic subspace for qq.
Example
kk=ZZ/101;
g=1;
rNP=randNicePencil(kk,g);
u=rNP.isotropicSpace
SeeAlso
qqRing
baseRing
quadraticForm
matFact1
matFact2
matFactu1
matFactu2
///
doc ///
Key
matFact1
Headline
part of a RandomNicePencil
Usage
M1 = rNP.matFact1
Outputs
M1 : Matrix
a matrix over S such that (M1, M2) gives a matrix factorization of qq of size 2^{2g+1}.
Description
Text
M1, M2 are consecutive high syzygy matrices in the minimal periodic resolution
of the base ring R=S/(ideal matrix x_0..y_{(g-1)},z_1,z_2) as a module over S/(ideal qq).
These are used to construct the Clifford algebra of qq.
Example
kk=ZZ/101;
g=1;
rNP=randNicePencil(kk,g);
S=rNP.qqRing;
qq=rNP.quadraticForm;
M1=rNP.matFact1;
M2=rNP.matFact2;
M1*M2 - qq*id_(S^(2^(2*g+1)))
M1*M2 - M2*M1
SeeAlso
qqRing
baseRing
quadraticForm
matFact2
matFactu1
matFactu2
isotropicSpace
///
doc ///
Key
matFact2
Headline
part of a RandomNicePencil
Usage
M2 = rNP.matFact2
Outputs
M2 : Matrix
a matrix over S such that (M1, M2) gives a matrix factorization of qq of size 2^{2g+1}.
Description
Text
M1, M2 are consecutive high syzygy matrices in the minimal periodic resolution
of the base ring R=S/(ideal matrix x_0..y_{(g-1)},z_1,z_2) as a module over S/(ideal qq).
These are used to construct the Clifford algebra of qq.
Example
kk=ZZ/101;
g=1;
rNP=randNicePencil(kk,g);
S=rNP.qqRing;
qq=rNP.quadraticForm;
M1=rNP.matFact1;
M2=rNP.matFact2;
M1*M2 - qq*id_(S^(2^(2*g+1)))
M1*M2 - M2*M1
SeeAlso
qqRing
baseRing
quadraticForm
matFact1
matFactu1
matFactu2
isotropicSpace
///
doc ///
Key
matFactu1
Headline
part of a RandomNicePencil
Usage
Mu1 = rNP.matFactu1
Outputs
Mu1 : Matrix
a matrix over S such that (Mu1, Mu2) gives a matrix factorization of qq of size 2^{g+1}
Description
Text
Mu1, Mu2 are consecutive high syzygy matrices in the minimal periodic resolution
of the isotropic subspace S/(ideal u) as a module over S/(ideal qq).
These are used to construct a Morita bundle between the even Clifford algebra of qq
and the hyperelliptic curve branched over the degeneracy locus of the pencil.
Example
kk=ZZ/101;
g=1;
rNP=randNicePencil(kk,g);
S=rNP.qqRing;
qq=rNP.quadraticForm;
Mu1=rNP.matFactu1;
Mu2=rNP.matFactu2;
Mu1*Mu2 - qq*id_(S^(2^(g+1)))
Mu1*Mu2 - Mu2*Mu1
SeeAlso
qqRing
baseRing
quadraticForm
matFact1
matFact2
matFactu2
isotropicSpace
///
doc ///
Key
matFactu2
Headline
part of a RandomNicePencil
Usage
Mu2 = rNP.matFactu2
Outputs
Mu2 : Matrix
a matrix over S such that (Mu1, Mu2) gives a matrix factorization of qq of size 2^{g+1}
Description
Text
Mu1, Mu2 are consecutive high syzygy matrices in the minimal periodic resolution
of the isotropic subspace S/(ideal u) as a module over S/(ideal qq).
These are used to construct a Morita bundle between the even Clifford algebra of qq
and the hyperelliptic curve branched over the degeneracy locus of the pencil.
Example
kk=ZZ/101;
g=1;
rNP=randNicePencil(kk,g);
S=rNP.qqRing;
qq=rNP.quadraticForm;
Mu1=rNP.matFactu1;
Mu2=rNP.matFactu2;
Mu1*Mu2 - qq*id_(S^(2^(g+1)))
Mu1*Mu2 - Mu2*Mu1
SeeAlso
qqRing
baseRing
quadraticForm
matFact1
matFact2
matFactu1
isotropicSpace
///
doc ///
Key
VectorBundleOnE
Headline
vector bundle on a hyperelliptic curve E
Description
Text
If the curve has equation y^2 +/- f, then
the bundle is represented by a vector bundle on PP^1
and a matrix representing the action of y.
the only key is
yAction
SeeAlso
vectorBundleOnE
degOnE
orderInPic
randomLineBundle
randomExtension
yAction
///
doc ///
Key
cliffordModule
(cliffordModule, Matrix, Matrix, Ring)
(cliffordModule, List, List)
Headline
makes a clifford Module
Usage
M = cliffordModule(M1,M2,R)
M = cliffordModule(eOdd,eEv)
Inputs
M1:Matrix
M2:Matrix
M1, M2 a matrix factorization of a quadratic form qq
R:Ring
base ring of the quadratic form
eEv:List
eOdd:List
lists such as the output of cliffordOperators(M1,M2)
Outputs
M:CliffordModule
Description
Text
The keys
oddOperators
evenOperators
are the same as the two lists output by cliffordOperators(M1,M2)
The keys
evenCenter
oddCenter
yield the action of the center of the even
Clifford algebra of qq on the even, respectively odd
parts of the Clifford module.
