1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701
|
-- -*- utf-8 -*-
newPackage(
"PhylogeneticTrees",
Version => "2.0",
Date => "November 15, 2019",
Headline => "invariants for group-based phylogenetic models",
--HomePage => "",
Authors => {
{Name => "Hector Baños", Email => "hbanos@gatech.edu"},
{Name => "Nathaniel Bushek", Email => "nbushek@css.edu"},
{Name => "Ruth Davidson", Email => "ruth.davidson.math@gmail.com"},
{Name => "Elizabeth Gross", Email => "egross@hawaii.edu"},
{Name => "Pamela Harris", Email => "peh2@williams.edu"},
{Name => "Robert Krone", Email => "rckrone@gmail.com"},
{Name => "Colby Long", Email => "clong@wooster.edu"},
{Name => "AJ Stewart", Email => "stewaral@seattleu.edu"},
{Name => "Robert Walker", Email => "robmarsw@umich.edu"}
},
Keywords => {"Applied Algebraic Geometry"},
PackageImports => {
"FourTiTwo"
},
PackageExports => {
"Graphs",
"Posets"
},
Certification => {
"journal name" => "The Journal of Software for Algebra and Geometry",
"journal URI" => "http://j-sag.org/",
"article title" => "Phylogenetic trees",
"acceptance date" => "8 August 2020",
"published article URI" => "https://msp.org/jsag/2021/11-1/p01.xhtml",
"published article DOI" => "10.2140/jsag.2021.11.1",
"published code URI" => "https://msp.org/jsag/2021/11-1/jsag-v11-n1-x01-PhylogeneticTrees.m2",
"repository code URI" => "http://github.com/Macaulay2/M2/blob/master/M2/Macaulay2/packages/PhylogeneticTrees.m2",
"release at publication" => "abdf0903e7ffc31568c0cc4beb181368d943cb8d", -- git commit number in hex
"version at publication" => "2.0",
"volume number" => "11",
"volume URI" => "https://msp.org/jsag/2021/11-1/"
}
)
export {
"qRing",
"pRing",
"secant",
"joinIdeal",
"phyloToricFP",
"phyloToric42",
"phyloToricLinears",
"phyloToricQuads",
"phyloToricRandom",
"phyloToricAMatrix",
"toricSecantDim",
"toricJoinDim",
"Model",
"CFNmodel", "JCmodel", "K2Pmodel", "K3Pmodel",
"leafColorings",
"model",
"buckets",
"group",
"LeafTree",
"leafTree",
"internalEdges",
"internalVertices",
"edgeCut",
"vertexCut",
"edgeContract",
"QRing",
"fourierToProbability",
"labeledTrees",
"labeledBinaryTrees",
"rootedTrees",
"rootedBinaryTrees",
"unlabeledTrees",
"isIsomorphic"
}
protect \ {Group, Automorphisms, AList, Buckets}
--------------------------------------------------------------------
Model = new Type of HashTable
LeafTree = new Type of List
group = method()
group(Model) := M -> M.Group
buckets = method()
buckets(Model) := M -> M.Buckets
aList = (M,g) -> M.AList#g
model = method()
model(List,List,List) := (G,buckets,auts) -> (
modelAuts := hashTable for l in auts list (
l#0 => (hashTable for i to #G-1 list G#i => G#(l#1#i)));
AL := hashTable for g in G list (
g => apply(buckets, b->if member(g,b) then 1 else 0));
new Model from hashTable {
Group => G,
Buckets => buckets,
Automorphisms => modelAuts,
AList => AL
}
)
--ZZ/2 models
F0 = 0_(ZZ/2)
F1 = 1_(ZZ/2)
ZZ2 = {F0,F1}
--CFN
CFNmodel = model(ZZ2, {{F0}, {F1}}, {})
--ZZ/2 x ZZ/2 models
F00 = {0_(ZZ/2),0_(ZZ/2)}
F01 = {0_(ZZ/2),1_(ZZ/2)}
F10 = {1_(ZZ/2),0_(ZZ/2)}
F11 = {1_(ZZ/2),1_(ZZ/2)}
ZZ2ZZ2 = {F00,F01,F10,F11}
--Jukes-Cantor
JCmodel = model(ZZ2ZZ2, {{F00}, {F01,F10,F11}}, {
({1,2},{0,2,1,3}),
({1,3},{0,3,2,1}),
({2,1},{0,2,1,3}),
({2,3},{0,1,3,2}),
({3,1},{0,3,2,1}),
({3,2},{0,1,3,2})})
--Kimura 2-parameter
K2Pmodel = model(ZZ2ZZ2, {{F00}, {F01}, {F10,F11}}, {
({2,3},{0,1,3,2}),
({3,2},{0,1,3,2})})
--Kimura 3-parameter
K3Pmodel = model(ZZ2ZZ2, {{F00}, {F01}, {F10}, {F11}}, {})
qRing = method(Options=>{Variable=>null})
qRing(LeafTree,Model) := opts -> (T,M) -> qRing(#(leaves T),M,opts)
qRing(ZZ,Model) := opts -> (n,M) -> (
qList := leafColorings(n,M);
q := opts.Variable;
if q === null then q = getSymbol "q";
qRingFromList(qList,M,q)
)
qRingFromList = (qList,M,q) -> (
G := group M;
Ghash := hashTable apply(#G,i->(G#i=>i));
QQ(monoid[apply(qList, qcolors -> (qindex := apply(qcolors, c->Ghash#c); q_qindex))])
)
pRing = method(Options=>{Variable=>null})
pRing(LeafTree,Model) := opts -> (T,M) -> pRing(#(leaves T),M,opts)
pRing(ZZ,Model) := opts -> (n,M) -> (
G := group M;
pList := (n:0)..(n:#G-1);
p := opts.Variable;
if p === null then p = getSymbol "p";
QQ(monoid[apply(pList, pindex->p_pindex)])
)
fourierToProbability = method()
fourierToProbability(Ring,Ring,ZZ,Model) := (S,R,n,M) -> (
if not member(M, set{CFNmodel, JCmodel, K2Pmodel, K3Pmodel}) then
error "model must be CFNmodel, JCmodel, K2Pmodel, or K3Pmodel";
K := keys M;
G := M#(K_1);
qList := leafColorings(n,M);
Ghash := hashTable apply(#G,i->(G#i=>i));
varIndex := apply(qList, qcolors -> apply(qcolors, c->Ghash#c));
L := (n:0)..(n:#G-1);
Char := matrix{
{1,1,1,1},
{1,-1,1,-1},
{1,1,-1,-1},
{1,-1,-1,1}};
SubVars := for vi in varIndex list (
sum for i to #L-1 list (
s := product(n, j->(Char_(vi#j, (L#i)#j)));
if s>0 then S_i else -S_i
)
);
map(S,R,matrix{SubVars})
)
phyloToric42 = method(Options=>{QRing=>null})
phyloToric42(ZZ,List,Model) := opts -> (n,E,M) -> phyloToric42(leafTree(n,E),M,opts)
phyloToric42(Graph,Model) := opts -> (G,M) -> phyloToric42(leafTree G,M,opts)
phyloToric42(LeafTree,Model) := opts -> (T,M) -> (
A := phyloToricAMatrix(T,M);
S := if opts.QRing =!= null then opts.QRing else qRing(T,M);
toricMarkov(A,S)
)
phyloToricAMatrix = method()
phyloToricAMatrix(ZZ,List,Model) := (n,E,M) -> phyloToricAMatrix(leafTree(n,E),M)
phyloToricAMatrix(Graph,Model) := (G,M) -> phyloToricAMatrix(leafTree G,M)
phyloToricAMatrix(LeafTree,Model) := (T,M) -> (
ECs := edgeColorings(T,M);
A := for ec in ECs list flatten for g in ec list aList(M,g);
transpose matrix A
)
leafColorings = method()
leafColorings(LeafTree,Model) := (T,M) -> leafColorings(#(leaves T),M)
leafColorings(ZZ,Model) := (n,M) -> (
G := group M;
qList := toList(((n-1):0)..((n-1):(#G-1))); -- list of q variable indices
for qindex in qList list (
qcolors := apply(qindex,j->G#j);
append(qcolors,sum toList qcolors)
)
)
--List all consistent edge colorings of a tree
edgeColorings = (T,M) -> (
L := leavesList T;
Lhash := hashTable apply(#L, i->L#i=>i);
qList := leafColorings(T,M);
for qcolors in qList list for e in edges T list (
sum apply(toList e, l->qcolors#(Lhash#l))
)
)
-- Uses Local Structure of Invariants (Theorem 24 in Stumfels and Sullivant) to inductively determine the ideal of
-- phylogenetic invariants for any k-valent tree
-- with three types of generators: linear, quadratic and claw tree generators
phyloToricFP = method(Options=>{QRing=>null})
phyloToricFP(ZZ,List,Model) := opts -> (n,E,M) -> phyloToricFP(leafTree(n,E),M,opts)
phyloToricFP(LeafTree,Model) := opts -> (T,M) -> (
S := if opts.QRing =!= null then opts.QRing else qRing(#(leaves T),M);
Inv1 := phyloToricLinears(T,M,QRing=>S);
Inv2 := phyloToricQuads(T,M,QRing=>S);
Inv3 := phyloToricClaw(T,M,QRing=>S);
gensList := Inv1|Inv2|Inv3;
ideal gensList
)
phyloToricLinears = method(Options=>{QRing=>null,Random=>false})
phyloToricLinears(ZZ,List,Model) := opts -> (n,E,M) -> phyloToricLinears(leafTree(n,E),M,opts)
phyloToricLinears(LeafTree,Model) := opts -> (T,M) -> (
S := if opts.QRing =!= null then opts.QRing else qRing(T,M);
ECs := edgeColorings(T,M);
P := partition(i -> for g in ECs#i list aList(M,g), toList(0..#ECs-1));
gensList := flatten for p in values P list (
if #p < 2 then continue;
for j to #p-2 list sub(S_(p#j)-S_(p#(j+1)),S)
);
if not opts.Random then gensList else randomElement gensList
)
-- Produce the "edge invariants", quadratic invariants for each internal edge of T
phyloToricQuads = method(Options=>{QRing=>null,Random=>false})
phyloToricQuads(ZZ,List,Model) := opts -> (n,E,M) -> phyloToricQuads(leafTree(n,E),M,opts)
phyloToricQuads(LeafTree,Model) := opts -> (T,M) -> (
S := if opts.QRing =!= null then opts.QRing else qRing(T,M);
quadTemplates := apply(#(group M), g->({{g,g},{g,g}},{{g,g},{g,g}},{0,3,2,1}));
if opts.Random then quadTemplates = randomElement quadTemplates;
newl := symbol newl;
intEdges := internalEdges T;
if opts.Random then intEdges = randomElement intEdges;
gensList := flatten for e in intEdges list (
P := edgeCut(T,e,newl);
fillTemplates(T,M,S,P,quadTemplates,newl,opts.Random)
);
select(gensList, f -> f != 0_(ring f))
)
phyloToricClaw = method(Options=>{QRing=>null,Random=>false})
phyloToricClaw(ZZ,List,Model) := opts -> (n,E,M) -> phyloToricClaw(leafTree(n,E),M,opts)
phyloToricClaw(LeafTree,Model) := opts -> (T,M) -> (
S := if opts.QRing =!= null then opts.QRing else qRing(T,M);
l := first leaves T;
newl := symbol newl;
clawHash := new MutableHashTable; --store claw invariants to avoid recomputing
intVerts := (internalEdges T)|{set{l}};
if opts.Random then intVerts = randomElement intVerts;
gensList := flatten for e in intVerts list (
P := vertexCut(T,e,l,newl);
if not clawHash#?(#P,M) then clawHash#(#P,M) = clawInvariants(#P,M);
fillTemplates(T,M,S,P,clawHash#(#P,M),newl,opts.Random)
);
select(gensList, f -> f != 0_(ring f))
)
phyloToricRandom = method(Options=>{QRing=>null})
phyloToricRandom(ZZ,List,Model) := opts -> (n,E,M) -> phyloToricRandom(leafTree(n,E),M,opts)
phyloToricRandom(LeafTree,Model) := opts -> (T,M) -> (
S := if opts.QRing =!= null then opts.QRing else qRing(#(leaves T),M);
n := random 3;
gensList := if n == 0 then phyloToricLinears(T,M,QRing=>S,Random=>true)
else if n == 1 then phyloToricQuads(T,M,QRing=>S,Random=>true)
else phyloToricClaw(T,M,QRing=>S,Random=>true);
if #gensList > 0 then first gensList else phyloToricRandom(T,M,opts)
)
randomElement = L -> (
if #L == 0 then return {};
n := random(#L);
{L#n}
)
----------------------
--Auxiliary functions for phyloToricFP
----------------------
--A function that takes an invariant on a small tree and extends it in all possible ways to a big tree.
