1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
|
-- this example is provided by Amelia Taylor
k = QQ
S = k[x,y,z]
R = S/(x*y-z^2)
use S
P = ideal(x,z)
J = P^2 + ideal R
b = set primaryDecomposition J/(J -> trim promote(J,R))
use R
P = ideal(x,z)
J = P^2
c = set primaryDecomposition J / trim
assert( #b == #c )
clearAll
kk = QQ
A = kk[s,t]/(s^2-t^3)
B = A[x,y,z,w]/(x^2-s*y-t^2, w*z-s*x^3)
J = ideal(s*y^2-t*x^2)
(A,F) = flattenRing B
G = F^-1
B' = ring presentation A
J' = lift(F J,B')
C = primaryDecomposition J'
assert( intersect C == J')
kk = QQ
A = kk[s,t]/(s^2-t^3)
B = A[symbol x,y,z,w]/(x^2-s*y-t^2, w*z-s*x^3)
J = ideal(s*y^2-t*x^2)
time C = primaryDecomposition J
assert(intersect C == J)
R = ZZ/32003[b,s,t,u,v,w,x,y,z]
I = ideal(
b*v+s*u,
b*w+t*u,
s*w+t*v,
b*y+s*x,
b*z+t*x,
s*z+t*y,
u*y+v*x,
u*z+w*x,
v*z+w*y)
T = R/I
time primaryDecomposition(ideal(0_T))
assert(intersect oo == 0)
-- see https://github.com/jakobkroeker/M2/issues/42
R = QQ[x,y,z]
I = ideal(4*y*z-(1/2)*z,(1/2)*x*y*z+4*z^3+2*x*z,-(5/2)*z^2-z-1)
-- used to not finish in reasonable time:
pd = primaryDecomposition( I, Strategy=>ShimoyamaYokoyama );
assert ( #pd == 1 and pd#0 == I and isPrimary I )
kk = QQ
A = kk[s,t]/(s^2-t^3)
B = A[x,y,z,w]/(x^2-s*y-t^2, w*z-s*x^3)
J = ideal(s*y^2-t*x^2)
J -- an ideal in R
R = ring J
(A,F) = flattenRing R
G = F^-1
B = ring presentation A
J' = lift(F J,B)
C = primaryDecomposition J'
A = QQ[s,z,Degrees=>{{0},{0}}]
factor(s^3*z^3)
A = QQ [x, y, z, w, s, t, Degrees => {{1}, {1}, {1}, {1}, {0}, {0}},
MonomialOrder => {GRevLex => {1, 1, 1, 1},
Position => Up, GRevLex => {1, 1}}, Heft => {1}]
I = ideal (y^2*s-y*s*t-s^2,x^2-y*s-t^2,-x^3*s+z*w,-t^3+s^2)
p = primaryDecomposition I
assert( I == intersect p )
|