The key
symmetricM
yields the matrix of coefficients of the quadratic form qq
the key
hyperellipticBranchEquation
yields the branch equation in R -- that is, the equation
of the set of points over which the quadratic form
is singular.
Example
kk = ZZ/101
g = 1
(S, qq, R, u, M1, M2, Mu1, Mu2)=randomNicePencil(kk,g);
M = cliffordModule(M1,M2, R)
Mu = cliffordModule(Mu1,Mu2, R)
Text
The symmetric matrices are the same for both:
Example
Mu.symmetricM
M.symmetricM
Text
But the operators are twice the size for M (in both cases
the same size as the corresponding matrix factorization
Mu.evenCenter
numrows(Mu.evenCenter) == numrows(Mu1)
M.evenCenter
SeeAlso
matrixFactorizationK
cliffordOperators
///
doc ///
Key
centers
(centers,List,List)
Headline
even and odd action of the center of the even Clifford algebra
Usage
(c1,c2) = centers(eOdd,eEv)
Inputs
eOdd:List
eEv:List
lists output by cliffordOperators(M1, M2)
Outputs
c1:Matrix
c2:Matrix
action of the center on the even and odd modules
Description
Text
The center of the even Clifford algebra of an
even-dimensional nonsingular quadratic form
represented by its symmetric matrix of coefficients
sM
is a degree 2 extension of the ground ring with
R[y]/(y^2- (-1)^d*f), where f is the branch equation,
f = det sM.
The action of y on the odd and even parts of a Clifford Module is represented
by the pair of matrices c0, c1 which can be computed by
the following formula of Haag (see Satz 1 of [U. Haag, Arch. Math. 57, 546-554 (1991)]).
-- , known to Buchweitz and rediscovered experimentally using this package :
Let M be the clifford module, with operators
eOdd and eEv as usual, and let sM be the 2d x 2d symmetric
matrix of the quadratic form, produced by
M.symmetricM. Let skM be the alternating matrix
formed by taking the "top half" of sM and subtracting the
"bottom half". For any even length ordered sublist
I = i_1,i_2...i_{2k} of [2d], let
eo_I = eEv_{i_1}*eOdd_{i_1} \cdots eEv_{i_{2k}}*eOdd_{i_{2k}}
and, similarly,
oe_I = eOdd_{i_1}*eEv_{i_1} \cdots eOdd_{i_{2k}}*eEv_{i_{2k}}.
Let J be the complement of I.
Then
c1 = sum (-1)^{sgn J} Pfaffian((skM_J)^J)*eo_I
c0 = sum (-1)^{sgn J} Pfaffian((skM_J)^J)*oe_I
where the index I runs over all even length ordered
subsets of [2d].
Example
kk=ZZ/101; d=1;
n=2*d
R=kk[a_0..a_(binomial(n+2,2)-1)]
S=kk[x_0..x_(n-1),a_0..a_(binomial(n+2,2)-1)]
M=genericSymmetricMatrix(S,a_0,n)
X=(vars S)_{0..n-1}
Y=X*M
(M1,M2)=matrixFactorizationK(X,Y);
(eOdd,eEv)=cliffordOperators(M1,M2,R);
sM = symMatrix(eOdd,eEv)
f = det sM
f == (cliffordModule(eOdd,eEv)).hyperellipticBranchEquation
(c0,c1)=centers(eOdd,eEv)
assert(c0^2-(-1)^d*f*id_(source c0)==0)
assert(c1^2-(-1)^d*f*id_(source c1)==0)
SeeAlso
matrixFactorizationK
symMatrix
hyperellipticBranchEquation
///
doc ///
Key
vectorBundleOnE
(vectorBundleOnE, Matrix)
Headline
creates a VectorBundleOnE, represented as a matrix factorization
Usage
V = vectorBundleOnE M
Inputs
M:Matrix
-square matrix on PP^1, representing the action of y
Outputs
V:VectorBundleOnE
Description
Text
A vector bundle on a hyperelliptic curve E with
equation y^2 - (-1)^g * f
can be represented by it's pushforward V to PP^1,
under the degree 2 map,
which will be a vector bundle of twice the rank,
together with a matrix
M = V.yAction,
specifying the action of y. The matrix must therefore satisfy
M^2 = (-1)^g * f.
Here f is the hyperellipticBranchEquation, a form
on PP^1 of degree 2g+2
The following gives an example for g=1, constructing a
random line bundle of degree 0, and computing
its order in the Picard group; and the
producing a random extension of this bundle
by a random line bundle of order -1.