--P is a graph splitting: the list of connected components after deleting the vertex or edge we are focused on.
--Temps is list of "templates" meaning invariants on small trees
fillTemplates = (T,M,S,P,temps,newl,rand) -> (
G := group M;
FCs := edgeColorings(T,M); --consistent colorings
qhash := hashTable apply(#FCs, i->FCs#i => S_i); --maps from consistent edge colorings to variables in the ring
n := #P;
cem := compositeEdgeMap(T,P,newl);
PFCs := apply(P, U->partitionedFCs(U,M,set{newl})); --a List of HashTables of colorings of the graph pieces
--print PFCs;
flatten for binom in temps list (
fbinom0 := flatten binom#0; --flat list of color indices for first monomial of a claw tree invariant
fbinom1 := flatten binom#1; --same for second monomial
PFCLists := apply(#fbinom0, j->(PFCs#(j%n))#(G#(fbinom0#j))); --for each entry of fbinom0(itself a list), the list of all coloring extensions
PFCi := (#(binom#2):0)..(toSequence apply(PFCLists,l->(#l-1))); --sequence of list indices for all combinations of coloring extensions
if rand then PFCi = toSequence randomElement PFCi;
newGens := for iList in PFCi list (
CList0 := apply(#iList, j->(PFCLists#j)#(iList#j)); --a list of color extensions for first monomial
CList1 := apply(binom#2, k->CList0#k); --permutations of the color extensions for second monomial
CList1 = apply(#fbinom1, j->(
c1 := fbinom1#j;
c0 := fbinom0#(binom#2#j);
if c1 != c0 then permuteColoring(CList1#j,{c1,c0},M) else CList1#j
));
CLists := (CList0,CList1);
--print CLists;
monom := apply(CLists, CList->product for i from 0 to #(binom#0)-1 list (
comcol := compositeColoring(cem, take(CList,{i*n,i*n+n-1}));
qhash#comcol
));
--print(monom#0,monom#1);
monom#0 - monom#1
);
ultimate(flatten,newGens)
)
)
--computes the invariants for a claw tree on k leaves.
--converts each binomial to a form used by the fillTemplates function.
--the values for k==3 and the four built-in models are hard-coded
clawInvariants = (k,M) -> (
if k == 3 and M === CFNmodel then return {};
if k == 3 and M === JCmodel then return {
{{{0,1,1},{1,0,1},{1,1,0}},{{0,0,0},{1,2,3},{1,2,3}},{0,4,8,3,1,2,6,7,5}}};
if k == 3 and M === K2Pmodel then return {
{{{1,0,1},{2,1,3},{2,2,0}},{{1,1,0},{2,0,2},{2,3,1}},{0,4,8,3,1,5,6,7,2}},
{{{0,1,1},{1,2,3},{2,0,2}},{{0,2,2},{1,0,1},{2,1,3}},{0,4,5,3,7,2,6,1,8}},
{{{0,1,1},{1,2,3},{2,2,0}},{{0,2,2},{1,1,0},{2,3,1}},{0,4,5,3,1,8,6,7,2}},
{{{0,1,1},{1,0,1},{2,2,0},{2,2,0}},{{0,0,0},{1,1,0},{2,3,1},{2,3,1}},{0,4,8,3,1,11,6,7,2,9,10,5}},
{{{0,1,1},{2,0,2},{2,2,0}},{{0,0,0},{2,1,3},{2,3,1}},{0,4,8,3,1,5,6,7,2}},
{{{0,1,1},{1,1,0},{2,0,2},{2,0,2}},{{0,0,0},{1,0,1},{2,1,3},{2,1,3}},{0,7,5,3,10,2,6,1,8,9,4,11}},
{{{0,2,2},{1,0,1},{2,2,0}},{{0,0,0},{1,2,3},{2,3,1}},{0,4,8,3,1,2,6,7,5}},
{{{0,2,2},{1,1,0},{2,0,2}},{{0,0,0},{1,2,3},{2,1,3}},{0,7,5,3,1,2,6,4,8}},
{{{0,2,2},{0,2,2},{1,0,1},{1,1,0}},{{0,0,0},{0,1,1},{1,2,3},{1,2,3}},{0,7,11,3,10,8,6,1,2,9,4,5}}};
if k == 3 and M === K3Pmodel then return {
{{{2,2,0},{2,3,1},{3,0,3},{3,1,2}},{{2,0,2},{2,1,3},{3,2,1},{3,3,0}},{0,7,11,3,10,8,6,1,5,9,4,2}},
{{{1,2,3},{2,3,1},{3,1,2}},{{1,3,2},{2,1,3},{3,2,1}},{0,4,8,3,7,2,6,1,5}},
{{{1,3,2},{2,2,0},{3,0,3}},{{1,2,3},{2,0,2},{3,3,0}},{0,4,8,3,7,2,6,1,5}},
{{{1,0,1},{1,3,2},{2,1,3},{2,2,0}},{{1,1,0},{1,2,3},{2,0,2},{2,3,1}},{0,7,11,3,10,8,6,1,5,9,4,2}},
{{{1,0,1},{2,2,0},{3,1,2}},{{1,1,0},{2,0,2},{3,2,1}},{0,7,5,3,1,8,6,4,2}},
{{{1,1,0},{2,3,1},{3,0,3}},{{1,0,1},{2,1,3},{3,3,0}},{0,7,5,3,1,8,6,4,2}},
{{{1,1,0},{1,3,2},{3,0,3},{3,2,1}},{{1,0,1},{1,2,3},{3,1,2},{3,3,0}},{0,7,11,3,10,8,6,1,5,9,4,2}},
{{{0,2,2},{1,3,2},{2,1,3},{3,0,3}},{{0,3,3},{1,2,3},{2,0,2},{3,1,2}},{0,4,8,3,1,11,6,10,2,9,7,5}},
{{{0,2,2},{2,3,1},{3,0,3}},{{0,3,3},{2,0,2},{3,2,1}},{0,4,8,3,7,2,6,1,5}},
{{{0,3,3},{2,2,0},{3,1,2}},{{0,2,2},{2,1,3},{3,3,0}},{0,4,8,3,7,2,6,1,5}},
{{{0,3,3},{1,3,2},{2,2,0},{3,2,1}},{{0,2,2},{1,2,3},{2,3,1},{3,3,0}},{0,7,5,3,10,2,6,1,11,9,4,8}},
{{{0,2,2},{1,0,1},{2,3,1},{3,1,2}},{{0,1,1},{1,3,2},{2,0,2},{3,2,1}},{0,10,5,3,7,2,6,4,11,9,1,8}},
{{{0,1,1},{1,2,3},{2,0,2}},{{0,2,2},{1,0,1},{2,1,3}},{0,4,8,3,7,2,6,1,5}},
{{{0,1,1},{1,3,2},{2,2,0}},{{0,2,2},{1,1,0},{2,3,1}},{0,7,5,3,1,8,6,4,2}},
{{{0,1,1},{1,2,3},{2,2,0},{3,1,2}},{{0,2,2},{1,1,0},{2,1,3},{3,2,1}},{0,4,11,3,1,8,6,10,5,9,7,2}},
{{{0,1,1},{1,3,2},{3,0,3}},{{0,3,3},{1,0,1},{3,1,2}},{0,4,8,3,7,2,6,1,5}},
{{{0,1,1},{1,2,3},{2,3,1},{3,0,3}},{{0,3,3},{1,0,1},{2,1,3},{3,2,1}},{0,7,5,3,10,2,6,1,11,9,4,8}},
{{{0,3,3},{1,1,0},{2,3,1},{3,1,2}},{{0,1,1},{1,3,2},{2,1,3},{3,3,0}},{0,4,8,3,1,11,6,10,2,9,7,5}},
{{{0,3,3},{1,1,0},{3,2,1}},{{0,1,1},{1,2,3},{3,3,0}},{0,4,8,3,7,2,6,1,5}},
{{{0,0,0},{0,3,3},{3,1,2},{3,2,1}},{{0,1,1},{0,2,2},{3,0,3},{3,3,0}},{0,7,11,3,10,8,6,1,5,9,4,2}},
{{{0,0,0},{1,1,0},{2,3,1},{3,2,1}},{{0,1,1},{1,0,1},{2,2,0},{3,3,0}},{0,4,8,3,1,11,6,10,2,9,7,5}},
{{{0,0,0},{2,3,1},{3,1,2}},{{0,1,1},{2,0,2},{3,3,0}},{0,7,5,3,1,8,6,4,2}},
{{{0,1,1},{2,2,0},{3,0,3}},{{0,0,0},{2,1,3},{3,2,1}},{0,7,5,3,1,8,6,4,2}},
{{{0,1,1},{1,1,0},{2,0,2},{3,0,3}},{{0,0,0},{1,0,1},{2,1,3},{3,1,2}},{0,7,5,3,10,2,6,1,11,9,4,8}},
{{{0,1,1},{0,3,3},{2,0,2},{2,2,0}},{{0,0,0},{0,2,2},{2,1,3},{2,3,1}},{0,7,11,3,10,8,6,1,5,9,4,2}},
{{{0,0,0},{1,3,2},{3,2,1}},{{0,2,2},{1,0,1},{3,3,0}},{0,7,5,3,1,8,6,4,2}},
{{{0,2,2},{1,0,1},{2,2,0},{3,0,3}},{{0,0,0},{1,2,3},{2,0,2},{3,2,1}},{0,4,8,3,1,11,6,10,2,9,7,5}},
{{{0,0,0},{1,3,2},{2,2,0},{3,1,2}},{{0,2,2},{1,1,0},{2,0,2},{3,3,0}},{0,7,5,3,10,2,6,1,11,9,4,8}},
{{{0,2,2},{1,1,0},{3,0,3}},{{0,0,0},{1,2,3},{3,1,2}},{0,7,5,3,1,8,6,4,2}},
{{{0,0,0},{1,3,2},{2,3,1},{3,0,3}},{{0,3,3},{1,0,1},{2,0,2},{3,3,0}},{0,4,11,3,1,8,6,10,5,9,7,2}},
{{{0,3,3},{1,0,1},{2,2,0}},{{0,0,0},{1,2,3},{2,3,1}},{0,4,8,3,7,2,6,1,5}},
{{{0,3,3},{1,1,0},{2,0,2}},{{0,0,0},{1,3,2},{2,1,3}},{0,7,5,3,1,8,6,4,2}},
{{{0,3,3},{1,1,0},{2,2,0},{3,0,3}},{{0,0,0},{1,2,3},{2,1,3},{3,3,0}},{0,10,5,3,7,2,6,4,11,9,1,8}},
{{{0,2,2},{0,3,3},{1,0,1},{1,1,0}},{{0,0,0},{0,1,1},{1,2,3},{1,3,2}},{0,7,11,3,10,8,6,1,5,9,4,2}}};
qList := leafColorings(k,M);
q := getSymbol "q";
R := qRingFromList(qList,M,q);
Igens := flatten entries gens phyloToric42(k,{},M,QRing=>R);
Igens = select(Igens, f-> 1 < first degree f);
for f in Igens list binomialTemplate(f,k,M)
)
--converts a binomial claw tree invariant into "template" form
binomialTemplate = (f,k,M) -> (
G := group M;
Ghash := hashTable apply(#G,i->(G#i=>i));
qList := leafColorings(k,M);
termsList := for t in exponents f list join toSequence apply(#t, i->toList (t#i:toList apply(qList#i,j->Ghash#j)));
d := #(termsList#0);
h := new MutableList;
for i to d*k-1 do (
c := position((0..d-1), j->(
n := j*k + i%k;
(not h#?n or h#n === null) and
aList(M,G#((termsList#1)#j#(i%k))) == aList(M,G#((termsList#0)#(i//k)#(i%k)))));
h#(c*k + i%k) = i;
);
h = toList h;
termsList|{h}
)
--e is distinguished in T (edges outputs the list of edges)
--eindex just tells you the first time a bool is true
--"or" is necessary because each edge has two ways to be named depending on which side of the partition the edge is located
--partition breaks up list based on value of function and outputs hash table with
--key color values list of edge coloring with that color e
partitionedFCs = (T,M,e) -> (
eindex := position(edges T, f->f==e or (leaves T)-f==e);
FCs := edgeColorings(T,M);
partition(fc->fc#eindex, FCs)
)
--produces a map from the set of edges of T to the edges of the decomposition at vertex l.