The random matrix factorization of f has the form
b c
a -b
where a is the lowest degree factor of
f-b^2 (or f+b^2), depending on the desired sign,
and values of b are taken randomly until one giving
a nontrivial factorization over the given ground field
is found. Note that this works well over a finite field,
but is unlikely to work over QQ.
Example
kk=ZZ/101
R = kk[s,t]
f =(s+2*t)*(s+t)*(s-t)*(s-2*t)
L0 = randomLineBundle(0,f)
(L0.yAction)^2
degOnE L0
orderInPic L0
L1 = randomLineBundle(-1,f)
degOnE L1
L1.yAction
F = randomExtension(L1,L0)
F.yAction
degOnE tensorProduct(L1,F)
SeeAlso
randomLineBundle
randomExtension
VectorBundleOnE
yAction
degOnE
orderInPic
tensorProduct
///
doc ///
Key
yAction
Headline
defines a vector bundle on E
Usage
M = V.yAction
Outputs
M:Matrix
a square matrix on PP^1, representing the action of y
Description
Text
A matrix representing the action of y for the hyperelliptic curve E with equation y^2 - (-1)^g * f.
Example
kk = ZZ/101;
R = kk[s,t];
f = (s+2*t)*(s+t)*(s-t)*(s-2*t);
L0 = randomLineBundle(0,f)
M = L0.yAction
M^2 - f*id_(source M)
SeeAlso
randomLineBundle
randomExtension
vectorBundleOnE
VectorBundleOnE
degOnE
orderInPic
tensorProduct
///
doc ///
Key
tensorProduct
(tensorProduct, Matrix, Matrix)
(tensorProduct, CliffordModule, VectorBundleOnE)
(tensorProduct,VectorBundleOnE, VectorBundleOnE)
Headline
tensor product of sheaves on the elliptic curve or sheaf times CliffordModule
Usage
eta = tensorProduct(phi,psi)
G = tensorProduct(M,V)
L = tensorProduct(L1,L2)
Inputs
phi:Matrix
psi:Matrix
representing the action of y on a sheaf on PP^1
L1:VectorBundleOnE
L2:VectorBundleOnE
M:CliffordModule
V:VectorBundleOnE
Outputs
eta:Matrix
action of y
N:CliffordModule
L:VectorBundleOnE
Description
Text
Sheaves on the hyperelliptic curve y^2 -(-1)^{g}* f(s,t) are represented as sheaves on PP^1 together
with the action of y. Clifford modules are represented as the action of maps
eOdd_i: M_1 \to M_0 and eEv_i:M_0 \to M_1 between the even and odd parts of the
module. The result are the corresponding data for the tensor product.
Example
kk=ZZ/101
g=1
(S, qq, R, u, M1, M2, Mu1, Mu2)=randomNicePencil(kk,g) ;
(uOdd,uEv)=cliffordOperators(Mu1,Mu2,R);
symMatrix(uOdd,uEv)
f=det symMatrix(uOdd,uEv);
M = cliffordModule(uOdd, uEv);
L = randomLineBundle(0,f);
L.yAction
L2 = tensorProduct(L,L)
L2.yAction
M' = tensorProduct(M,L)
M.evenCenter
M'.evenCenter
SeeAlso
CliffordModule
cliffordOperators
symMatrix
randomLineBundle
evenCenter
///
doc ///
Key
degOnE
(degOnE,VectorBundleOnE)
(degOnE,Matrix)
Headline
degree of a vector bundle on E
Usage
d = degOnE(L)
d = degOnE(phi)
Inputs
L : VectorBundleOnE
a vector bundle on E
phi : Matrix
a matrix which is the yAction of some VectorBundleOnE
Outputs
d : ZZ
the degree of L
Description
Text
Computes the degree of a vector bundle L on the hyperelliptic curve E.
Example
kk=ZZ/101;
g=1;
rNP=randNicePencil(kk,g);
f=(cliffordModule(rNP.matFact1,rNP.matFact2,rNP.baseRing)).hyperellipticBranchEquation;
L0=randomLineBundle(0,f)
degOnE L0
L1=randomLineBundle(1,f)
degOnE L1
Lm1=randomLineBundle(-1,f)
degOnE Lm1
SeeAlso
randomLineBundle
vectorBundleOnE
VectorBundleOnE
yAction
degOnE
///
doc ///
Key
orderInPic
(orderInPic,VectorBundleOnE)
(orderInPic,Matrix)
Headline
order of a line bundle of degree 0 in Pic(E)
Usage
N = orderInPic(L)
N = orderInPic(phi)
Inputs
L : VectorBundleOnE
a line bundle of degree 0 on E
phi : Matrix
a matrix which is the yAction of VectorBundleOnE
Outputs
N : ZZ
the order of L in Pic(E)
Description
Text
Computes the order of a degree 0 line bundle L on the hyperelliptic curve E by the most naive method.
Example
kk=ZZ/101;
g=1;
rNP=randNicePencil(kk,g);
f=(cliffordModule(rNP.matFact1,rNP.matFact2,rNP.baseRing)).hyperellipticBranchEquation
L=randomLineBundle(0,f);
orderInPic L
SeeAlso
randomLineBundle
vectorBundleOnE
VectorBundleOnE
yAction
Caveat
The ground field kk has to be finite. It computes the order by checking inductively whether L^k is trivial, so it may fail
when kk is not finite, or has too many elements. orderInPic(phi) may not terminate if
it is not the yAction of a line bundle of degree 0 on E.
///
doc ///
Key
randomLineBundle
(randomLineBundle,RingElement)
(randomLineBundle,ZZ,RingElement)
Headline
a random line bundle on the hyperelliptic curve
Usage
L=randomLineBundle(f)
Ld=randomLineBundle(d,f)
Inputs
f : RingElement
the hyperelliptic branch equation of a CliffordModule.
d : ZZ
Outputs
L : VectorBundleOnE
a line bundle on E
Ld : VectorBundleOnE
a line bundle on E of degree d.
Description
Text
Chooses a random line bundle on the hyperelliptic curve E of genus g
given by the equation y^2-(-1)^{g}*f, where f is the branch equation of degree
(2g+2). Input with an integer d gives a random line bundle of degree d on E.
Note that a line bundle on E is given by the y-action which is represented by
a traceless 2x2 matrix
b c
a -b
whose determinant equals to (-1)^{g}*f. We find such a matrix over a finite ground field
by picking randomly b, a homogeneous form of degree (g+1),
since the binary form b^2 + (-1)^{g}*f frequently factors.
Example
kk=ZZ/101;
g=1;
rNP=randNicePencil(kk,g);
cM=cliffordModule(rNP.matFact1,rNP.matFact2,rNP.baseRing);
f=cM.hyperellipticBranchEquation
L=randomLineBundle(f)
degOnE L
m=L.yAction
(m)^2_(0,0)+(-1)^g*f==0
L0=randomLineBundle(0,f)
degOnE L0
orderInPic L0
Caveat
The ground field kk has to be finite.
SeeAlso
vectorBundleOnE
VectorBundleOnE
degOnE
orderInPic
///
doc ///
Key
randomExtension
(randomExtension,VectorBundleOnE,VectorBundleOnE)
(randomExtension,Matrix,Matrix)
Headline
a random extension of a vector bundle on E by another vector bundle
Usage
V=randomExtension(V1,V2)
V=randomExtension(Y1,Y2)
Inputs
V1 : VectorBundleOnE
V2 : VectorBundleOnE
Y1 : Matrix
a matrix which is the yAction of some VectorBundleOnE
Y2 : Matrix
a matrix which is the yAction of some VectorBundleOnE
Outputs
V : VectorBundleOnE
Description
Text
Chooses a random extension of V2 by V1, where V1, V2 are vector bundles on E
represented by the type VectorBundleOnE.
Example
kk=ZZ/101;
g=1;
rNP=randNicePencil(kk,g);
cM=cliffordModule(rNP.matFact1,rNP.matFact2,rNP.baseRing);
f=cM.hyperellipticBranchEquation
L1=randomLineBundle(0,f)
L2=randomLineBundle(2,f)
V=randomExtension(L1,L2)
V.yAction
degOnE V
V1=randomExtension(L2,V)
V1.yAction
degOnE V1
SeeAlso
randomLineBundle
vectorBundleOnE
VectorBundleOnE
degOnE
///
--YK
doc ///
Key
cliffordModuleToMatrixFactorization
(cliffordModuleToMatrixFactorization, CliffordModule, Ring)
Headline
reads off a matrix factorization from a Clifford module
Usage
(M1,M2) = cliffordModuleToMatrixFactorization(M,S)
Inputs
M : CliffordModule
a Clifford module on a hyperelliptic curve E of genus g
S : Ring
a polynomial ring in x_0..y_{(g-1)},z_1,z_2,s,t
Outputs
M1 : Matrix
M2 : Matrix
(M1, M2) a matrix factorization of qq, the equation of the associated pencil of quadrics
Description
Text
Part of the series of explicit functors giving category equivalences:
cliffordModule
cliffordModuleToCIResolution
cliffordModuleToMatrixFactorization
ciModuleToMatrixFactorization
ciModuleToCliffordModule
A Clifford module M on the Clifford algebra C:=Cliff(qq) of a quadratic form qq
has keys evenOperator and oddOperator, the list of the even
operators uEv_i : M_0 \to M_1 and the odd operators uOdd_i : M_1 \to M_0,
which form a representation of C.
From this representation we read off a matrix factorization (M1, M2) of qq.