--L is a list of trees in the decomposition
compositeEdgeMap = (T,L,l) -> (
EL := apply(L, U->apply(edges U, e->orientEdge'(U,e,l)));
for e in edges T list (
(i,j) := (0,0);
while i < #EL do (
j = position(EL#i, f -> e==f or (leaves T)-e==f);
if j =!= null then break else i = i+1;
);
(i,j)
)
)
compositeColoring = (cem,L) -> apply(cem, ij->L#(ij#0)#(ij#1))
permuteColoring = (col,P,M) -> (
G := group M;
aut := M.Automorphisms#P;
apply(col, c->aut#c)
)
--------------------------
--LeafTree
--------------------------
leafTree = method()
leafTree(List,List) := (L,E) -> (
E = select(E, e->#e > 1 and #e < #L-1);
leafEdges := if #L > 2 then apply(L, i->{i}) else if #L == 2 then {{L#0}} else {};
E = E|leafEdges;
E = apply(E, e->if class e === Set then e else set e);
new LeafTree from {L, E}
)
leafTree(ZZ,List) := (n,E) -> leafTree(toList(0..n-1),E)
leafTree(Graph) := G -> (
if not isTree G then error "graph must be a tree";
L := select(vertexSet G, v->isLeaf(G,v));
E := for e in edges G list (
G' := deleteEdges(G,{toList e});
side := first connectedComponents G';
select(side, v->isLeaf(G,v))
);
leafTree(L,E)
)
edges(LeafTree) := T -> T#1
internalEdges = method()
internalEdges(LeafTree) := T -> select(T#1, e->#e > 1 and #e < #(T#0)-1)
leaves(LeafTree) := T -> set T#0
leavesList = method()
leavesList(LeafTree) := T -> T#0
vertices(LeafTree) := T -> vertices graph T
internalVertices = method()
internalVertices(LeafTree) := T -> (
select(vertices graph T, v->#v > 1)
)
graph(LeafTree) := opts -> T -> (
l := first elements leaves T;
E := apply(edges T, f->orientEdge(T,f,l));
E = E|{set{}};
P := poset(E,isSubset);
G := graph coveringRelations P;
newLabels := for v in vertexSet G list (
children := select(elements neighbors(G,v), w -> #w > #v);
children = apply(children, w -> (leaves T) - w);
if #v > 0 then set({v}|children) else set children
);
graph(newLabels, adjacencyMatrix G)
)
digraph(LeafTree,List) := opts -> (T,L) -> digraph(T,set L)
digraph(LeafTree,Set) := opts -> (T,u) -> (
E := apply(edges T, e->if any(elements u, f->isSubset(e,f)) then (leaves T) - e else e);
E = E|{set{}};
P := poset(E,isSubset);
G := graph coveringRelations P;
dirE := {};
newLabels := for v in vertexSet G list (
children := select(elements neighbors(G,v), w -> #w > #v);
dirE = dirE|apply(children, w->{v,w});
children = apply(children, w -> (leaves T) - w);
if #v > 0 then set({v}|children) else set children
);
D := digraph(vertices G, dirE);
digraph(newLabels, adjacencyMatrix D)
)
Set == Set := (s,t) -> s === t
LeafTree == LeafTree := (S,T) -> (
if leaves S != leaves T then return false;
l := first leavesList S;
ES := set apply(edges S, e->orientEdge(S,e,l));
ET := set apply(edges T, e->orientEdge(T,e,l));
ES == ET
)
AHU := (G,v) -> (
chil := children(G,v);
chilAHU := flatten sort apply(elements chil, w->AHU(G,w));
{1}|chilAHU|{0}
)
isIsomorphicRooted = method()
isIsomorphicRooted(LeafTree,List,LeafTree,List) := (T1,v1,T2,v2) -> (
isIsomorphicRooted(T1,set v1,T2,set v2)
)
isIsomorphicRooted(LeafTree,Set,LeafTree,Set) := (T1,v1,T2,v2) -> (
G1 := digraph(T1,v1);
G2 := digraph(T2,v2);
AHU(G1,v1) == AHU(G2,v2)
)
isIsomorphic = method()
isIsomorphic(LeafTree,LeafTree) := (T1,T2) -> (
if #(leaves T1) != #(leaves T2) or #(edges T1) != #(edges T2) then return false;
C1 := center graph T1;
C2 := center graph T2;
if #C1 != #C2 then return false;
for v1 in C1 do for v2 in C2 do (
if isIsomorphicRooted(T1,v1,T2,v2) then return true;
);
false
)
--splits tree T at edge e into a list of two trees
edgeCut = method()
edgeCut(LeafTree,List,Thing) := (T,e,newl) -> edgeCut(T,set e,newl)
edgeCut(LeafTree,Set,Thing) := (T,e,newl) -> (
Lpart := {e, leaves(T) - e};
apply(Lpart, P->leafTree((toList P)|{newl}, edgeSelect(T,P)))
)
edgeSelect = (T,e) -> (
for f in internalEdges T list (
if f==e then continue
else if isSubset(f,e) then f
else if isSubset((leaves T) - f,e) then (leaves T) - f
else continue
)
)
--gives the side of the partition representing edge e that contains leaf l
orientEdge = (T,e,l) -> if member(l,e) then e else (leaves T) - e
--gives the side of the partition representing edge e that does not contain leaf l
orientEdge' = (T,e,l) -> if member(l,e) then (leaves T) - e else e
--splits tree T at vertex v into a list of trees
--v is specified as the vertex incident to edge e away from leaf l
vertexCut = method()
vertexCut(LeafTree,List,Thing,Thing) := (T,e,l,newl) -> vertexCut(T,set e,l,newl)
vertexCut(LeafTree,Set,Thing,Thing) := (T,e,l,newl) -> (
e = orientEdge(T,e,l);
E := apply(edges T, f->orientEdge(T,f,l));
E = E|{set{}};
P := poset(E,isSubset);
G := graph coveringRelations P;
Lpart := select(elements neighbors(G,e), w -> #w > #e);
Lpart = apply(Lpart, w -> (leaves T) - w)|{e};
apply(Lpart, P->leafTree((toList P)|{newl}, edgeSelect(T,P)))
)
edgeContract = method()
edgeContract(LeafTree,List) := (T,e) -> edgeContract(T,set e)
edgeContract(LeafTree,Set) := (T,e) -> (
L := leaves T;
E := select(edges T, f->(f != e and L - f != e));
if #e == #L-1 then L = e;
if #e == 1 then L = L - e;
leafTree(toList L, E)
)
labeledTrees = method()
labeledTrees(ZZ) := n -> (
f := L -> (
P := setPartitions L;
select(P, p -> #p > 1)
);
L := toList (1..n-1);
apply(buildBranches(L,f), T -> leafTree(n,T))
)
labeledBinaryTrees = method()
labeledBinaryTrees(ZZ) := n -> (
f := L -> for s in subsets drop(L,1) list (
if #s == 0 then continue;
{s, toList (set L - set s)}
);
L := toList (1..n-1);
apply(buildBranches(L,f), T -> leafTree(n,T))
)
rootedTrees = method()
rootedTrees(ZZ) := n -> (
f := L -> for p in partitions(#L) list (
if #p == 1 then continue;
k := 0;
for s in p list (
k = k+s;
take(L,{k-s,k-1})
)
);
L := toList (1..n-1);
apply(buildBranches(L,f), T -> leafTree(n,T))
)
rootedBinaryTrees = method()
rootedBinaryTrees(ZZ) := n -> (
f := L -> for i from 1 to (#L)//2 list {take(L,i), take(L,i-#L)};
L := toList (1..n-1);
apply(buildBranches(L,f), T -> leafTree(n,T))
)
unlabeledTrees = method()
unlabeledTrees(ZZ) := n -> (
rooted := rootedTrees n;
trees := new MutableList;
for T in rooted do (
if not any(trees, S->isIsomorphic(S,T)) then trees#(#trees) = T
);
toList trees
)
--lists all partitions of a set or list of distinct elements
setPartitions = method()
setPartitions(Set) := S -> setPartitions(toList S)
setPartitions(List) := L -> (
Lhash := new HashTable from apply(#L, i->(L#i => i));
pList := toList (#L : 0);
sps := {{L}};
i := #L-1;
while i > 0 do (
if any(i, j -> pList#j >= pList#i) then (
pList = take(pList, i)|{pList#i + 1}|toList(#L-i-1:0);
part := values partition(l->pList#(Lhash#l), L);
sps = append(sps, part);
i = #L-1;
)
else i = i-1;
);
sps
)
--recursive function for building rooted trees.
--takes a leaf set L and function f that lists how leaves can be
--partitioned at a node, and lists all possible edge sets.
buildBranches = (L,f) -> (
Trees := for p in f(L) list (
p = select(p, s -> #s > 1);
newTrees := {p};
for E in p do (
branches := buildBranches(E,f);
newTrees = flatten apply(newTrees, T->apply(branches, B->T|B));
);
newTrees
);
flatten Trees
)
--------------------------
--Secants and Joins
--------------------------
--list the monomials in ring R corresponding to the columns of matrix A
imageMonomials = method()
imageMonomials(Ring,Matrix) := (R,A) -> (
M := for i from 0 to (numcols A) - 1 list (
vect := flatten entries A_i;
product apply(#vect, j->R_j^(vect#j))
);
matrix {M}
)
--computes the nth secant of ideal I using elimination
--if degree d is specified, then the generators up to degree d will be computed (this is much faster)
secant = method(Options=>{DegreeLimit => {}})
secant(Ideal,ZZ) := opts -> (I,n) -> joinIdeal(toList (n:I), opts)
joinIdeal = method(Options=>{DegreeLimit => {}})
joinIdeal(Ideal,Ideal) := opts -> (I,J) -> joinIdeal({I,J},opts)
joinIdeal(List) := opts -> L -> (
R := ring first L;
k := numgens R;
n := #L;
T := R;
for i from 0 to n-1 do T = T**R;
T = newRing(T, MonomialOrder=>Eliminate(n*k));
Jlinears := apply(k,j->T_(n*k+j) - sum(n,i->T_(i*k+j)));
Js := apply(n, i->sub(L#i,(vars T)_(toList(i*k..(i+1)*k-1))));
J := sum(Js) + ideal Jlinears;
d := opts.DegreeLimit;
GB := gb(J, DegreeLimit=>join((n+1):d));
J = selectInSubring(1,gens GB);
ideal sub(J,matrix{toList (n*k:0_R)}|(vars R))
)
--Randomized algorithm for affine dimension of kth secant of variety defined by matrix A
toricSecantDim = method()
toricSecantDim(Matrix,ZZ) := (A,k) -> (
kk := ZZ/32003;
n := numrows A;
A = homogenizeMatrix A;
randPoints := apply(k,i->random(kk^1,kk^(n+1)));
x := symbol x;
R := kk[x_0..x_n];
J := jacobian imageMonomials(R,A);
tSpace := matrix apply(randPoints, p->{sub(J,p)});
rank tSpace
)
toricJoinDim = method()
toricJoinDim(Matrix,Matrix) := (A,B) -> toricJoinDim({A,B})
toricJoinDim(List) := L -> (
kk := ZZ/32003;
k := #L;
n := L/numrows;
L = L/homogenizeMatrix;
randPoints := apply(#L, i->random(kk^1,kk^(n#i+1)));
x := symbol x;
R := apply(#L, i->kk[x_0..x_(n#i)]);
J := apply(#L, i->jacobian imageMonomials(R#i,L#i));
tSpace := matrix apply(#L, i->{sub(J#i,randPoints#i)});
rank tSpace
)
homogenizeMatrix = A -> (
n := numrows A;
N := numcols A;
colSums := matrix{toList(n:1)}*A;
d := max flatten entries colSums;
A||(matrix{toList(N:d)}-colSums)
)
------------------------------------------
-- Documentation
------------------------------------------
beginDocumentation()
-------------------------------
-- PhylogeneticTrees
-------------------------------
doc///
Key
PhylogeneticTrees
Headline
a package to compute phylogenetic invariants associated to group-based models
Description
Text
{\em PhylogeneticTrees} is a package for phylogenetic algebraic geometry. This
package calculates generating sets for phylogenetic ideals and their joins and
secants. Additionally, the package computes lower bounds for the dimensions
of secants and joins of phylogenetic ideals.
This package handles a class of commonly used tree-based Markov models called
group-based models. These models are subject to the Fourier-Hadamard coordinate
transformation, which make the parametrizations monomial and the ideals toric.
See the following for more details: [1] and [2].
For these models, the PhylogeneticTrees package includes two methods for computing
a generating set for ideals of phylogenetic invariants. The first method calls
@TO FourTiTwo@ to compute the generating set of the toric ideal. The second
implements a theoretical construction for inductively determining the ideal of
phylogenetic invariants for any $k$-valent tree from the $k$-leaf claw tree as
described in Theorem 24 of [3].
This package also handles the joins and secants of these ideals by implementing
the elimination method described in [4].
In cases where computing a generating set for a join or secant ideal is infeasible,
the package provides a probabilistic method, based on Terracini’s Lemma, to compute
a lower bound on the dimension of a join or secant ideal.
{\em References:}
[1] S.N. Evans and T.P. Speed, it Invariants of some probability models used in phylogenetic inference, {\em Ann. Statist.} 21 (1993), no. 1, 355–377, and
[2] L. Székely, P.L. Erdös, M.A. Steel, and D. Penny, A Fourier inversion formula for evolutionary trees, {\em Applied Mathematics Letters} 6 (1993), no. 2, 13–17.
[3] Bernd Sturmfels and Seth Sullivant, Toric ideals of phylogenetic invariants, {\em J. Comp. Biol.} 12 (2005), no. 2, 204–228.
[4] Bernd Sturmfels and Seth Sullivant, Combinatorial secant varieties, {\em Quarterly Journal of Pure and Applied Mathematics} 2 (2006), 285–309.
///
-------------------------------
-- Phylogenetic invariants
-------------------------------
--phyloToricFP
doc///
Key
phyloToricFP
(phyloToricFP,ZZ,List,Model)
(phyloToricFP,LeafTree,Model)
Headline
compute the invariants of a group-based phylogenetic model with toric fiber products
Usage
phyloToricFP(T,M)
phyloToricFP(n,E,M)
Inputs
T:LeafTree
n:ZZ
the number of leaves
E:LeafTree
the internal edges of the tree, given by one part of the bipartition on leaves
M:Model
Outputs
:Ideal
Description
Text
This function computes the invariants of a group-based phylogenetic
tree model based on Theorem 24 of the paper Toric Ideals of
Phylogenetic Invariants by Sturmfels and Sullivant.
Invariants are formed in three different ways. The linear and
quadratic invariants are computed as in @TO phyloToricLinears@ and
@TO phyloToricQuads@ respectively. Finally higher degree invariants
are built using a toric fiber product construction from the invariants of
claw trees.
Example
T = leafTree(4, {{0,1}})
phyloToricFP(T, CFNmodel)
SeeAlso
phyloToric42
///
-------------------------------
--phyloToric42
doc///
Key
phyloToric42
(phyloToric42,ZZ,List,Model)
(phyloToric42,Graph,Model)
(phyloToric42,LeafTree,Model)
Headline
compute the invariants of a group-based phylogenetic model with 4ti2
Usage
phyloToric42(n,E,M)
phyloToric42(G,M)
phyloToric42(T,M)
Inputs
T:LeafTree
n:ZZ
the number of leaves
E:LeafTree
the internal edges of the tree, given by one part of the bipartition on leaves
G:Graph
a tree
M:Model
Outputs
:Ideal
Description
Text
This function computes the invariants of a group-based phylogenetic
tree model by computing the transpose of the matrix
that encodes the defining monomial map and then using the function toricMarkov of the
@TO FourTiTwo@ package.
Example
T = leafTree(4, {{0,1}})
phyloToric42(T, CFNmodel)
SeeAlso
phyloToricFP
///
-------------------------------
-- phyloToricLinears
doc///
Key
phyloToricLinears
(phyloToricLinears,LeafTree,Model)
(phyloToricLinears,ZZ,List,Model)
[phyloToricLinears,Random]
Headline
compute the linear invariants of a group-based phylogenetic model
Usage
phyloToricLinears(T,M)
phyloToricLinears(n,E,M)
Inputs
T:LeafTree
n:ZZ
the number of leaves
E:List
the internal edges of the tree, given by one part of the bipartition on leaves
M:Model
Outputs
:List
a generating set of the linear invariants
Description
Text
For models such as Jukes-Cantor (@TO "JCmodel"@) and Kimura 2-parameter (@TO "K2Pmodel"@),
multiple variables in the Fourier coordinates may map to the same monomial under the
monomial map that defines the toric variety of the model. These equivalencies give rise
to linear relations in the space of Fourier coordinates.
The number of linear invariants is the codimension of the smallest linear subspace in
which the toric variety of the model is contained.
The optional argument @TO QRing@ can be passed the ring of Fourier coordinates. Otherwise
the function will create a new ring.
Example
T = leafTree(3,{})
S = qRing(T, K2Pmodel)
phyloToricLinears(T, K2Pmodel, QRing=>S)
SeeAlso
phyloToricFP
phyloToric42
phyloToricQuads
///
-------------------------------
-- phyloToricQuads
doc///
Key
phyloToricQuads
(phyloToricQuads,LeafTree,Model)
(phyloToricQuads,ZZ,List,Model)
[phyloToricQuads,Random]
Headline
compute the quadratic invariants of a group-based phylogenetic model
Usage
phyloToricQuads(T,M)
phyloToricQuads(n,E,M)
Inputs
T:LeafTree
n:ZZ
the number of leaves
E:List
the internal edges of the tree, given by one part of the bipartition on leaves
M:Model
Outputs
:List
a generating set of the quadratic invariants
Description
Text
The quadratic invariants are also referred to as the edge invariants of the model.
Each Fourier coordinate corresponds to a consistent coloring of the edges of tree {\tt T}.
For any given internal edge {\tt e} of {\tt T}, the consistent colorings can be obtained by
coloring two smaller graphs and gluing them along {\tt e}. This corresponds to a fiber
product on the corresponding toric varieties. The quadratic invariants naturally
arise from this process by gluing a pair of colorings of one small graph to a pair of
colorings of the other small graph in two different ways.
The optional argument @TO QRing@ can be passed the ring of Fourier coordinates. Otherwise
the function will create a new ring.
Example
T = leafTree(4,{{0,1}})
S = qRing(T, CFNmodel)
phyloToricQuads(T, CFNmodel, QRing=>S)
SeeAlso
phyloToricFP
phyloToric42
phyloToricLinears
///
-------------------------------
--phyloToricRandom
doc///
Key
phyloToricRandom
(phyloToricRandom,ZZ,List,Model)
(phyloToricRandom,LeafTree,Model)
Headline
compute a random invariant of a group-based phylogenetic model
Usage
phyloToricRandom(T,M)
phyloToricRandom(n,E,M)
Inputs
T:LeafTree
n:ZZ
the number of leaves
E:LeafTree
the internal edges of the tree, given by one part of the bipartition on leaves
M:Model
Outputs
:RingElement
a randomly selected binomial invariant
Description
Text
This function computes a random invariant of a group-based phylogenetic
tree model using the toric fiber product structure.
With equal probability the algorithm decides to return a linear,
quadratic, or higher degree binomial. It then selects one of these
at random (but uniformity is not guaranteed).
This is a much more efficient way to produce a single generator than listing all of them,
which is useful for Monte Carlo random walk algorithms.
Example
phyloToricRandom(4,{{0,1}},CFNmodel)
Caveat
We currently do not guarantee a uniform distribution on the generators, even
after the choice of linear, quadratic or higher degree.
SeeAlso
phyloToricFP
///
-------------------------------
-- phyloToricAMatrix
doc///
Key
phyloToricAMatrix
(phyloToricAMatrix,LeafTree,Model)
(phyloToricAMatrix,Graph,Model)
(phyloToricAMatrix,ZZ,List,Model)
Headline
construct the design matrix of a group-based phylogenetic model
Usage
phyloToricAMatrix(T,M)
phyloToricAmatrix(G,M)
phyloToricAMatrix(n,E,M)
Inputs
T:LeafTree
G:Graph
a tree
n:ZZ
the number of leaves
E:List
the internal edges of the tree, given by the half the partition on leaves
M:Model
Outputs
:Matrix
whose columns parametrize the toric variety
Description
Example
phyloToricAMatrix(4, {{1, 2}},CFNmodel)
SeeAlso
///
-------------------------------
-- qRing
doc///
Key
qRing
(qRing,ZZ,Model)
(qRing,LeafTree,Model)
[qRing,Variable]
Headline
construct the ring of Fourier coordinates
Usage
qRing(T,M)
qRing(n,M)
Inputs
T:LeafTree
n:ZZ
the number of leaves
M:Model
Outputs
:Ring
of Fourier coordinates
Description
Text
The Fourier coordinates for a phylogenetic tree model have one coordinate for each consistent coloring
of the tree {\tt T}. A consistent coloring is an assignment of one of the group elements of the model {\tt M} to each of
the leaves of {\tt T} such that the sum of all the group elements assigned is $0$.
Each variable of the ring is indexed by a sequence representing a consistent coloring with each element of the group
represented by an integer between $0$ and $m-1$ where $m$ is the order of the group.
A variable name for the ring can be passed using the optional argument {\tt Variable}.
Otherwise the symbol {\tt q} is used.
Example
qRing(4,CFNmodel)
qRing(3,JCmodel)
SeeAlso
pRing
leafColorings
///
-------------------------------
-- leafColorings
doc///
Key
leafColorings
(leafColorings,ZZ,Model)
(leafColorings,LeafTree,Model)
Headline
list the consistent colorings of a tree
Usage
leafColorings(T,M)
leafColorings(n,M)
Inputs
T:LeafTree
n:ZZ
the number of leaves
M:Model
Outputs
:List
the consistent colorings of the tree
Description
Text
This function outputs a list of all consistent colorings of the leaves of tree {\tt T}.
That is all sequences $(g_1,\ldots,g_n)$ such that $g_1+\cdots +g_n = 0$ where each $g_i$ is an
element of the group associated to the model {\tt M}, and {\tt n} is the number of leaves of the tree.
These correspond the set of subscripts of the variables in the ring output by @TO qRing@,
and appear in the same order.
Example
leafColorings(4,CFNmodel)
leafColorings(3,JCmodel)
SeeAlso
qRing
///
-------------------------------
-- pRing
doc///
Key
pRing
(pRing,ZZ,Model)
(pRing,LeafTree,Model)
[pRing,Variable]
Headline
construct the ring of probability coordinates
Usage
pRing(T,M)
pRing(n,M)
Inputs
T:LeafTree
n:ZZ
the number of leaves
M:Model
Outputs
:Ring
of probability coordinates
Description
Text
The probability coordinates for a phylogenetic tree model have one coordinate for each possible outcome of
the model. A possible outcome is any labeling of the leaves of the tree by elements of the group $G$ of the
model. Thus the number of coordinates is $|G|^n$ where $n$ is the number of leaves.
A variable name for the ring can be passed using the optional argument {\tt Variable}.
Otherwise the symbol {\tt p} is used.
Example
pRing(4,CFNmodel)
pRing(3,JCmodel)
SeeAlso
qRing
///
-------------------------------
-- QRing
doc///
Key
QRing
[phyloToric42,QRing]
[phyloToricFP,QRing]
[phyloToricLinears,QRing]
[phyloToricQuads,QRing]
[phyloToricRandom,QRing]
Headline
optional argument to specify Fourier coordinate ring
Description
Text
For any of the functions that produce phylogenetic invariants in the ring of Fourier coordinates,
the ring can be specified with this optional argument. If {\tt null} is passed then a new ring
of Fourier coordinates will be created.
The ring passed can be any polynomial ring with sufficiently many variables. The sufficient number
is $k = |G|^{n-1}$ where $G$ is the group of labels used by the model, and $n$ is the number of leaves of
the phylogenetic tree. The ring may have more than $k$ variables, in which case only the first $k$ will be used.