Example
kk=ZZ/101;
g=1;
rNP=randNicePencil(kk,g);
qq=rNP.quadraticForm;
S=rNP.qqRing;
cM=cliffordModule(rNP.matFact1,rNP.matFact2,rNP.baseRing)
(M1,M2)=cliffordModuleToMatrixFactorization(cM,S);
r=rank source M1
M1*M2 - qq*id_(S^r) == 0
M1 == rNP.matFact1
M2 == rNP.matFact2
cMu=cliffordModule(rNP.matFactu1,rNP.matFactu2,rNP.baseRing)
(Mu1,Mu2)=cliffordModuleToMatrixFactorization(cMu,S);
ru=rank source Mu1
Mu1*Mu2 - qq*id_(S^ru) == 0
Mu1 == rNP.matFactu1
Mu2 == rNP.matFactu2
SeeAlso
cliffordModule
cliffordModuleToCIResolution
ciModuleToMatrixFactorization
ciModuleToCliffordModule
///
doc ///
Key
cliffordModuleToCIResolution
(cliffordModuleToCIResolution, CliffordModule, Ring, Ring)
Headline
transforms a Clifford module to a resolution over a complete intersection ring
Usage
F=cliffordModuleToCIResolution(M,S,CI)
Inputs
M : CliffordModule
a Clifford module on a hyperelliptic curve of genus g
S : Ring
a polynomial ring in x_0..y_(g-1),z_1,z_2,s,t
CI : Ring
a complete intersection S/ideal(q1,q2) where qq=s*q1+t*q2
Outputs
F : ChainComplex
a resolution which represents a module over CI
Description
Text
Part of the series of explicit functors giving category equivalences:
cliffordModule
cliffordModuleToCIResolution
cliffordModuleToMatrixFactorization
ciModuleToMatrixFactorization
ciModuleToCliffordModule
From Clifford module M on the Clifford algebra C:=Cliff(qq) of a quadratic form
qq=s*q1+t*q2, we may construct a module over CI=P/ideal(q1,q2) where
P is a polynomial ring in x_0..y_{(g-1)},z_1,z_2. This function returns a part of
its minimal free resolution over CI. This function uses cliffordModuleToMatrixFactorization.
Example
kk=ZZ/101;
g=1;
rNP=randNicePencil(kk,g);
qq=rNP.quadraticForm;
S=rNP.qqRing;
P=kk[drop(gens S,-2)]
qs=sub(diff(matrix{{S_(2*g+2), S_(2*g+3)}}, qq), P)
CI=P/ideal qs
cM=cliffordModule(rNP.matFact1,rNP.matFact2,rNP.baseRing)
betti (F=cliffordModuleToCIResolution(cM,S,CI))
cMu=cliffordModule(rNP.matFactu1,rNP.matFactu2,rNP.baseRing)
f=cMu.hyperellipticBranchEquation
L=randomLineBundle(0,f);
betti (FL=cliffordModuleToCIResolution(tensorProduct(cM,L),S,CI))
betti (FuL=cliffordModuleToCIResolution(tensorProduct(cMu,L),S,CI))
SeeAlso
cliffordModule
cliffordModuleToMatrixFactorization
ciModuleToMatrixFactorization
ciModuleToCliffordModule
///
doc ///
Key
searchUlrich
(searchUlrich, CliffordModule, Ring)
Headline
searching an Ulrich module of smallest possible rank
Usage
Ulr = searchUlrich(M,S)
Inputs
M : CliffordModule
S : Ring
a polynomial ring in x_0..y_{(g-1)},z_1,z_2,s,t
Outputs
Ulr : Module
a module on S supported on x_0..y_{(g-1)},z_1,z_2
Description
Text
M is assumed to be a Clifford module with a Morita bundle F_u, i.e., associated to a
maximal isotropic subspace u.
Let G be a coherent sheaf on a hyperelliptic curve E, and N be the corresponding
module over CI=P/ideal(q1,q2). Using the Tate resolution of u in a complete intersection
of 2 quadrics, one can compute the graded Betti numbers of N by the rank
of cohomology groups of G twisted by the Morita bundle F_u. In particular, an Ulrich module
on CI corresponds to a sheaf G on E such that G \otimes F_u is an Ulrich bundle on E.
From this perspective, Eisenbud and Schreyer conjectured that it is the case when
G is a general vector bundle of rank \ge 2 of suitable degree.
searchUlrich looks for a candidate G of rank 2 on E and returns a module on S
supported on a CI V(q_1,q_2) \subset PP^{2g+1}.
Example
kk=ZZ/101;
g=2;
rNP=randNicePencil(kk,g);
S=rNP.qqRing;
R=rNP.baseRing;
qq=rNP.quadraticForm;
qs=apply(2,i->diff(S_(2*g+2+i),qq))
Mu1=rNP.matFactu1;
Mu2=rNP.matFactu2;
M=cliffordModule(Mu1,Mu2,R)
elapsedTime Ulr = searchUlrich(M,S);
betti res Ulr
ann Ulr == ideal qs
Caveat
searchUlrich uses the method randomLineBundle, so the ground field kk has to be finite.
SeeAlso
cliffordModule
///
doc ///
Key
translateIsotropicSubspace
(translateIsotropicSubspace,CliffordModule,VectorBundleOnE,PolynomialRing)
Headline
choose a random isotropic subspace
Usage
uL=translateIsotropicSubspace(M,L,S)
Inputs
M : CliffordModule
corresponding to a maximal isotropic subspace u
L : VectorBundleOnE
a degree 0 line bundle on the associated hyperelliptic curve E of genus g.
S : PolynomialRing
a polynomial ring kk[x_0..y_{(g-1)},z_0,z_1,s,t] in (2g+4) variables
Outputs
uL : Matrix
a matrix presenting a maximal isotropic subspace u translated by L
Description
Text
Reid's theorem says that the set of maximal isotropic subspaces on a
complete intersection of two quadrics in (2g+2) variables is isomorphic to
the set of degree 0 line bundles on the associated hyperelliptic curve E
of genus g. The method
computes the maximal isotropic subspace uL corresponding to the
translation of u by L.