Example
T = leafTree(4,{{0,1}})
phyloToricFP(T,CFNmodel)
S = QQ[a..h]
phyloToricFP(T,CFNmodel,QRing=>S)
///
-------------------------------
-- fourierToProbability
doc///
Key
fourierToProbability
(fourierToProbability,Ring,Ring,ZZ,Model)
Headline
map from Fourier coordinates to probability coordinates
Usage
fourierToProbability(S,R,n,M)
Inputs
S:Ring
of probability coordinates
R:Ring
of Fourier coordinates
n:ZZ
the number of leaves
M:Model
Outputs
:RingMap
from Fourier coordinates to probability coordinates
Description
Text
This function creates a ring map from the ring of Fourier coordinates to the ring of probability coordinates,
for the four predefined models, @TO "CFNmodel"@, @TO "JCmodel"@, @TO "K2Pmodel"@ or @TO "K3Pmodel"@. It will not work with
user-defined models.
The ring of probability coordinates must have at least $|G|^n$ variables where $G$ is the group
associated to the model. The ring of Fourier coordinates must have at least $|G|^{(n-1)}$ variables.
Example
M = CFNmodel;
S = pRing(3,M)
R = qRing(3,M)
m = fourierToProbability(S,R,3,M)
SeeAlso
pRing
qRing
///
------------------------------
--Models
------------------------------
--CFNmodel
doc///
Key
"CFNmodel"
Headline
the model corresponding to the Cavender-Farris-Neyman model or binary Jukes Cantor
Description
Text
The Cavender-Farris-Neyman (CFN) Model is a Markov model of base substitution. It also known as the binary Jukes-Cantor model.
It assumes the root distribution vectors describe all bases occurring uniformly in the ancestral sequence.
It also assumes that the rate of all specific base changes is the same.
The transition matrix has the form
$$\begin{pmatrix} \alpha&\beta\\
\beta&\alpha \end{pmatrix}$$
SeeAlso
Model
"JCmodel"
"K2Pmodel"
"K3Pmodel"
///
--------------------------
--JCmodel
doc///
Key
"JCmodel"
Headline
the model corresponding to the Jukes Cantor model
Description
Text
The Jukes-Cantor (JK) Model is a Markov model of base substitution.
It assumes the root distribution vectors describe all bases occurring uniformly in the ancestral sequence.
It also assumes that the rate of all specific base changes is the same.
Thus the rates of bases changes A-G, A-T and A-C are the same.
The transition matrix has the form
$$\begin{pmatrix} \alpha&\beta&\beta&\beta\\
\beta&\alpha&\beta&\beta\\
\beta&\beta&\alpha&\beta\\
\beta&\beta&\beta&\alpha \end{pmatrix}$$
SeeAlso
Model
"CFNmodel"
"K2Pmodel"
"K3Pmodel"
///
---------------------------
--K2Pmodel
doc///
Key
"K2Pmodel"
Headline
the model corresponding to the Kimura 2-parameter model
Description
Text
The Kimura 2-parameter (K2P) Model is a Markov model of base substitution. It assumes the root distribution vectors describe
all bases occurring uniformly in the ancestral sequence. It allows different probabilities of transitions and transversions.
This means that the rate of base changes A-C and A-T are the same (transversions), and the rate of
base change A-G can differ from the other two (transitions).
The transition matrix has the form
$$\begin{pmatrix} \alpha&\gamma&\beta&\beta\\
\gamma&\alpha&\beta&\beta\\
\beta&\beta&\alpha&\gamma\\
\beta&\beta&\gamma&\alpha \end{pmatrix}$$
SeeAlso
Model
"CFNmodel"
"JCmodel"
"K3Pmodel"
///
-------------------------------
--K3Pmodel
doc///
Key
"K3Pmodel"
Headline
the model corresponding to the Kimura 3-parameter model
Description
Text
The Kimura 3-parameter (K3P) Model is a Markov model of base substitution.
It assumes the root distribution vectors describe all bases occurring uniformly in the ancestral sequence.
It allows different probabilities of the base changes A-G, A-C and A-T.
This is the most general group based model on group $(\mathbb{Z}/2\mathbb{Z})^2$.
The transition matrix has the form
$$\begin{pmatrix} \alpha&\gamma&\beta&\delta\\
\gamma&\alpha&\delta&\beta\\
\beta&\delta&\alpha&\gamma\\
\delta&\beta&\gamma&\alpha \end{pmatrix}$$
SeeAlso
Model
"CFNmodel"
"JCmodel"
"K2Pmodel"
///
-------------------------------
-- Secants and Joins
-------------------------------
-- secant
doc///
Key
secant
(secant,Ideal,ZZ)
[secant,DegreeLimit]
Headline
compute the secant of an ideal
Usage
secant(I,n)
Inputs
I:Ideal
k:ZZ
order of the secant
Outputs
:Ideal
the {\tt k}th secant of {\tt I}
Description
Text
This function computes the {\tt k}th secant of {\tt I} by constructing the abstract secant and then projecting with elimination.
Here the {\tt k}th secant means the join of {\tt k} copies of {\tt I}.
Setting {\tt k} to 1 gives the dimension of the ideal, while 2 is the usual secant, and higher
values correspond to higher order secants.
Setting the optional argument @TO DegreeLimit@ to {\tt \{d\} } will produce only the generators
of the secant ideal up to degree {\tt d}.
This method is general and will work for arbitrary polynomial ideals, not just phylogenetic ideals.
Example
R = QQ[a..d]
I = ideal {a^2-b,a^3-c,a^4-d}
secant(I,2)
SeeAlso
joinIdeal
///
-------------------------------
-- joinIdeal
doc///
Key
joinIdeal
(joinIdeal,Ideal,Ideal)
(joinIdeal,List)
[joinIdeal,DegreeLimit]
Headline
compute the join of several ideals
Usage
joinIdeal(I,J)
joinIdeal L
Inputs
I:Ideal
J:Ideal
L:List
of ideals in the same ring
Outputs
:Ideal
the join of the input ideals
Description
Text
This function computes the ideal of the join by constructing the abstract join and then projecting with elimination.
Setting the optional argument @TO DegreeLimit@ to {\tt \{d\} } will produce only the generators
of the join ideal up to degree {\tt d}.
This method is general and will work for arbitrary polynomial ideals, not just phylogenetic ideals.
Example
R = QQ[a,b,c,d]
I = ideal {a-d,b^2-c*d}
J = ideal {a,b,c}
joinIdeal(I,J)
SeeAlso
secant
///
-------------------------------
-- toricSecantDim
doc///
Key
toricSecantDim
(toricSecantDim,Matrix,ZZ)
Headline
dimension of a secant of a toric variety
Usage
toricSecantDim(A,k)
Inputs
A:Matrix
the A-matrix of a toric variety
k:ZZ
order of the secant
Outputs
:ZZ
the dimension of the {\tt k}th secant of variety defined by matrix {\tt A}
Description
Text
A randomized algorithm for computing the affine dimension of a secant of a toric variety
using Terracini's Lemma.
Here the {\tt k}th secant means the join of {\tt k} copies of {\tt I}.
Setting {\tt k} to 1 gives the dimension of the ideal, while 2 is the usual secant, and higher
values correspond to higher order secants.
The matrix {\tt A} defines a parameterization of the variety. The algorithm chooses {\tt k}
vectors of parameter values at random from a large finite field. The dimension of the sum of the tangent spaces
at those points is computed.
This algorithm is much much faster than computing the secant variety.
Example
A = matrix{{4,3,2,1,0},{0,1,2,3,4}}
toricSecantDim(A,1)
toricSecantDim(A,2)
toricSecantDim(A,3)
toricSecantDim(A,4)
SeeAlso
toricJoinDim
secant
///
-------------------------------
-- toricJoinDim
doc///
Key
toricJoinDim
(toricJoinDim,Matrix,Matrix)
(toricJoinDim,List)
Headline
dimension of a join of toric varieties
Usage
toricJoinDim(A,B)
toricJoinDim L
Inputs
A:Matrix
the A-matrix of a toric variety
B:Matrix
the A-matrix of a toric variety
L:List
of A-matrices of toric varieties
Outputs
:ZZ
the dimension of the join of the toric varieties defined by the matrices
Description
Text
A randomized algorithm for computing the affine dimension of a join of toric varieties
using Terracini's Lemma.
Each input matrix defines a parameterization of the variety. For each variety, a vector of parameter values
is chosen at random from a large finite field. The dimension of the sum of the tangent spaces
at those points is computed.
This algorithm is much much faster than computing the join variety.
Example
A = matrix{{4,3,2,1,0},{0,1,2,3,4}}
B = matrix{{1,1,1,1,1}}
toricJoinDim(A,B)
toricJoinDim(B,B)
Caveat
All input matrices must have the same number of columns.
SeeAlso
toricSecantDim
joinIdeal
///
-------------------------------
-- Model functionality
-------------------------------
-- Model
doc///
Key
Model
Headline
a group-based model
Description
Text
A phylogenetic tree model on tree $T$ has outcomes that are described by assigning each leaf of the tree
any label from a particular set (typically the label set is the set of DNA bases, \{A,T,C,G\}).
The probability of a certain assignment of labels depends on transition probabilities between each ordered pair of labels.
These transition probabilities are the parameters of the model.
In a group based model, the label set is a group $G$ (typically $\mathbb{Z}/2$ or $(\mathbb{Z}/2)^2$), and the transition
probability for a pair $(g,h)$ depends only on $h-g$. This reduces the number of parameters from $|G|^2$ to $|G|$.
Depending on the model, further identifications of parameters are imposed.
An object of class @TO Model@ stores the information about a group-based model required to
compute phylogenetic invariants.
This information includes the elements of the group, how those elements are partitioned, and a set of
automorphisms of the group that preserve the partitions.
There are four built-in models: Cavender-Farris-Neyman or binary model (@TO "CFNmodel"@);
Jukes-Cantor model (@TO "JCmodel"@); Kimura 2-parameter model (@TO "K2Pmodel"@);
and Kimura 3-parameter model (@TO "K3Pmodel"@). Other models can be constructed with @TO model@.
Example
M = CFNmodel
T = leafTree(3,{})
phyloToricAMatrix(T,M)
SeeAlso
model
///
-------------------------------
-- model
doc///
Key
model
(model,List,List,List)
Headline
construct a Model
Usage
model(G,B,aut)
Inputs
G:List
the group elements
B:List
of lists of which group elements have identified parameters
aut:List
of pairs, assigning pairs of identified group elements to automorphisms of the group that switch the pair
Outputs
:Model
Description
Text
The elements of {\tt G} must have an addition operation meaning that if two elements $g, h \in {\tt G$}, then $g+h$ must work. The usual choices for {\tt G} are the list of elements of
$\mathbb{Z}/2$ or $(\mathbb{Z}/2)^2$.
Example
(a,b) = (0_(ZZ/2),1_(ZZ/2))
G = {{a,a}, {a,b}, {b,a}, {b,b}}
Text
The elements of {\tt B} are lists of the elements of {\tt G} with the same parameter value.
In the following example, the first two elements of {\tt G} receive distinct parameters, while the last two share a parameter.
This is precisely the Kimura 2-parameter model.
Example
B = {{G#0}, {G#1}, {G#2,G#3}}
Text
Finally, for every ordered pair of group elements sharing a parameter, {\tt aut} must provide an automorphism of the group
that switches those two group elements. In {\tt aut} all of the group elements are identified by their index in $G$,
and an automorphism is given by a list of permuted index values.
In our example, the pairs requiring an automorphism are {\tt \{2,3\}} and {\tt \{3,2\}}.
Example
aut = {({2,3}, {0,1,3,2}),
({3,2}, {0,1,3,2})}
model(G,B,aut)
SeeAlso
Model
///
-------------------------------
-- group
doc///
Key
group
(group,Model)
Headline
the group of a Model
Usage
group M
Inputs
M:Model
Outputs
:List
of group elements
Description
Text
Every group-based phylogenetic model has a finite group associated to it. This function
returns the group, represented as a list of elements.
Example
M = K3Pmodel
G = group M
SeeAlso
Model
///
-------------------------------
-- buckets
doc///
Key
buckets
(buckets,Model)
Headline
the equivalence classes of group elements of a Model
Usage
buckets M
Inputs
M:Model
Outputs
:List
of lists of group elements
Description
Text
Every group-based phylogenetic model has a finite group {\tt G} associated to it. Parameters
for the model are assigned to equivalence classes of group elements, which are orbits
of some subgroup of the automorphism group of {\tt G}. This function returns the equivalence
classes as a list of list of group elements.