Example
kk=ZZ/101;
g=2;
(S,qq,R,u, M1,M2, Mu1,Mu2) = randomNicePencil(kk,g);
M=cliffordModule (Mu1, Mu2, R);
f=M.hyperellipticBranchEquation
L=randomLineBundle(0,f);
uL=translateIsotropicSubspace(M,L,S)
assert (betti uL == betti u)
SeeAlso
randomIsotropicSubspace
randomLineBundle
CliffordModule
///
doc ///
Key
randomIsotropicSubspace
(randomIsotropicSubspace,CliffordModule,PolynomialRing)
Headline
choose a random isotropic subspace
Usage
ru=randomIsotropicSubspace(M,S)
Inputs
M : CliffordModule
corresponding to a maximal isotropic subspace u
S : Ring
a polynomial ring kk[x_0..y_{(g-1)},z_0,z_1,s,t] in (2g+4) variables
Outputs
ru : Matrix
a matrix presenting a random maximal isotropic subspace
Description
Text
Reid's theorem says that the set of maximal isotropic subspaces on a
complete intersection of two quadrics in (2g+2) variables is isomorphic to
the set of degree 0 line bundles on the associated hyperelliptic curve E
of genus g. The method
chooses a random line bundle L of degree 0 on E, and
computes the maximal isotropic subspace ru corresponding to the
translation of u by L.
Example
kk=ZZ/101;
g=2;
(S,qq,R,u, M1,M2, Mu1,Mu2) = randomNicePencil(kk,g);
M=cliffordModule (Mu1, Mu2, R);
ru=randomIsotropicSubspace(M,S)
assert (betti ru == betti u)
Caveat
The ground field kk (=coefficientRing S) has to be finite, since it uses the method randomLineBundle.
SeeAlso
translateIsotropicSubspace
randomLineBundle
CliffordModule
///
---------------
---tests-------
---------------
TEST///
kk=ZZ/101
d=2
n=2*d
R=kk[a_0..a_(binomial(n+2,2))]
S=kk[x_0..x_(n-1),a_0..a_(binomial(n+2,2))]
M=genericSymmetricMatrix(S,a_0,n)
X=(vars S)_{0..n-1}
Y=X*M
(M1,M2)=matrixFactorizationK(X,Y);
(eOdd,eEv)=cliffordOperators(M1,M2,R);
assert((eOdd_0*eEv_1+eOdd_1*eEv_0)_(0,0) == 2*R_1)
assert all(eEv,e->isHomogeneous e)
assert all(eOdd,e->isHomogeneous e)
///
end--
-- it possible to block the Ulrich presentation
-- mm=m0|m1
-- so that mi is a part of a matrix factorization of qi
-- nn=syz mm = n1||n0 the ni is a matrix factorization of q_i
-- coker mm is isomorphic to coker transpose nn
restart
uninstallPackage "PencilsOfQuadrics"
installPackage "PencilsOfQuadrics"
check "PencilsOfQuadrics"
kk=ZZ/101
R=kk[s,t]
g=2
(S, qq, R, u, M1, M2, Mu1, Mu2)=randomNicePencil(kk,g);
M=cliffordModule(Mu1,Mu2,R)
elapsedTime Ulrich = searchUlrich(M,S);
betti res Ulrich
ann Ulrich
T=kk[drop(gens S,-2)]-- coordinate ring of PP^(2g+1)
m1=sub(presentation Ulrich,T)
Ulrich =coker m1
fU=res Ulrich
elapsedTime betti Hom(Ulrich,Ulrich) -- 10.1731 seconds elapsed
elapsedTime betti Hom(Ulrich, T^{-2}**coker transpose fU.dd_2)
-- => Ulrich isomorphic to T^{-2}**coker transpose fU.dd_2 in case g=2,
-- not for g=1
qs= apply(2,i->(gens ann Ulrich)*random(T^{2:-2},T^{-2}))
Mqs= apply(qs, q1->(Tq= T/ideal sub(q1,T);
coker lift((res coker sub(u,Tq)).dd_4,T)**T^{3}))
homs=apply(Mqs,M->Hom(M,Ulrich));
ring homs_0
apply(homs,h->betti h)
-- => there are 4 homomorphisms
homsList=apply(homs,h-> apply(4,i-> matrix homomorphism h_{i}))
Cs=apply(Mqs, Mq1->chainComplex presentation Mq1)
ring Cs_0
D=chainComplex presentation Ulrich
ring D
hom1s= apply(2, j->apply(4,i->(
phi=map(D_0,(Cs_j)_0,homsList_j_i);
(extend(D,Cs_j,phi))_1)))
apply(hom1s,h->tally apply(h,m->betti m))
m0=presentation Ulrich*(hom1s_0_0)
m1=presentation Ulrich*(hom1s_1_1)
ann coker m0==ideal qs_0
ann coker m1==ideal qs_1
mm=m0|m1
nn=syz mm
n1=(nn)^{0..2^(g+1)-1}
n0=(nn)^{2^(g+1)..2^(g+2)-1}
ann coker (n1)==ideal qs_1
ann coker (n0) == ideal qs_0
secondMatrix=method()
secondMatrix(Matrix,RingElement) := (m,q) -> (
Tq := T/q;
m':=lift(syz(m**Tq),T);
t:=m*m'//q*id_(target m);
map(source m,,m'*inverse t)
)
TEST///
m'=secondMatrix(m,q)
betti m, betti m'
assert(m*m' - q * id_(target m)==0)
///
q0=q=qs_0_(0,0)
q1=qs_1_(0,0)
m0'=secondMatrix(m0,q0);
m1'=secondMatrix(m1,q1);
res coker (transpose m0'| transpose m1')
mm*(res image mm).dd_1
betti Hom(T^{-2}**coker transpose fU.dd_2,coker (transpose m0'| transpose m1'))
T1=T/ideal qs_1
n0'=lift(syz sub(m0,T0),T)
n0=n0'*inverse ((m0*n0')//(qs_0_(0,0)*id_(target m0)))
m0*n0
n1'=lift(syz sub(m1,T1),T)
n1=n1'*inverse ((m1*n1')//(qs_1_(0,0)*id_(target m1)))
m1*n1
betti res coker (nn=(transpose n0|transpose n1))
betti Hom(coker mm, coker transpose syz nn)
h=Hom(coker mm, coker transpose syz mm);
betti (a=homomorphism h_{0})
G=chainComplex(mm,(syz mm)*matrix a)
ann coker G.dd_1_{0..7}
ann coker (transpose G.dd_2)_{0..7}
ann coker (syz mm)^{0..7}==ideal qs_1
ann coker (syz mm)^{8..15} == ideal qs_0
m0*m1-m1*m0
mats=apply(2,j->apply(4,i->(transpose (res Ulrich).dd_2) * syz(transpose hom1s_j_i)))
apply(flatten mats,m-> betti ann coker m)
///
///
restart
load "PencilsOfQuadrics.m2"
n=3
a=random(10^2)
p=first last toList factor (a^n-1)
a=a%p
--
kk=ZZ/p
g=n-2
--n corresponds to g+2--
S=kk[x_0..y_(n-1)]
X=map(S^1,S^{n:-1},(i,j) -> x_j)
Y=map(S^1,S^{n:-1},(i,j) -> y_j)
(M1,M2)=matrixFactorizationK(X,Y)
M1=map(S^(2^(n-1)),,M1)
M2=map(S^(2^(n-1)),,M2)
ulrich=coker(M1|transpose M2)
A=M1-transpose M2
A^2
betti res ulrich
ann ulrich
g=n-2
T=kk[z_0..z_(2*g+1)]
phi=map(T,S,random(T^1,T^{numgens S:-1}))
R=kk[s,t]
qs=ann ulrich
netList apply(10,j->(
phi=map(T,S,random(T^1,T^{numgens S:-1}));
qs'=phi(qs);
f=sum(2,i->R_i*sub(diff(vars T, transpose diff(vars T, (gens qs')_i)),R));
toList factor det f))
///
///
viewHelp "PencilsOfQuadrics"
--Yeongrak's question
-- Let F be an Ulrich bundle on a c.i. X in P^(2g+1), and Y be its double hyperplane section.
-- Is the restriction F|Y onto Y, Ulrich on Y, splits as a direct sum?
-- Or, at least, is an extension of two Ulrich bundles on Y of smaller rank?
-- The experiment says:
-- when g>2 then F|Y does not split as a direct sum, since F|Y was simple!
-- when g=2 then H^0 End(F|Y) = 2, looks quite interesting.
-- What really I want to do:
-- find a strictly semistable Ulrich bundle on Y
-- which appears as the restriction of an Ulrich bundle on X.
-- EXPERIMENT 1. Take a double hyperplane section of g=2 case (genus 2 -> elliptic curve)
restart
load "PencilsOfQuadrics.m2"
kk=ZZ/nextPrime(10^3);
g=2;
(S, qq, R, u, M1, M2, Mu1, Mu2)=randomNicePencil(kk,g);
M=cliffordModule(Mu1,Mu2,R);
numberOfFactors=0;
while numberOfFactors<2 do(
elapsedTime Ulrich = searchUlrich(M,S); -- 60.4611 seconds elapsed when g=3, kk=ZZ/101
-- Ulrich module on X in P^(2g+1)
T=ring Ulrich;
Tred=T/ideal(T_(2*g+2),T_(2*g+3));
UlrichWithoutst=coker sub(presentation Ulrich,Tred);
-- restriction onto a double hyperplane section
twoLinearForms=random(Tred^1,Tred^{2:-1});
restriction=vars Tred %ideal twoLinearForms;
kk=coefficientRing Tred;
PCodim2=kk[support restriction];
phi=map(PCodim2,Tred,sub(restriction,PCodim2));
rU=coker phi presentation UlrichWithoutst;
elapsedTime betti(endOfrU=Hom(rU,rU)); -- there are two endomorphisms
A=homomorphism (endOfrU_{0});
B=homomorphism (endOfrU_{1});
P1=kk[s,t];
C = s*sub(matrix A,P1) + t*sub(matrix B,P1);
numberOfFactors = # factor det C
)
-- We run the code until (det C) is a 4th power of the product of two linear forms
ann UlrichWithoutst
betti res UlrichWithoutst
betti res rU
ann rU
(factor det C)
factor1 = (factor det C)#0#0
factor2 = (factor det C)#1#0
factor1^4 * factor2^4 == det C
-- define two sheaves with respect to the eigenspace decomposition above
rU1 = prune ker (sub(diff(t,factor1),PCodim2)*A - sub(diff(s,factor1),PCodim2)*B);
rU2 = prune ker (sub(diff(t,factor2),PCodim2)*A - sub(diff(s,factor2),PCodim2)*B);
betti res rU1
betti res rU2
needsPackage "TateOnProducts"
elapsedTime tally apply(5, i->isIsomorphic(rU1++rU2,rU))
-- if isIsomorphic returns true, then they are isomorphic.