Example
M = K2Pmodel
B = buckets M
SeeAlso
Model
///
-------------------------------
-- LeafTree functionality
-------------------------------
-- leafTree
doc///
Key
leafTree
(leafTree,ZZ,List)
(leafTree,List,List)
(leafTree,Graph)
Headline
construct a LeafTree
Usage
leafTree(n,E)
leafTree(L,E)
leafTree(G)
Inputs
n:ZZ
the number of leaves
L:List
of leaves
E:List
of lists or sets specifying the internal edges
G:Graph
a tree
Outputs
:LeafTree
Description
Text
An object of class @TO LeafTree@ is specified by listing its leaves, and for each internal edge,
the partition the edge induces on the set of leaves.
{\tt L} is the set of leaves, or if an integer {\tt n} is input then the leaves will be named $0,\ldots,n-1$.
{\tt E} is a list with one entry for each internal edge.
Each entry is a partition specified as a list or set of the leaves in one side of the partition.
Thus each edge can be specified in two possible ways.
An object of class @TO LeafTree@ can also be constructed from a @TO Graph@ provided the graph has no cycles.
Here we construct the quartet tree, which is the tree with 4 leaves and one internal edge.
Example
T = leafTree({a,b,c,d},{{a,b}})
leaves T
edges T
Text
Here is a tree with 5 leaves given as a @TO Graph@.
Example
G = graph{{a,b},{c,b},{b,d},{d,e},{d,f},{f,g},{f,h}}
T = leafTree G
leaves T
internalEdges T
///
-------------------------------
-- LeafTree
doc///
Key
LeafTree
(symbol ==,LeafTree,LeafTree)
Headline
a tree described in terms of its leaves
Description
Text
A tree can be described in terms of its leaves by specifying a leaf set
and specifying the edges as partitions of the leaf set.
This leaf centric description is particularly useful for phylogenetic trees.
The main constructor method is @TO leafTree@.
Example
T = leafTree({a,b,c,d},{{a,b}})
leaves T
edges T
G = graph{{a,e},{b,e},{e,f},{c,f},{d,f}}
leafTree G
SeeAlso
leafTree
///
-------------------------------
-- edges
doc///
Key
(edges,LeafTree)
Headline
list the edges of a tree
Usage
edges T
Inputs
T:LeafTree
Outputs
:List
the edges of {\tt T}
Description
Text
This function lists all edges of a tree. Each entry of the list is a @TO Set@ of the leaves on one side of the edge.
Example
T = leafTree(5,{{0,1}});
leaves T
edges T
SeeAlso
internalEdges
///
-------------------------------
-- internalEdges
doc///
Key
internalEdges
(internalEdges,LeafTree)
Headline
list the internal edges of a tree
Usage
internalEdges T
Inputs
T:LeafTree
Outputs
:List
the internal edges of {\tt T}
Description
Text
An internal edge of a tree is an edge that is not incident to a leaf.
This function lists such edges. Each entry of the list is @ofClass Set@ of the leaves on one side of the edge.
Example
G = graph {{0,4},{1,4},{4,5},{5,2},{5,3}};
T = leafTree G;
internalEdges T
SeeAlso
(edges,LeafTree)
///
-------------------------------
-- vertices
doc///
Key
(vertices,LeafTree)
Headline
list the vertices of a tree
Usage
vertices T
Inputs
T:LeafTree
Outputs
:List
the vertices of {\tt T}
Description
Text
This function lists all vertices of a tree. Each vertex is specified by the partition of the set of leaves
formed by removing the vertex. Each partition is given as a list of sets.
Example
T = leafTree(4,{{0,1}});
vertices T
#(vertices T)
Caveat
The leaves of {\tt T} in the output of {\tt vertices} have a different representation from the one in the output of @TO (leaves,LeafTree)@.
SeeAlso
internalVertices
(leaves,LeafTree)
///
-------------------------------
-- internalVertices
doc///
Key
internalVertices
(internalVertices,LeafTree)
Headline
list the internal vertices of a tree
Usage
internalVertices T
Inputs
T:LeafTree
Outputs
:List
the internal vertices of {\tt T}
Description
Text
An internal vertex of a tree is a vertex that is not a leaf, meaning it has degree at least 2.
This function lists such vertices. Each vertex is specified by the partition of the set of leaves
formed by removing the vertex. Each partition is given as a list of sets.
Example
T = leafTree(4,{{0,1}});
internalVertices T
#(internalVertices T)
SeeAlso
(vertices,LeafTree)
///
-------------------------------
-- leaves
doc///
Key
(leaves,LeafTree)
Headline
list the leaves of a tree
Usage
leaves T
Inputs
T:LeafTree
Outputs
:Set
the leaves of {\tt T}
Description
Text
This function outputs the leaves of the tree as an object of class @TO Set@.
Example
T = leafTree(4,{{0,1}});
vertices T
#(vertices T)
Caveat
The leaves have a different representation from the one in the output of @TO (vertices,LeafTree)@.
SeeAlso
(vertices,LeafTree)
///
-------------------------------
-- isIsomorphic
doc///
Key
isIsomorphic
(isIsomorphic,LeafTree,LeafTree)
Headline
check isomorphism of two tree
Usage
isIsomorphic(T,U)
Inputs
T:LeafTree
U:LeafTree
Outputs
:Boolean
if U and T are isomorphic
Description
Text
This function checks if two objects of class @TO LeafTree@ are isomorphic to each other as unlabeled graphs.
This is in contrast to equality of two objects of class @TO LeafTree@, which also checks whether they have the same leaf labeling.
Example
T = leafTree(4,{{0,1}});
U = leafTree(4,{{1,2}});
isIsomorphic(T,U)
///
-------------------------------
-- edgeCut
doc///
Key
edgeCut
(edgeCut,LeafTree,List,Thing)
(edgeCut,LeafTree,Set,Thing)
Headline
break up a tree at an edge
Usage
edgeCut(T,e,newl)
edgeCut(T,E,newl)
Inputs
T:LeafTree
e:Set
an edge specified by the set of leaves on one side of it
E:List
an edge specified by a list of the leaves on one side of it
newl:Thing
the label for a new leaf
Outputs
:List
of two @TO LeafTree@s that are subtrees of {\tt T}
Description
Text
This function outputs the two subtrees of {\tt T} obtained by deleting edge {\tt e} from {\tt T} and then re-adding the edge
to each of the two resulting subtrees. Both subtrees share a copy of the edge {\tt e}
and the newly labeled leaf adjacent to {\tt e}. Other than this overlap, they are disjoint.
Each subtree in {\tt P} may have at most one leaf that was not a leaf of {\tt T}, and therefore previously unlabeled.
The label for this new leaf is input as {\tt newl}.
Example
T = leafTree(4,{{0,1}})
P = edgeCut(T, set {0,1}, 4);
P#0
P#1
SeeAlso
vertexCut
///
-------------------------------
-- vertexCut
doc///
Key
vertexCut
(vertexCut,LeafTree,List,Thing,Thing)
(vertexCut,LeafTree,Set,Thing,Thing)
Headline
break up a tree at a vertex
Usage
vertexCut(T,e,l,newl)
vertexCut(T,E,l,newl)
Inputs
T:LeafTree
e:Set
an edge specified by the set of leaves on one side of it
E:List
an edge specified by a list of the leaves on one side of it
l:Thing
a leaf of the tree
newl:Thing
the label for a new leaf
Outputs
:List
of @TO LeafTree@s that are subtrees of {\tt T}
Description
Text
Vertices of a tree of class @TO LeafTree@ do not have explicit names. Therefore a vertex {\tt v} is specified by naming an edge {\tt e}
incident to {\tt v}, and leaf {\tt l} on the opposite side of the edge as {\tt v}.
The function outputs the subtrees of {\tt T} obtained by deleting the vertex {\tt v} from {\tt T}
and then re-adding {\tt v} to each of the resulting subtrees as a new leaf.
The new leaf on each subtree is adjacent to the edge previously adjacent
to {\tt v} on {\tt T}. Each subtree has a copy of the vertex labeled {\tt newl}, but their edge sets form a partition
of the edge set of {\tt T}.
Each subtree in {\tt P} has one leaf that was not a leaf of {\tt T}, and therefore previously unlabeled.
The label for this new leaf is input as {\tt newl}.
Example
T = leafTree(4,{{0,1}})
P = vertexCut(T, set {0,1}, 0, 4);
P#0
P#1
P#2
SeeAlso
edgeCut
///
-------------------------------
-- edgeContract
doc///
Key
edgeContract
(edgeContract,LeafTree,List)
(edgeContract,LeafTree,Set)
Headline
contract an edge of a tree
Usage
edgeContract(T,e)
edgeContract(T,E)
Inputs
T:LeafTree
e:Set
an edge specified by the set of leaves on one side of it
E:List
an edge specified by a list of the leaves on one side of it
Outputs
:LeafTree
obtained from {\tt T} by contracting the specified edge
Description
Text
This function produces a new object of class @TO LeafTree@ obtained by contracting the edge {\tt e} of tree {\tt T}.
Example
T = leafTree(4,{{0,1}})
edgeContract(T, set {0,1})
///
-------------------------------
-- labeledTrees
doc///
Key
labeledTrees
(labeledTrees,ZZ)
Headline
enumerate all labeled trees
Usage
labeledTrees n
Inputs
n:ZZ
the number of leaves
Outputs
:List
of all trees with {\tt n} leaves
Description
Text
This function enumerates all possible homeomorphically-reduced trees
(no degree-2 vertices) with {\tt n} leaves labeled by $0,\ldots, n-1$,
including all possible labelings. The trees are represented as objects of class @TO LeafTree@.
Example
L = labeledTrees 4
SeeAlso
labeledBinaryTrees
rootedTrees
rootedBinaryTrees
unlabeledTrees
///
-------------------------------
-- labeledBinaryTrees
doc///
Key
labeledBinaryTrees
(labeledBinaryTrees,ZZ)
Headline
enumerate all binary labeled trees
Usage
labeledTrees n
Inputs
n:ZZ
the number of leaves
Outputs
:List
of all binary trees with {\tt n} leaves
Description
Text
This function enumerates all possible binary trees with {\tt n} leaves
labeled by $0,\ldots, n-1$, including all possible labelings.
The trees are represented as an object of class @TO LeafTree@.
Example
L = labeledBinaryTrees 4
SeeAlso
labeledTrees
rootedTrees
rootedBinaryTrees
unlabeledTrees
///
-------------------------------
-- rootedTrees
doc///
Key
rootedTrees
(rootedTrees,ZZ)
Headline
enumerate all rooted trees
Usage
rootedTrees n
Inputs
n:ZZ
the number of leaves
Outputs
:List
of all rooted trees with $n$ leaves
Description
Text
This function enumerates all possible homeomorphically-reduced trees
(no degree-2 vertices) with a distinguished root and {\tt n-1} unlabeled leaves.
Each tree is an object of class @TO LeafTree@. For the purposes of representation,
the root is named {\tt 0} and the unlabeled leaves are named $1,\ldots,n-1$.
In other words each class of unlabeled rooted tree is represented once by a particular
labeling of that tree.
Example
L = rootedTrees 4
SeeAlso
labeledTrees
labeledBinaryTrees
rootedBinaryTrees
unlabeledTrees
///
-------------------------------
-- rootedBinaryTrees
doc///
Key
rootedBinaryTrees
(rootedBinaryTrees,ZZ)
Headline
enumerate all rooted binary trees
Usage
rootedBinaryTrees n
Inputs
n:ZZ
the number of leaves
Outputs
:List
of all rooted binary @TO LeafTree@s with {\tt n} leaves
Description
Text
This function enumerates all possible binary trees with a distinguished root
and {\tt n-1} unlabeled leaves. Each tree is an object of class @TO LeafTree@.
For the purposes of representation, the root is named $0$ and the unlabeled leaves
are named $1,\ldots,n-1$. In other words each class of unlabeled rooted tree is
represented once by a particular labeling of that tree.
Example
L = rootedBinaryTrees 5
SeeAlso
labeledTrees
labeledBinaryTrees
rootedTrees
unlabeledTrees
///
-------------------------------
-- unlabeledTrees
doc///
Key
unlabeledTrees
(unlabeledTrees,ZZ)
Headline
enumerate all unlabeled trees
Usage
unlabeledTrees n
Inputs
n:ZZ
the number of leaves
Outputs
:List
of all binary unlabeled trees with {\tt n} leaves
Description
Text
This function enumerates all possible binary trees with {\tt n} unlabeled leaves.