-- otherwise, since it is a probabilistic algorithm, it might return false even they are isomorphic.
-- On an elliptic curve, there is an 1-dim'l family of nonsplit rank 2 vector bundles
-- with fixed determinant. On the other hand, split vector bundles have 2 parameters;
-- so mostly a rank 2 vector bundle tends to split.
-- EXPERIMENT 2. Take a PP^3 (=codim 4) section of g=3 case (genus 3 -> elliptic curve)
restart
load "PencilsOfQuadrics.m2"
kk=ZZ/nextPrime(10^3);
g=3;
(S, qq, R, u, M1, M2, Mu1, Mu2)=randomNicePencil(kk,g);
M=cliffordModule(Mu1,Mu2,R);
numberOfFactors=0;
elapsedTime while numberOfFactors<4 do(
Ulrich = searchUlrich(M,S);
-- Ulrich module on X in P^(2g+1)
T=ring Ulrich;
Tred=T/ideal(T_(2*g+2),T_(2*g+3));
UlrichWithoutst=coker sub(presentation Ulrich,Tred);
-- restriction onto a codim 4 linear section
fourLinearForms=random(Tred^1,Tred^{4:-1});
restriction=vars Tred %ideal fourLinearForms;
kk=coefficientRing Tred;
PCodim4=kk[support restriction];
phi=map(PCodim4,Tred,sub(restriction,PCodim4));
rU=coker phi presentation UlrichWithoutst;
endOfrU=Hom(rU,rU); -- there are 4 homomorphisms
listA=apply(4,i->homomorphism(endOfrU_{i}));
P3=kk[t_0..t_3];
C = sum apply(4,i->P3_i*sub(matrix listA_i, P3));
detC=det C;
numberOfFactors = # factor detC;
if numberOfFactors==4 and degree (factor detC)#2#0 == {2} then numberOfFactors=0;
)
betti endOfrU
ann UlrichWithoutst
betti res UlrichWithoutst
betti res rU
ann rU
(factor detC)
factorList=apply(4,i->(factor detC)#i#0)
factorMatrix=matrix apply(factorList, i->apply(gens P3, j->diff(j, i)))
-- Find eigenvectors of factorMatrix
P3v=P3[v]
chPolyAsProducts=factor det (sub(factorMatrix,P3v) - v*id_(P3v^4)) -- monic ch. poly.
eigenvalueList=apply(# chPolyAsProducts, i->(P3v_0-(chPolyAsProducts#i)#0))
assert(# eigenvalueList==4)
eigenvectorList = apply(4, i->syz (factorMatrix - sub(eigenvalueList_i,P3) * id_(P3^4)))
P = eigenvectorList_0 | eigenvectorList_1 | eigenvectorList_2 | eigenvectorList_3;
inverse(P)*factorMatrix*P - diagonalMatrix(eigenvalueList)
endList=apply(4, i->homomorphism (endOfrU_{i}));
--rUdecompositionList=apply(4,i->prune image (sum apply(4, j->sub((inverse P)_(j,i),PCodim4)*endList_j)));
solList=apply(4, i->(syz factorMatrix^{i})*random(P3^3,P3^1))
rUList=apply(4, i->prune ker sum apply(4, j->sub((solList_i)_(j,0), PCodim4) * endList_j))
tally apply(4,i->betti res rUdecompositionList_i)
tally apply(4,i->betti res rUList_i)
temp=rUList_0++rUList_1++rUList_2++rUList_3
rU1 = prune image (sub(diff(t,factor1),PCodim2)*A - sub(diff(s,factor1),PCodim2)*B);
rU2 = prune image (sub(diff(t,factor2),PCodim2)*A - sub(diff(s,factor2),PCodim2)*B);
betti res rU1
betti res rU2
needsPackage "TateOnProducts"
elapsedTime tally apply(5, i->isIsomorphic(temp,rU))
-- if isIsomorphic returns true, then they are isomorphic.
-- otherwise, since it is a probabilistic algorithm, it might return false even they are isomorphic.
|