Each tree is an object of class @TO LeafTree@.
Each class of unlabeled tree is represented by a particular labeling of that tree.
Some duplicates may appear in the list, but each equivalence class is guaranteed to
appear at least once.
Example
L = unlabeledTrees 5
Caveat
For {\tt n} larger than 5, some equivalence classes of trees may appear more than once.
SeeAlso
labeledTrees
labeledBinaryTrees
rootedTrees
rootedBinaryTrees
///
-------------------------------
-- graph
doc///
Key
(graph,LeafTree)
Headline
convert a LeafTree to Graph
Usage
graph T
Inputs
T:LeafTree
Outputs
:Graph
Description
Text
This converts a @TO LeafTree@ representation of a tree into a @TO Graph@.
The internal vertices of a LeafTree are not named, so each vertex is specified by the partition of the set of leaves
formed by removing the vertex. Each partition is given as a @TO List@ of @TO Set@s.
Example
T = leafTree(4,{{0,1}})
G = graph T
adjacencyMatrix G
///
-------------------------------
-- digraph
doc///
Key
(digraph,LeafTree,List)
(digraph,LeafTree,Set)
Headline
convert a LeafTree to a Digraph
Usage
digraph(T,r)
Inputs
T:LeafTree
r:List
representing a vertex
Outputs
:Digraph
Description
Text
A rooted tree can be represented by an object of class @TO LeafTree@ and a choice of vertex to be the root.
This function converts such a representation of a rooted tree into an object of class @TO Digraph@ with
edges oriented away from the root.
The internal vertices of an object of class @TO LeafTree@ are not named, so each vertex is specified by the partition of the set of leaves
formed by removing the vertex. Each partition is given as a list of sets. This is also how the root vertex should
be passed to the function.
Example
T = leafTree(4,{{0,1}})
r = {set{0,1}, set{2}, set{3}}
D = digraph(T,r)
adjacencyMatrix D
///
-----------------------------------------------------------
----- TESTS -----
-----------------------------------------------------------
--Here is a test for the leafTree function. The tests depend on the
--internalEdges and leaves methods, to be tested elsewhere.
--We test a six leaf tree by using the internalEdges and leaves methods.
--The internal edges and leaves fully determine a tree.
--First we test the (L,E) input, then we check that
--using the second (ZZ,E) and (Graph) input gives the same result.
TEST ///
S = leafTree(6, {{0,1}, {0,1,2},{0,1, 2, 3}})
D = set internalEdges(S)
L = leaves(S)
d = set {set {0, 1, 2, 3}, set {0, 1, 2}, set {0,1 }}
l = set {0, 1, 2, 3, 4, 5}
assert( D == d)
assert( L == l)
--This test is very simple and potential problems would mostly come from dependencies on graph package
--if this test is not acceptable, go back to leafTree and internalEdges and think of
--how they depend on Graphs package (unrefereed, no low level functionality tests)
///
--The following is a test for leafColorings. We check that leafColorings gives
--the correct SETS. We check that leafColorings(4,CFNmodel) gives the correct
--output set. We also check that leafColorings gives the same output
--for the JCmodel, the K2Pmodel, and the K3Pmodel on the tree with 4 leaves,
--as this method should only depend on the group, and not the actual model.
TEST ///
A =set leafColorings(4, CFNmodel)
B =set leafColorings(4, JCmodel)
C =set leafColorings(4, K2Pmodel)
D =set leafColorings(4, K3Pmodel)
L =set {(0_(ZZ/2), 0_(ZZ/2), 0_(ZZ/2), 0_(ZZ/2)),
(0_(ZZ/2), 0_(ZZ/2), 1_(ZZ/2), 1_(ZZ/2)),
(0_(ZZ/2), 1_(ZZ/2), 0_(ZZ/2), 1_(ZZ/2)),
(0_(ZZ/2), 1_(ZZ/2), 1_(ZZ/2), 0_(ZZ/2)),
(1_(ZZ/2), 0_(ZZ/2), 0_(ZZ/2), 1_(ZZ/2)),
(1_(ZZ/2), 0_(ZZ/2), 1_(ZZ/2), 0_(ZZ/2)),
(1_(ZZ/2), 1_(ZZ/2), 0_(ZZ/2), 0_(ZZ/2)),
(1_(ZZ/2), 1_(ZZ/2), 1_(ZZ/2), 1_(ZZ/2))}
assert(A == L)
assert(B == C)
assert(C == D)
///
--Here we give a small test that qRing produces a polynomial ring
--in the correct number of variables and that the elements are as expected
TEST ///
S = leafTree(4, {{0,1}})
R = qRing(S, JCmodel)
assert(dim R == 64)
assert((vars R)_(0,0) == q_(0,0,0,0))
P = qRing(4, JCmodel)
assert(dim P == 64)
assert((vars P)_(0,0) == q_(0,0,0,0))
///
--The following gives tests for phyloToricFP.
--We test the 4-claw, which in
--Sturmfels/Sullivant is the 3-claw. We manually construct the ideal of invariants
--as the kernel of the ring homomorphism determined by the parameterization.
--Similarly, one can check that this is the same as the ideal in Sturmfels/Sullivant
--example 3. To do so, you must include the fourth index on their parameters
--to be the sum of the first three.
TEST ///
T = QQ[q_(0,0,0,0),q_(0,0,1,1), q_(0,1,0,1), q_(0,1,1,0),
q_(1,0,0,1), q_(1,0,1,0), q_(1,1,0,0), q_(1,1,1,1)]
J = phyloToricFP(4, {}, CFNmodel,QRing=>T)
R = QQ[a_0, a_1, b_0, b_1, c_0, c_1, d_0, d_1]
f = map(R, T, {a_0*b_0*c_0*d_0, a_0*b_0*c_1*d_1, a_0*b_1*c_0*d_1,
a_0*b_1*c_1*d_0, a_1*b_0*c_0*d_1, a_1*b_0*c_1*d_0,
a_1*b_1*c_0*d_0, a_1*b_1*c_1*d_1})
I = kernel f
assert(I == J)
///
--The following gives tests for phyloToricLinears and phyloToric42.
--We also include another test for phyloToricFP.
--We construct the toric ideal in the quartet tree with single
--non-trivial split using the Jukes-Cantor model. We construct the ideal as the
--kernel of the homomorphism defined by the standard parameterization. We check that
--this ideal matches the ideal defined by phyloToricFP, I == J. We extract the
--linear generators for the kernel I, and check that these generate the same
--ideal as the generators given as output for phyloToricLinears, M == Q.
--We also check the number of linear generators defined by N and those defined
--by phyloToricLinears, P. Although these sets are not minimal, we check that
--each list is 51. This coincides with the fact that there are 13 distinct
--Fourier coordinates for this tree with the JCmodel, and there are 64 total
--parameters.
TEST ///
T = QQ[q_(0,0,0,0),
q_(0,0,1,1),q_(0,0,2,2),q_(0,0,3,3),
q_(0,1,0,1),q_(0,1,1,0),q_(0,1,2,3),
q_(0,1,3,2),q_(0,2,0,2),q_(0,2,1,3),
q_(0,2,2,0),q_(0,2,3,1),q_(0,3,0,3),
q_(0,3,1,2),q_(0,3,2,1),q_(0,3,3,0),
q_(1,0,0,1),q_(1,0,1,0),q_(1,0,2,3),
q_(1,0,3,2),q_(1,1,0,0),q_(1,1,1,1),
q_(1,1,2,2),q_(1,1,3,3),q_(1,2,0,3),
q_(1,2,1,2),q_(1,2,2,1),q_(1,2,3,0),
q_(1,3,0,2),q_(1,3,1,3),q_(1,3,2,0),
q_(1,3,3,1),q_(2,0,0,2),q_(2,0,1,3),
q_(2,0,2,0),q_(2,0,3,1),q_(2,1,0,3),
q_(2,1,1,2),q_(2,1,2,1),q_(2,1,3,0),
q_(2,2,0,0),q_(2,2,1,1),q_(2,2,2,2),
q_(2,2,3,3),q_(2,3,0,1),q_(2,3,1,0),
q_(2,3,2,3),q_(2,3,3,2),q_(3,0,0,3),
q_(3,0,1,2),q_(3,0,2,1),q_(3,0,3,0),
q_(3,1,0,2),q_(3,1,1,3),q_(3,1,2,0),
q_(3,1,3,1),q_(3,2,0,1),q_(3,2,1,0),
q_(3,2,2,3),q_(3,2,3,2),q_(3,3,0,0),
q_(3,3,1,1),q_(3,3,2,2),q_(3,3,3,3)]
R = QQ[a0, a1, b0, b1, c0, c1, d0, d1, e0, e1]
f = map(R,T, {a0*b0*c0*d0*e0,
a0*b0*c1*d1*e0, a0*b0*c1*d1*e0, a0*b0*c1*d1*e0,
a0*b1*c0*d1*e1, a0*b1*c1*d0*e1, a0*b1*c1*d1*e1,
a0*b1*c1*d1*e1, a0*b1*c0*d1*e1, a0*b1*c1*d1*e1,
a0*b1*c1*d0*e1, a0*b1*c1*d1*e1, a0*b1*c0*d1*e1,
a0*b1*c1*d1*e1, a0*b1*c1*d1*e1, a0*b1*c1*d0*e1,
a1*b0*c0*d1*e1, a1*b0*c1*d0*e1, a1*b0*c1*d1*e1,
a1*b0*c1*d1*e1, a1*b1*c0*d0*e0, a1*b1*c1*d1*e0,
a1*b1*c1*d1*e0, a1*b1*c1*d1*e0, a1*b1*c0*d1*e1,
a1*b1*c1*d1*e1, a1*b1*c1*d1*e1, a1*b1*c1*d0*e1,
a1*b1*c0*d1*e1, a1*b1*c1*d1*e1, a1*b1*c1*d0*e1,
a1*b1*c1*d1*e1, a1*b0*c0*d1*e1, a1*b0*c1*d1*e1,
a1*b0*c1*d0*e1, a1*b0*c1*d1*e1, a1*b1*c0*d1*e1,
a1*b1*c1*d1*e1, a1*b1*c1*d1*e1, a1*b1*c1*d0*e1,
a1*b1*c0*d0*e0, a1*b1*c1*d1*e0, a1*b1*c1*d1*e0,
a1*b1*c1*d1*e0, a1*b1*c0*d1*e1, a1*b1*c1*d0*e1,
a1*b1*c1*d1*e1, a1*b1*c1*d1*e1, a1*b0*c0*d1*e1,
a1*b0*c1*d1*e1, a1*b0*c1*d1*e1, a1*b0*c1*d0*e1,
a1*b1*c0*d1*e1, a1*b1*c1*d1*e1, a1*b1*c1*d0*e1,
a1*b1*c1*d1*e1, a1*b1*c0*d1*e1, a1*b1*c1*d0*e1,
a1*b1*c1*d1*e1, a1*b1*c1*d1*e1, a1*b1*c0*d0*e0,
a1*b1*c1*d1*e0, a1*b1*c1*d1*e0, a1*b1*c1*d1*e0})
I = ker(f)
--Here's the test for phyloToric42
S = leafTree(4, {{0,1}})
L = phyloToric42(S, JCmodel, QRing=>T)
assert(I ==L)
--Here's the test for phyloToricFP
J = phyloToricFP(4, {{0,1}}, JCmodel, QRing=>T)
assert(I == J)
--Here's the test for phyloToricLinears
K={1}
N = for i to 83 when degree(I_i) == K list I_i
M = ideal N
#N
P = phyloToricLinears(4, {{0,1}}, JCmodel, QRing=>T)
Q = ideal P
#P
assert(#N === 51)
assert(#P === 51)
assert(M == Q)
///
--Here's a test for phyloToricAMatrix. We only test the set of columns, since
--this only tests the parameterization up to permutation of coordinates.
TEST ///
A = phyloToricAMatrix(4, {}, CFNmodel)
B = matrix{{1,0,1,0,1,0,1,0},
{1,0,1,0,0,1,0,1},
{1,0,0,1,1,0,0,1},
{1,0,0,1,0,1,1,0},
{0,1,1,0,1,0,0,1},
{0,1,1,0,0,1,1,0},
{0,1,0,1,1,0,1,0},
{0,1,0,1,0,1,0,1}}
C = transpose B
D = set { submatrix(C, {0}), submatrix(C,{1}), submatrix(C, {2}),
submatrix(C, {3}), submatrix(C, {4}), submatrix(C, {5}),
submatrix(C, {6}), submatrix(A, {7}) }
E = set { submatrix(A, {0}), submatrix(A,{1}), submatrix(A, {2}),
submatrix(A, {3}), submatrix(A, {4}), submatrix(A, {5}),
submatrix(A, {6}), submatrix(A, {7})}
assert(D == E)
///
--Here is a test for internalVertices. We test a binary tree and also
--a claw tree. We convert all lists to sets to allow for different ordering.
TEST ///
S = leafTree(6, {{0,1}, {0,1,2},{0,1, 2, 3}})
T = leafTree(6, {{}})
internalEdges(S)
internalEdges(T)
IVS= internalVertices(S)
IVSs = set IVS
A = set {set {set {0, 1, 2, 3}, set {4}, set {5}}, set {set {0, 1, 2}, set {3},
set {4, 5}}, set {set {0, 1}, set {2}, set {3, 4, 5}}, set {set {0},
set {1}, set {2, 3, 4, 5}}}
assert( IVSs == A)
IVT = internalVertices(T)
IVTs = set IVT
B = set{set{ set{0}, set {1}, set {2}, set {3}, set {4}, set {5}}}
assert( IVTs == B)
///
--Here is a test for internalEdges. We test a quartet and a 4-claw.
TEST ///
S = leafTree(4, {{0,1}})
A = set internalEdges(S)
B = set{set{0,1}, set{2,3}}
assert( #(A * B) == 1)
T = leafTree(4, {})
C = set internalEdges(T)
assert( C == set{})
///
--Note for the vertexCut test: This test was written before user declared label
--of new leaf. Now that this label is declared, a much simpler and perhaps more
--rigourous test can be written. We will leave the old test for now.
TEST ///
--Here is a test for vertexCut.
S = leafTree(6, {{0,1}, {0,1,2},{0,1, 2, 3}})
VC=vertexCut(S,{0,1,2}, 0, 6)
--First we test that this vertex-cut gives us three connected components, of
--2,3, and 4 leaves each. We check that each tree has the appropriately labeled
--leaves. We have an additional test in which the added vertex is labeled the same on
--each connected component.
M = set{0,1,2, 3, 4, 5}
N= set{0,1,2}
NC = set {3, 4, 5}
L1= for x in VC list leaves(x)
N4 = for x in L1 list(if #x <4 then continue; x)
O4 = for x in N4 list #x
P4 =set flatten for x in N4 list elements x
assert(# set N4 == 1)
assert(O4 == {4})
assert(P4 * NC == set {})
N3 = for x in L1 list(if #x <3 or #x > 3 then continue; x)
P3 =set flatten for x in N3 list elements x
assert(# set N3 == 1)
assert(P3 * N == set{})
N2 = for x in L1 list(if #x <2 or #x > 2 then continue; x)
P2 =set flatten for x in N2 list elements x
assert(# set N2 == 1)
assert(P2 * N == set{})
N1 = for x in L1 list(if #x > 1 then continue; x)
P1 =set flatten for x in N1 list elements x
assert(P1 == set{})
L = (P4 * N ) + (P3 * NC) + (P2 * NC)
assert( L == M)
assert((P4 - N) == (P3 - NC))
assert((P3 - NC) == (P2 - NC))
--Second, we test that the unique 4 leaf component is a quartet tree (and not
--a claw).
A=flatten for x in VC list edges(x)
C =set for x in A list(if #x == 1 then continue; x)
assert(C =!= set{})
///
--Here's a test for edgeCut.
--First we test that this edge-cut gives us two connected components, of
--4 leaves each. We check that each tree has the appropriately labeled
--leaves.
--Second, we test that the 4 leaf components are the correct quartets.
TEST///
S = leafTree(6, {{0,1}, {0,1,2},{0,1, 2, 3}})
EC = edgeCut(S, {0,1,2}, 6)
N= set{0,1,2,6}
NC = set {3, 4, 5,6}
L1= for x in EC list leaves(x)
T1 = L1#0
T2 = L1#1
assert( T1 == N or T1 == NC)
assert( T2 == N or T2 == NC)
A=flatten for x in EC list edges(x)
C =set for x in A list(if #x == 1 then continue; x)
c1 = set{0,1}
d1 = set{2,6}
c2 = set{4,5}
d2 = set{3,6}
assert(C#?c1 or C#?d1)
assert(C#?c2 or C#?d2)
///
--Here is a simple test for edgeContract.
TEST ///
S = leafTree(4, {{0,1}})
T = edgeContract(S, set{0,1})
A = leaves(T)
B = set internalEdges(T)
assert(A == set {0,1,2,3})
assert(B == set {})
///
TEST ///
-- We test the function joinIdeal by computing the join of the ideal of
-- the Veronese map with n=1 and d=7 and the ideal of the Segre
-- embedding of P1 x P3. The ideal is computed directly from the
-- parameterization and using the function joinIdeal.
R = QQ[x1,x2,x3,x4,x5,x6,x7,x8]
S = QQ[a0,a1,a2,a3,b0,b1,b2,s,t]
f1 = map(S,R,{a0*b0, a1*b0, a2*b0, a3*b0,
a0*b1, a1*b1, a2*b1, a3*b1});
f2 = map(S,R,{s^7*t^0, s^6*t^1 ,s^5*t^2, s^4*t^3,s^3*t^4,s^2*t^5,s^1*t^6,s^0*t^7 });
g = map(S,R,{a0*b0 + s^7*t^0, a1*b0 + s^6*t^1, a2*b0 + s^5*t^2, a3*b0 + s^4*t^3,
a0*b1 + s^3*t^4, a1*b1 + s^2*t^5, a2*b1 + s^1*t^6, a3*b1 + s^0*t^7});
I = ker(f1);
J = ker(f2);
assert(joinIdeal(I,J) == ker(g))
///
TEST ///
-- We test the function toricSecantDim by computing the
-- dimension of a second secant of the CFN model
-- which is known to be non-defective.
-- We also verify that the dimenson of the secant for the
-- CFN model for a 4-leaf tree is no larger than the ambient dimension.
A = phyloToricAMatrix(6, {{0,1},{2,3},{4,5}},CFNmodel);
assert(toricSecantDim(A,1) == dim(phyloToric42(6, {{0,1},{2,3},{4,5}},CFNmodel)))
assert(toricSecantDim(A,2) == 20)
assert(toricSecantDim(phyloToricAMatrix(4, {{0,1}},CFNmodel),2) == 8)
///
TEST ///
-- We test the function toricJoinDim using
-- joins of 2 and 3 6-leaf trees.
-- It is known that for the JCmodel, joins
-- of 2 or 3 arbitrary trees with 6 or more leaves are
-- non-defective.
A = phyloToricAMatrix(6, {{0,1},{2,3},{4,5}},JCmodel);
B = phyloToricAMatrix(6, {{0,1},{0,1,2},{4,5}},JCmodel);
C = phyloToricAMatrix(6, {{1,2},{3,4},{0,5}},JCmodel);
assert(toricSecantDim(A,1) == 10)
assert(toricSecantDim(B,1) == 10)
assert(toricSecantDim(C,1) == 10)
assert(toricJoinDim(A,B) == 20)
assert(toricJoinDim({A,B,C}) == 30)
///
TEST ///
-- The function phyloToricQuads is tested
-- by verifying that the ideal generated by
-- the polynomials returned
-- modulo the linear invariants
-- is equal to the degree 2
-- generators of the toric ideal.
Tree = {{0,1},{0,1,2}};
n = 5;
M = JCmodel;
S = qRing(n,M);
L = phyloToricLinears(n,Tree,M,QRing=>S);
T = S/L;
I = ideal phyloToricQuads(n,Tree,M,QRing=>T);
J = phyloToric42(n,Tree,M,QRing=>T);
K = ideal(for i in flatten entries mingens J list (if (degree i)#0 > 2 then continue; i));
assert(I == K)
///
TEST ///
-- The function phyloToricRandom is tested by
-- verifying that it produces a polynomial in the
-- ideal of invariants for the appropriate model.
Tree = {{0,1}};
n = 4;
M = K2Pmodel;
S = qRing(n,M)
I = phyloToric42(n,Tree, M, QRing=> S);
f = phyloToricRandom(n,Tree,M, QRing=>S);
assert(f % I == 0)
///
TEST ///
Tree = {{0,1}};
n = 4;
M = K2Pmodel;
S = qRing(n,M)
I = phyloToric42(n,Tree, M, QRing=> S);
f = phyloToricLinears(n,Tree,M, QRing=>S,Random=>true);
g = phyloToricQuads(n,Tree,M, QRing=>S,Random=>true);
assert(f_0 % I == 0)
assert(g_0 % I == 0)
///
TEST ///
--The function fourierToProbability is tested by computing
--the ideal for the same tree in two different ways. The first is
--by computing directly from the parameterization in probability
--coordinates and the second is by using phyloToric42 to compute
--the ideal in Fourier coordinates and then forming an ideal by
--converting each of the generators into probability coordinates.
--We assert the two ideals are equal modulo the certain linear invariants
--that are suppressed when computing in the ring of Fourier coordinates.
S = pRing(4,CFNmodel);
L = ideal apply(8,i->(S_i - S_(15-i)))
R1 = S/L;
R2 = QQ[a0,a1,b0,b1,c0,c1,d0,d1,e0,e1];
f = map(R2,R1,
{a0*b0*c0*d0*e0+a0*b1*c1*d0*e1+a1*b0*c1*d1*e0+a1*b1*c0*d1*e1,
a0*b0*c1*d0*e1+a0*b1*c0*d0*e0+a1*b0*c0*d1*e1+a1*b1*c1*d1*e0,
a0*b0*c0*d0*e1+a0*b1*c1*d0*e0+a1*b0*c1*d1*e1+a1*b1*c0*d1*e0,
a0*b0*c1*d0*e0+a0*b1*c0*d0*e1+a1*b0*c0*d1*e0+a1*b1*c1*d1*e1,
a0*b0*c0*d1*e0+a0*b1*c1*d1*e1+a1*b0*c1*d0*e0+a1*b1*c0*d0*e1,
a0*b0*c1*d1*e1+a0*b1*c0*d1*e0+a1*b0*c0*d0*e1+a1*b1*c1*d0*e0,
a0*b0*c0*d1*e1+a0*b1*c1*d1*e0+a1*b0*c1*d0*e1+a1*b1*c0*d0*e0,
a0*b0*c1*d1*e0+a0*b1*c0*d1*e1+a1*b0*c0*d0*e0+a1*b1*c1*d0*e1,
a0*b0*c1*d1*e0+a0*b1*c0*d1*e1+a1*b0*c0*d0*e0+a1*b1*c1*d0*e1,
a0*b0*c0*d1*e1+a0*b1*c1*d1*e0+a1*b0*c1*d0*e1+a1*b1*c0*d0*e0,
a0*b0*c1*d1*e1+a0*b1*c0*d1*e0+a1*b0*c0*d0*e1+a1*b1*c1*d0*e0,
a0*b0*c0*d1*e0+a0*b1*c1*d1*e1+a1*b0*c1*d0*e0+a1*b1*c0*d0*e1,
a0*b0*c1*d0*e0+a0*b1*c0*d0*e1+a1*b0*c0*d1*e0+a1*b1*c1*d1*e1,
a0*b0*c0*d0*e1+a0*b1*c1*d0*e0+a1*b0*c1*d1*e1+a1*b1*c0*d1*e0,
a0*b0*c1*d0*e1+a0*b1*c0*d0*e0+a1*b0*c0*d1*e1+a1*b1*c1*d1*e0,
a0*b0*c0*d0*e0+a0*b1*c1*d0*e1+a1*b0*c1*d1*e0+a1*b1*c0*d1*e1})
I = ker(f)
T = leafTree(4,{{0,1}});
M = CFNmodel;
J = phyloToric42(T,M);
MJ = mingens J;
FToP = fourierToProbability(R1,ring J,4,M)
J = ideal(FToP MJ_(0,0), FToP MJ_(0,1))
assert(J == I)
///
end
------------------------------------------------------------
restart
installPackage "PhylogeneticTrees"
viewHelp PhylogeneticTrees
|